Article
Ufa Mathematical Journal
Volume 12, Number 1, pp. 114-120
Uniqueness theorems for meromorphic functions on annuli
Rathod A.
DOI:10.13108/2020-12-1-114
Download PDF
Article on MathNetAbstact
In this paper, we discuss the uniqueness problems of meromorphic functions on annuli. We prove a general theorem on the uniqueness of meromorphic functions on annuli. An analogue of a famous Nevanlinna's five-value theorem is proposed. The main result in this paper is an analog of a result on the plane C obtained by H.S. Gopalkrishna and Subhas S. Bhoosnurmath for an annuli. That is, let f1(z) and f2(z) be two transcendental meromorphic functions on the annulus A={z:1R0<|z|<R0}, where 1<R0≤+∞. Let aj, j=1,2,…,q), be q distinct complex numbers in ¯C, and kj, j=1,2,…,q be positive integers or ∞ satisfying
k1≥k2≥…≥kq.
If
¯Ekj)(aj,f1)=¯Ekj)(aj,f2),j=1,2,…,q,
and
q∑j=2kjkj+1−k1k1+1>2,
then f1(z)≡f2(z).