Article
Ufa Mathematical Journal
Volume 11, Number 1, pp. 121-132
Characteristic function and deficiency of algebroid functions on annuli
Rathod A.
DOI:10.13108/2019-11-1-121
Download PDF
Article on MathNetAbstact
In this paper, we develop the value distribution theory for meromorphic functions with maximal deficiency sum for algebroid functions on annuli and we study the relationship between the deficiency of algebroid function on annuli and that of their derivatives. Let $W(z)$
be an $\nu$-valued algebroid function on the annulus $\mathbb{A}\left(\frac{1}{R_{0}},R_{0}\right)$ $(1 < R_{0}\leq +\infty)$ with maximal deficiency sum and the order of $W(z)$ is finite. Then
i. $\limsup\limits_{r\rightarrow\infty}\frac{T_{0}(r,W')}{T_{0}(r,W)}= 2-\delta_{0}(\infty,W)-\theta_{0}(\infty,W);$
ii. $\limsup\limits_{r\rightarrow\infty}\frac{N_{0}(r,\frac{1}{W'})}{T_{0}(r,W')}=0;$
iii. $\frac{1-\delta_{0}(\infty,W)}{2-\delta_{0}(\infty,W)}\leq K_{0}(W')\leq \frac{2(1-\delta_{0}(\infty,W))}{2-\delta_{0}(\infty,W)},$
where
$$K_{0}(W')=\limsup\limits_{r\rightarrow\infty}\frac{N_{0}(r,W')+N_{0}(r,\frac{1}{W'})}{T_{0}(r,W')}.$$