10. V. E. Kim, "Complete systems of partial derivatives of entire functions and frequently hypercyclic operators", J. Math. Anal. Appl., 420 (2014), 364-372, http://dx.doi.org/10.1016/j.jmaa.2014.05.085
9. Kim V.E. Dynamics of linear operators connected with su(1,1) algebra, Ufa Math. J. 4:1 (2012), 76-81, http://dx.doi.org/10.13108/2014-6-1-66
8. Kim V.E., Commutation relations and hypercyclic operators, Arch. Math. (Basel) 99:3, 247-253 (2012), http://dx.doi.org/10.1007/s00013-012-0431-x
7. Kim V.E. Eigenfunctions of annihilation operators associated with Wigner's commutation relations, Ufa Math. J. 4:1 (2012), 76-81.
6. Kim V.E., Napalkov V.V., Linear chaotic systems in generalized Fock-Bargmann spaces, Dokl. Math. 83:3 (2011), 384-385, http://dx.doi.org/10.1134/S1064562411030379
5. Kim V.E., Hypercyclicity and chaotic character of generalized convolution operators generated by Gel'fond-Leont'ev operators, Math. Notes 85:6 (2009), 807-813, http://dx.doi.org/10.1134%2FS000143460905023X
4. Kim V.E., Napalkov V.V., Generalization of the Dunkl operator on the space of entire functions, Dokl. Math. 77:3 (2008), 365-367, http://dx.doi.org/10.1134/S1064562408030125
3. Napalkov V.V., Kim V.E., Isomorphism between the solution spaces of a discrete convolution equation and a convolution equation on the space of entire functions, Math. Notes 80:5 (2006), 692-709, http://dx.doi.org/10.1007%2Fs11006-006-0190-8
2. Napalkov V.V., Kim V.E., Isomorphism between solution spaces of convolution equations, Dokl. Math. 69:1 (2004), 13-15
1. Napalkov V.V., Kim V.E., On discrete sucient and weakly sucient sets in some spaces of functions of zero order, Dokl. Math. 63:2 (2001), 230-232