Article

    Ufa Mathematical Journal
    Volume 12, Number 1, pp. 114-120

    Uniqueness theorems for meromorphic functions on annuli


    Rathod A.

    DOI:10.13108/2020-12-1-114

    Download PDF
    Article on MathNet

    Abstact


    In this paper, we discuss the uniqueness problems of meromorphic functions on annuli. We prove a general theorem on the uniqueness of meromorphic functions on annuli. An analogue of a famous Nevanlinna's five-value theorem is proposed. The main result in this paper is an analog of a result on the plane C obtained by H.S. Gopalkrishna and Subhas S. Bhoosnurmath for an annuli. That is, let f1(z) and f2(z) be two transcendental meromorphic functions on the annulus A={z:1R0<|z|<R0}, where 1<R0+. Let aj, j=1,2,,q), be q distinct complex numbers in ¯C, and kj, j=1,2,,q be positive integers or satisfying k1k2kq. If ¯Ekj)(aj,f1)=¯Ekj)(aj,f2),j=1,2,,q, and qj=2kjkj+1k1k1+1>2, then f1(z)f2(z).