Объявления

Поздравляем научных сотрудников Института

Поздравляем научных сотрудников Института:

Результаты конкурса РНФ

Российский Научный Фонд определил победителей конкурса 2021 года на получение грантов по приоритетному направлению деятельности «Проведение фундаментальных научных исследований и поисковых научных исследований отдельными научными группами».

Анкета за 2020 год

До 17 января всем научным сотрудникам необходимо представить анкеты по форме. Баллы считаем в соответствие с положением. Анкеты нужно предоставить по электронной почте на адресс Юлмухаметова Р.С. в виде редактируемого ворд файла.

Поздравляем Хакимову Айгуль Ринатовну

Поздравляем Хакимову Айгуль Ринатовну, она стала одним из 6 победителей конкурса 

«Молодая математика России» 2020

Поздравляем Хакимову Айгуль Ринатовну

Поздравляем Хакимову Айгуль Ринатовну с успешной защитой кандидатской диссертации "Обобщенные инвариантные многообразия и их приложения в теории интегрируемости" и присвоением ученой степени кандидата физико-математических наук. Желаем дальнейших успехов.

Коллектив ИМВЦ УФИЦ РАН

О выполнении мероприятий по профилактике коронавируса

О выполнении мероприятий по профилактике коронавируса:

Ямилов Равиль Исламович (1957-2020)

15 июня 2020 года на шестьдесят четвертом году жизни скоропостижно скончался на рабочем месте доктор физико-математических наук, ведущий научный сотрудник отдела математической физики Ямилов Равиль Исламович. Смерть вырвала из наших рядов телантливого математика, ученого с мировым именем, внесшего большой вклад в развитие теории интегрируемых систем. Он был предан математике, скромен, принципиален и порядочен в жизни. Память о нем навсегда останется в наших сердцах.

Алексей Борисович Шабат (1937-2020)

Алексей Борисович Шабат

24 марта 2020 года на восемьдесят третьем году жизни скончался выдающийся математик Алексей Борисович Шабат.

Сотрудники Института математики с вычислительным центром УФИЦ РАН глубоко скорбят об этой утрате и 
выражают искренние соболезнования его родным и близким. 

Анкеты и положение об оплате труда 2020.

Анкеты заполняются в соответствии с Положением об оплате труда 2020

Страницы

Семинары

  • Семинар по дифференциальным уравнениям и математической физики совместно с УУНиТ


    четверг, 12 Декабрь, 2024 - 14:00
    Название доклада:

    Нелинейные краевые задачи для дифференциальных уравнений теории пологих оболочек типа Тимошенко


    Докладчик:

    Харасова Лилия Сергеевна

    Набережночелнинский институт (филиал) Казанского (Приволжского) федерального университета
    Институт математики, конференц-зал (к. 24)

    В докладе излагается содержание диссертационной работы на соискание ученой степени к.ф.-м.н. Целью диссертационной работы является доказательство теорем существования
    и разработка аналитических методов нахождения решений краевых задач для
    системы пяти нелинейных дифференциальных уравнений с частными
    производными второго порядка при нелинейных граничных условиях,
    описывающих состояние равновесия упругих пологих изотропных однородных
    круговых и произвольных оболочек с шарнирно опертыми краями в рамках
    сдвиговой модели С.П.Тимошенко. В основе метода исследования лежат
    интегральные представления для искомого решения, содержащие произвольные
    голоморфные функции. Голоморфные функции определяются так, чтобы искомое
    решение удовлетворяло заданным граничным условиям. Нахождение голоморфных
    функций является одним из существенных и сложных моментов метода
    исследования. Для этого используются два подхода. При первом подходе
    используются явные представления решений задачи Римана – Гильберта для
    голоморфных функций в единичном круге. В случае произвольной оболочки
    привлекается теория конформных отображений области на единичный круг. При
    втором подходе голоморфные функции ищутся в виде интегралов типа Коши с
    действительными плотностями, которые находятся как решения системы
    одномерных сингулярных интегральных уравнений. Построенные таким образом
    интегральные представления позволяют свести исходную задачу к одному
    нелинейному операторному уравнению в соболевском пространстве, разрешимость
    которого устанавливается при помощи сжатых отображений.
    Диссертация состоит из введения, трех глав, заключения и библиографии. В
    первой главе доказаны теоремы существования и развит аналитический метод
    нахождения решений краевых задач в круге. Получены условия разрешимости,
    приведен пример. Во второй главе доказаны теоремы существования краевых задач
    в произвольной области. Развит аналитический метод нахождения решений задач,
    основанный на применении теории конформных отображений произвольной
    области на единичный круг. Получены условия разрешимости задач. Приведен
    пример. В третьей главе развит метод интегральных уравнений исследования
    краевых задач в произвольной области, доказаны теоремы существования,
    получены условия разрешимости.


  • Комплексный и гармонический анализ


    среда, 11 Декабрь, 2024 - 15:00
    Название доклада:

    Инвариантные оболочки и ядра нормированных подпространств гладких функций


    Докладчик:

    Юлмухаметов Ринад Салаватович

    (ИМВЦ УФИЦ РАН)
    Институт математики, конференц-зал (к. 24)



  • Общегородской семинар им. А.М. Ильина по дифференциальным уравнениям математической физики


    вторник, 10 Декабрь, 2024 - 16:00
    Название доклада:

    Асимптотика выхода на бегущую волну в уравнении КПП


    Докладчик:

    Калякин Л. А.

    (ИМВЦ УФИЦ РАН)
    Институт математики, конференц-зал (к. 24)



  • Комплексный и гармонический анализ


    среда, 4 Декабрь, 2024 - 15:00
    Название доклада:

    Описание сопряжённых пространств в терминах преобразований Фурье-Лапласа


    Докладчик:

    Постовалова Анастасия Владимировна

    (УУНиТ)
    Институт математики, конференц-зал (к. 24)



  • Общегородской семинар им. А.М. Ильина по дифференциальным уравнениям математической физики


    вторник, 3 Декабрь, 2024 - 16:00
    Название доклада:

    Возмущения конечнозонных интегрируемых систем: авторезонанс и диссипация


    Докладчик:

    В.Ю.Новокшенов

    (ИМВЦ УНЦ РАН)
    Институт математики, конференц-зал (к. 24)



Конференции