Семинары

Семинары

  • Общеинститутский семинар ИМВЦ УНЦ РАН


    пятница, 21 Май, 2021 - 14:00
    Название доклада:

    Седло-узловые бифуркации и формула Коллатца-Виландта


    Докладчик:

    Я.Ш. Ильясов

    (ИМВЦ УФИЦ РАН, Universidade Federal de Goias, Goiania, Бразилия)
    https://zoom.us/j/91542822307?pwd=Wk1IcTNsUzIxMHRPNml3cDBnR0FqZz09

    Идентификатор конференции: 915 4282 2307

    Код доступа: BJ3M8E


  • Комплексный и гармонический анализ


    среда, 19 Май, 2021 - 16:30
    Название доклада:

    Характеристика Неванлинны и интегральные неравенства для мероморфных функций и разностей субгармонических. I. Интегралы от максимальной радиальной характеристики.


    Докладчик:

    Хабибуллин Б.Н.

    (БашГУ, ИМВЦ УФИЦ РАН)
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Подключиться к конференции Zoom
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Идентификатор конференции: 941 1726 0457
    Код доступа: 518036

    Пусть f — мероморфная функция на комплексной плоскости с характеристикой Неванлинны T(r,f) и с максимальной радиальной характеристикой ln M(t,f), где M(t,f) — максимум модуля |f| на окружностях с центром в нуле радиуса t.
    Ни одна из этих характеристик не может быть оценена сверху через другую. Но ряд классических, известных и широко используемых результатов позволяют оценить сверху интегралы от максимальной радиальной характеристикой $\ln M(t,f)$ по подмножествам E на отрезках $[0,r]$ через характеристику Неванлинны $T(r,f)$ и линейную лебегову меру множества E. Наши оценки даются для интегралов Лебега–Стилтьеса от $\ln M(t,f)$ по возрастающей функции интегрирования $m$ на $[0,r]$. Эти оценки содержат в себе все известные нам предшествующие подобные оценки как очень частные случаи. Множества E, на которых функция m непостоянна, могут иметь фрактальную природу. В таких случаях удаётся получать оценки через $h$-обхват и $h$-меру Хаусдорфа множества $E$, а также их частные $d$-мерные степенные версии. Основная часть изложения ведётся сразу для разностей субгармонических функций в кругах с центром в нуле, или дельта-субгармонических функций. Единственное условие в основной теореме — модуль непрерывности функции интегрирования $m$ удовлетворяет условию Дини. Это условие в некотором смысле и необходимо. Таким образом, наши результаты в определённой степени завершают исследования по верхним оценкам интегралов от максимальных радиальных характеристик произвольных мероморфных и дельта-субгармонических функций через характеристику Неванлинны и через специальные характеристики функции интегрирования $m$.


  • Общегородской семинар им. А.М. Ильина по дифференциальным уравнениям математической физики


    вторник, 18 Май, 2021 - 16:00
    Название доклада:

    Квантование неабелевых интегрируемых систем. Идеалы квантования


    Докладчик:

    А. В. Михайлов

    (University of Leeds, Leeds, UK, Центр интегрируемых систем, ЯрГУ им. П.Г. Демидова)
    https://zoom.us/j/91542822307?pwd=Wk1IcTNsUzIxMHRPNml3cDBnR0FqZz09

    Идентификатор конференции: 915 4282 2307

    Код доступа: BJ3M8E


  • Комплексный и гармонический анализ


    среда, 12 Май, 2021 - 16:30
    Название доклада:

    Случайные линейные операторы и предельные теоремы для их композиций (продолжение).


    Докладчик:

    Сакбаев В.Ж.

    (МФТИ)
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Будут рассмотрены случайные величины и случайные процессы, принимающие значения в пространстве ограниченных линейных операторов, действующих в гильбертовом пространстве.
    Будут исследованы предельные теоремы для композиций независимых случайных линейных операторов.

    Подключиться к конференции Zoom
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Идентификатор конференции: 941 1726 0457
    Код доступа: 518036


  • Cеминар НОМЦ Приволжского федерального округа по комплексному анализу и теории операторов


    вторник, 11 Май, 2021 - 19:00
    Название доклада:

    Результаты и открытые проблемы в неравенствах типа Харди и Реллиха


    Докладчик:

    Авхадиев Ф.Г.

    (Казанский (Приволжский) федеральный университет)
    https://zoom.us/j/95565190472?pwd=ZXZWOTY1a3BHZHNoOGFOeFhiWi9CUT09

    Время указано уфимское (МСК +2),
    Подключиться к конференции Zoom
    https://zoom.us/j/95565190472?pwd=ZXZWOTY1a3BHZHNoOGFOeFhiWi9CUT09

    Идентификатор конференции: 955 6519 0472
    Код доступа: 268383