Seminar on function theory and complex analysis

  • Комплексный и гармонический анализ


    Wednesday, 14 April, 2021 - 16:30
    Название доклада:

    Квантования по Березину-Теплицу и спектральная теория лапласианов Бохнера


    Докладчик:

    Кордюков Ю.А.

    (ИМВЦ УНЦ РАН)
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Подключиться к конференции Zoom
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Идентификатор конференции: 941 1726 0457
    Код доступа: 518036


  • Комплексный и гармонический анализ


    Wednesday, 7 April, 2021 - 16:30
    Название доклада:

    Квантования по Березину-Теплицу и спектральная теория лапласианов Бохнера


    Докладчик:

    Кордюков Ю.А.

    (ИМВЦ УНЦ РАН)
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Подключиться к конференции Zoom
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Идентификатор конференции: 941 1726 0457
    Код доступа: 518036


  • Комплексный и гармонический анализ


    Wednesday, 31 March, 2021 - 16:30
    Название доклада:

    Теоремы типа Левинсона и экстремальные задачи.


    Докладчик:

    Гайсин А.М.

    (ИМВЦ УНЦ РАН)
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Подключиться к конференции Zoom
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Идентификатор конференции: 941 1726 0457
    Код доступа: 518036


  • Комплексный и гармонический анализ


    Wednesday, 10 March, 2021 - 16:30
    Название доклада:

    Исследование вольтерровых интегро-дифференциальных уравнений и связанные с ними полугруппы операторов


    Докладчик:

    Раутиан Надежда Александровна, Власов Виктор Валентинович

    (МГУ имени М.В. Ломоносова, мех.-мат. факультет, кафедра математического анализа)
    Zoom https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Исследования направлены на изучение асимптотических и качественных свойств решений интегро-дифференциальных и уравнений с неограниченными операторными коэффициентами в гильбертовом пространстве методом спектрального анализа их символов. Главная часть рассматриваемых уравнений представляет собой абстрактное гиперболическое уравнение, возмущенное слагаемыми, содержащими вольтерровы интегральные операторы. Указанные интегро-дифференциальные уравнения являются обобщенными линейными моделями вязкоупругости, диффузии и теплопроводности в средах с памятью (уравнение Гуртина-Пипкина) и имеют ряд других важных приложений. Проводится спектральный анализ оператор-функций, являющихся символами указанных интегро-дифференциальных уравнений, получены результаты о структуре и локализации их спектра.

    На этой основе установлены результаты о существовании сильных и обобщенных решений этих уравнений,
    а также получены результаты о представлении решений в виде суммы слагаемых, отвечающих вещественной и невещественной частям спектра упомянутых оператор-функций. Для широкого класса ядер интегральных операторов приводится метод сведения исходной начальной задачи для модельного интегро-дифференциального уравнения с операторными коэффициентами в гильбертовом пространстве к задаче Коши для дифференциального уравнения первого порядка. Доказывается существование сжимающей и экспоненциально устойчивой полугруппы с определенными предположениями о ядрах интегральных операторов. На основе полученных результатов установлена корректная разрешимость исходной начальной задачи для вольтеррова интегро-дифференциального уравнения с соответствующими оценками решения. Приводятся примеры применения полученных результатов к интегро-дифференциальным уравнениям с ядрами интегральных операторов, представимых суммами убывающих экспонент или дробно-экспоненциальных функций (функций Работнова).

    Подключиться к конференции Zoom
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Идентификатор конференции: 941 1726 0457
    Код доступа: 518036


  • Комплексный и гармонический анализ


    Wednesday, 3 March, 2021 - 16:30
    Название доклада:

    Голоморфные отображения в $C^n$ с низкой граничной регулярностью.


    Докладчик:

    Сухов Александр Борисович

    (University of Lille)
    Zoom https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Подключиться к конференции Zoom
    https://zoom.us/j/94117260457?pwd=U0dTbGVQWlBSbERDNzdlY0VxSjJJdz09

    Идентификатор конференции: 941 1726 0457
    Код доступа: 518036


  • Supervisors
  • Place
    • Institute of Mathematics, a conference room (no. 24)
  • Time
    • on Wednesdays at 10.00