Объявления

Аттестация

Положение об оплате труда

Анкета за 2018 год

До 25 января всем научным сотрудникам необходимо представить анкеты по форме. Баллы считаем как в прошлые годы.

Aттестация

Во второй половине октября 2019г. будет проводиться очередная плановая аттестация сотрудников ИМВЦ УФИЦ РАН

Конкурс научных проектов молодых ученых на соискание грантов Республики Башкортостан

Академия наук РБ объявляет конкурс научных проектов молодых ученых на соискание грантов Республики Башкортостан.

Временный доступ к книгам издательства Springer Nature

Мы рады сообщить Вам, что с 15 сентября по 15 ноября 2018 года в рамках инициативы по возможному расширению существующей национальной подписки на журналы и базы данных международного научного издательства Springer Nature будет открыт временный бесплатный тестовый доступ к электронным книгам

Доступ к Springer

С компьютеров института открыт доступ к ресурсам издательства Springer.

Информация для сотрудников

В статьях просьба указывать место работы одним из следующих образов:

  • Институт математики с ВЦ УФИЦ РАН, Уфа, Россия - русскоязычные журналы;
  • Institute of Mathematics, Ufa Federal Research Centre, Russian Academy of Sciences - англоязычные журналы; при необходимости возможно сокращение RAS вместо Russian Academy of Sciences.

Страницы

Семинары

  • Комплексный и гармонический анализ


    вторник, 1 Июнь, 2021 - 16:30
    Название доклада:

    Стираемые особенности голоморфных функций нескольких комплексных переменных


    Докладчик:

    Имомкулов С.А.

    (Хорезмское региональное отделение Института математики имени В.И.Романовского АН РУз)
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    В работе доказывается обобщение теоремы Осгута-Брауна используя методы аналитического продолжения сепаратно-аналитических функций.

    Подключиться к конференции Zoom
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Идентификатор конференции: 941 1726 0457
    Код доступа: 518036


  • Комплексный и гармонический анализ


    среда, 26 Май, 2021 - 16:30
    Название доклада:

    Рост целых функций экспоненциального типа и характеристики распределений точек вдоль прямой на комплексной плоскости.


    Докладчик:

    Хабибуллин Б.Н.

    (БашГУ, ИМВЦ УФИЦ РАН)
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Подключиться к конференции Zoom
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Идентификатор конференции: 941 1726 0457
    Код доступа: 518036


  • Общегородской семинар им. А.М. Ильина по дифференциальным уравнениям математической физики


    вторник, 25 Май, 2021 - 16:00
    Название доклада:

    Субрезонансные решения уравнения линейного осциллятора


    Докладчик:

    П. Ю. Астафьева

    (ИМВЦ УНЦ РАН)
    https://zoom.us/j/91542822307?pwd=Wk1IcTNsUzIxMHRPNml3cDBnR0FqZz09

    Идентификатор конференции: 915 4282 2307

    Код доступа: BJ3M8E


  • Общеинститутский семинар ИМВЦ УНЦ РАН


    пятница, 21 Май, 2021 - 14:00
    Название доклада:

    Седло-узловые бифуркации и формула Коллатца-Виландта


    Докладчик:

    Я.Ш. Ильясов

    (ИМВЦ УФИЦ РАН, Universidade Federal de Goias, Goiania, Бразилия)
    https://zoom.us/j/91542822307?pwd=Wk1IcTNsUzIxMHRPNml3cDBnR0FqZz09

    Идентификатор конференции: 915 4282 2307

    Код доступа: BJ3M8E


  • Комплексный и гармонический анализ


    среда, 19 Май, 2021 - 16:30
    Название доклада:

    Характеристика Неванлинны и интегральные неравенства для мероморфных функций и разностей субгармонических. I. Интегралы от максимальной радиальной характеристики.


    Докладчик:

    Хабибуллин Б.Н.

    (БашГУ, ИМВЦ УФИЦ РАН)
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Подключиться к конференции Zoom
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Идентификатор конференции: 941 1726 0457
    Код доступа: 518036

    Пусть f — мероморфная функция на комплексной плоскости с характеристикой Неванлинны T(r,f) и с максимальной радиальной характеристикой ln M(t,f), где M(t,f) — максимум модуля |f| на окружностях с центром в нуле радиуса t.
    Ни одна из этих характеристик не может быть оценена сверху через другую. Но ряд классических, известных и широко используемых результатов позволяют оценить сверху интегралы от максимальной радиальной характеристикой $\ln M(t,f)$ по подмножествам E на отрезках $[0,r]$ через характеристику Неванлинны $T(r,f)$ и линейную лебегову меру множества E. Наши оценки даются для интегралов Лебега–Стилтьеса от $\ln M(t,f)$ по возрастающей функции интегрирования $m$ на $[0,r]$. Эти оценки содержат в себе все известные нам предшествующие подобные оценки как очень частные случаи. Множества E, на которых функция m непостоянна, могут иметь фрактальную природу. В таких случаях удаётся получать оценки через $h$-обхват и $h$-меру Хаусдорфа множества $E$, а также их частные $d$-мерные степенные версии. Основная часть изложения ведётся сразу для разностей субгармонических функций в кругах с центром в нуле, или дельта-субгармонических функций. Единственное условие в основной теореме — модуль непрерывности функции интегрирования $m$ удовлетворяет условию Дини. Это условие в некотором смысле и необходимо. Таким образом, наши результаты в определённой степени завершают исследования по верхним оценкам интегралов от максимальных радиальных характеристик произвольных мероморфных и дельта-субгармонических функций через характеристику Неванлинны и через специальные характеристики функции интегрирования $m$.


Конференции

Конференция "Комплексный анализ и теория аппроксимаций"

Институт математики с вычислительным центром УФИЦ РАН в сотрудничестве с Башкирским государственным университетом с 29  по 31 мая 2019 г. проводит в Уфе конференцию "Комплексный анализ и теория аппроксимаций". 

Основные темы: