Городской семинар им. А.Ф. Леонтьева по теории функций

  • Общегородской семинар им. А.М. Ильина по дифференциальным уравнениям математической физики


    вторник, 2 Апрель, 2024 - 16:00
    Название доклада:

    Монополь Дирака


    Докладчик:

    Ю. А. Кордюков

    (ИМВЦ УФИЦ РАН)
    Институт математики, конференц-зал (к. 24)



  • Семинар по интегрируемым системам


    четверг, 21 Март, 2024 - 14:00
    Название доклада:

    Преобразование Лапласа и интегрируемые уравнения типа синус-Гордона


    Докладчик:

    Файзулина Кира Игоревна

    (ИМВЦ УНЦ РАН)
    Институт математики, конференц-зал (к. 24)



  • Комплексный и гармонический анализ


    вторник, 19 Март, 2024 - 15:00
    Название доклада:

    Гиперциклические и хаотические операторы в пространстве аналитических функций в полосе


    Докладчик:

    Рахимова А. И.

    (ИМВЦ УНЦ РАН)
    Институт математики, конференц-зал (к. 24)



  • Семинар по вычислительной математике и смежным вопросам


    среда, 6 Март, 2024 - 14:00
    Название доклада:

    Эффективный метод высокоточного определения глобального минимума функции нескольких переменных


    Докладчик:

    Туткушева Жайлан Салаватовна

    (Актюбинский региональный государственный университет имени К.Жубанова, Актобе, Казахстан)
    Институт математики, конференц-зал (к. 24)



  • Семинар по дифференциальным уравнениям и математической физики совместно с УУНиТ


    четверг, 29 Февраль, 2024 - 15:00
    Название доклада:

    ИССЛЕДОВАНИЕ ЭВОЛЮЦИОННЫХ УРАВНЕНИЙ С НЕСКОЛЬКИМИ ПРОИЗВОДНЫМИ ГЕРАСИМОВА — КАПУТО


    Докладчик:

    Бойко Ксения Владимировна

    (Челябинский государственный университет)
    Институт математики, конференц-зал (к. 24)

    В работе исследуются вопросы существования и единственности решения
    начальных задач для линейных и квазилинейных уравнений с дробными
    производными в банаховых пространствах, с приложениями к начально-краевым
    задачам для уравнений и систем уравнений в частных производных.
    В частности, рассмотрена задача Коши для разрешенных относительно старшей
    производной линейных уравнений с ограниченными операторами при производных
    Герасимова - Капуто, получена теорема о ее однозначной разрешимости и
    представление решение в терминах интегралов типа Данфорда - Тейлора. Это
    позволило исследовать соответствующие квазилинейные уравнения, а также
    задачи типа Шоуолтера - Сидорова для линейных и квазилинейных уравнений с
    вырожденным оператором при старшей производной при условии спектральной
    ограниченности пары операторов при двух старших производных.
    Для исследования задачи Коши для уравнений с несколькими дробными
    производными (multi-term fractional equations) и линейными замкнутыми
    операторами при них введено в рассмотрение понятие разрешающего семейства
    уравнения и предложены условия секториальности набора операторов, доказана
    их необходимость и достаточность для существования разрешающих семейств
    уравнения. Формула представления решения линейного неоднородного уравнения
    позволила исследовать задачу Коши для соответствующих квазилинейных
    уравнений, в которых нелинейный оператор зависит от нескольких младших
    производных Герасимова - Капуто. Вырожденные линейные и квазилинейные
    уравнения исследованы при условии секториальности пары операторов при
    старших производных.
    Абстрактные результаты использованы для исследования начально-краевых
    задач для уравнений с многочленами от эллиптического оператора, для систем
    уравнений моделирующих динамику и термоконвекцию вязкоупругой среды,
    начальных задач для систем обыкновенных дифференциальных уравнений.


  • Место проведения семинара
    • Физико-математический корпус БашГУ, аудитория 517
  • Время проведения семинара
    • по вторникам, в 14.00