Объявления

МАСШТАБНОЕ ТЕСТИРОВАНИЕ ПЛАТФОРМЫ WEB OF KNOWLEDGE В РОССИИ

С 1го февраля по 30е апреля 2012 года компания Thomson Reuters предоставляет бесплатный тестовый доступ к Web of Knowledge - ведущей мировой платформе для проведения научных исследований – всем институтам Российской Академии Наук.

Ссылка для работы

Смотрите pdf файл

Журнал Journal of Physical Society of Japan

Сообщаю, что открыт тестовый доступ к журналу Journal of Physical Society of Japan для нашего института. Тестовый доступ продлится 5 vесяцев.
Адрес для работы :http://jpsj.ipap.jp/index.html
Глубина доступа с 1 выпуска по 31 августа 2012 года.

Анкета научного сотрудника.

До 20 января всем научным сотрудникам необходимо сдать заполненные анкеты. Баллы вычисляются в соответствие с Положением о стимулирующих надбавках. Анкеты сдавать Ардашовой Г.В.

Издательство SAGE Publications.

Для нашего института открыт доступ к АРХИВАМ журналов SAGE Publications. Глубина архива : c 1 января 1800 года по 31 декабря 1998 года.

Адрес для работы: http://www.sagepub.com/

Я не знаю есть ли там интересные для нас журналы, смотрите сами

Семинар по дифференциальным уравнениям математической физики

22 марта 2011 г. состоится доклад Сакиевой А.У. "Дискретизация гиперболических уравнений Лиувиллевского типа."

Семинар отдела вычислительной математики

15 марта 2011 г. в 14:00 состоится доклад Сафина И.М. (Стерлитамак, ИПИ АНРБ) "Обратные задачи для уравнений смешанного параболо-гиперболического типа".

Семинар по дифференциальным уравнениям матфизики

15 февраля 2011 г. состоится доклад Сафина Э.М. "Обратные задачи для уравнений смешанного параболо-гиперболического типа"

Страницы

Семинары

  • Общегородской семинар им. А.М. Ильина по дифференциальным уравнениям математической физики


    вторник, 3 Декабрь, 2024 - 16:00
    Название доклада:

    Возмущения конечнозонных интегрируемых систем: авторезонанс и диссипация


    Докладчик:

    В.Ю.Новокшенов

    (ИМВЦ УНЦ РАН)
    Институт математики, конференц-зал (к. 24)



  • Общегородской семинар им. А.М. Ильина по дифференциальным уравнениям математической физики


    вторник, 26 Ноябрь, 2024 - 16:00
    Название доклада:

    Об областях Неймана собственных функций Лапласа


    Докладчик:

    Бобков В.Е.

    (ИМВЦ УНЦ РАН)
    Институт математики, конференц-зал (к. 24)

    Наряду с разбиением плоской ограниченной области нодальным множеством фиксированной собственной функции оператора Лапласа, можно рассмотреть и другое естественное разбиение, определённое, грубо говоря, специальными градиентными линиями (сепаратрисами) этой собственной функции. Элементы такого разбиения называются областями Неймана, а их границы - линиями Неймана, и их исследование представляет большой интерес. Мы поговорим об истории вопроса, об уже известных результатах в этом направлении, и о нашем подходе к описанию областей и линий Неймана для произвольных аналитических собственных функций. Доклад по совместной работе с T.V.Anoop и M.Ghosh, https://arxiv.org/abs/2410.07811.

  • Комплексный и гармонический анализ


    среда, 13 Ноябрь, 2024 - 15:00
    Название доклада:

    Об одной шкале гильбертовых пространств целых функций


    Докладчик:

    Юлмухаметов Ринад Салаватович

    (ИМВЦ УФИЦ РАН)
    Институт математики, конференц-зал (к. 24)



  • Общегородской семинар им. А.М. Ильина по дифференциальным уравнениям математической физики


    вторник, 12 Ноябрь, 2024 - 16:00
    Название доклада:

    О дифференциальных уравнениях, которым удовлетворяет гипергеометрическая функция Лауричеллы $F_D^{(N)}$


    Докладчик:

    Cулейманов Б.И.

    (ИМВЦ УНЦ РАН)
    Институт математики, конференц-зал (к. 24)

    Показано, что гипергеометрическая функция Лауричеллы $u(z)=F_D^{(N)(z_1,...z_N}$ по каждой из $N$ независимых переменных $z_j$ является совметсным решением линейных обыкновенных дифференциальных уравнений порядка $N+1$ с переменными коэффициентами . Это следует из вида изветсных ранее дифференциальных уравнений в частных производных на функцию Лауричеллы и, по-видимомму, следующего нового факта: по каждой из двух пар независимых перменных $z_j$ и $z_k$ данная функция есть решение уравнения Эйлера -Пуассона -Дарбу
    $$ (z_j-z_k)u’’_{z_jz_k}=a_ku’_{z_j}-a_ju’_{z_k}$$
    с постоянными коэффициентами $a_m$.

    Доклад основан на исследовании, по материалам которого предполагается написание совместной с С.И.Безродных статьи.


  • Семинар по интегрируемым системам


    четверг, 31 Октябрь, 2024 - 14:00
    Название доклада:

    Интегрируемость по Дарбу гиперболических уравнений как свойство их интегралов


    Докладчик:

    Старцев С.Я.

    (ИМВЦ УНЦ РАН)
    Институт математики, конференц-зал (к. 24)



Конференции