Версия для слабовидящих
Цитирования (Crossref | ||
1. |
Р. Н. Гарифуллин, Р. И. Ямилов, “Модифицированные серии интегрируемых дискретных уравнений на квадратной решетке с нестандартной симметрийной структурой”, ТМФ, 205:1 (2020), | 1 |
2. |
Р. Н. Гарифуллин, Р. И. Ямилов, “Необычная серия автономных дискретных интегрируемых уравнений на квадратной решетке”, ТМФ, 200:1 (2019), | 4 |
3. |
R. N. Garifullin, G. Gubbiotti, R. I. Yamilov, “Integrable discrete autonomous quad-equations admitting, as generalized symmetries, known five-point differential-difference equations”, Journal of Nonlinear Mathematical Physics, 26:3 (2019), | 7 |
4. | Rustem N. Garifullin, Ravil I. Yamilov, “Integrable Modifications of the Ito–Narita–Bogoyavlensky Equation”, SIGMA, 15 (2019), 62 , 15 pp., arXiv: 1903.11893 | 1 |
5. |
R. N. Garifullin , R. I. Yamilov, “On series of Darboux integrable discrete equations on square lattice”, Уфимский математический журнал, 11:3 (2019), | 3 |
6. | R. N. Garifullin, R. I. Yamilov and D. Levi, “Classification of five-point differential-difference equations II”, J. Phys. A: Math. Theor, 51:6 (2018), 065204 , 16 pp. | 9 |
7. |
Giorgio Gubbiotti, Christian Scimiterna, Ravil I. Yamilov, “Darboux Integrability of Trapezoidal | 9 |
8. |
Р. Н. Гарифуллин, Р. И. Ямилов, “Об интегрируемости решеточных уравнений с двумя континуальными пределами”, Математическая физика, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 152, ВИНИТИ РАН, М., 2018, | 1 |
9. |
R. N. Garifullin, R. I. Yamilov, D. Levi, “Classification of five-point differential-difference equations”, J. Phys. A, Math. Theor., 50:12 (2017), | 12 |
10. |
G. Gubbiotti, R. I. Yamilov, “Darboux integrability of trapezoidal | 9 |
11. |
R. N. Garifullin, R. I. Yamilov, “On integrability of a discrete analogue of Kaup–Kupershmidt equation”, Уфимск. матем. журн., 9:3 (2017), | 8 |
12. |
R. N. Garifullin, R. I. Yamilov, D. Levi, “Non-invertible transformations of differential-difference equations”, J. Phys. A, Math. Theor., 49:37 (2016), | 8 |
13. |
R. N. Garifullin, R. I. Yamilov, “Integrable discrete nonautonomous quad-equations as Bäcklund auto-transformations for known Volterra and Toda type semidiscrete equations”, Journal of Physics: Conference Series, 621:1 (2015), | 8 |
14. |
R. N. Garifullin, I. T. Habibullin, R. I. Yamilov, “Peculiar symmetry structure of some known discrete nonautonomous equations”, J. Phys. A, Math. Theor., 48:23 (2015), | 7 |
15. |
Р. Н. Гарифуллин, А. В. Михайлов, Р. И. Ямилов, “Дискретное уравнение на квадратной решетке с нестандартной структурой высших симметрий”, ТМФ, 180:1 (2014), | 18 |
16. |
R. N. Garifullin, R. I. Yamilov, “Examples of Darboux integrable discrete equations possessing first integrals of an arbitrarily high minimal order”, Уфимск. матем. журн., 4:3 (2012), | 9 |
17. |
R. N. Garifullin, R. I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A, Math. Theor., 45:34 (2012), | 32 |
18. | Decio Levi, Pavel Winternitz, Ravil I. Yamilov, “Symmetries of the Continuous and Discrete Krichever–Novikov Equation”, SIGMA, 7 (2011), 97 , 16 pp., arXiv: 1110.5021 | 11 |
19. |
D. Levi, R. I. Yamilov, “Generalized Lie symmetries for difference equations”, Symmetries and integrability of difference equations. Based upon lectures delivered during the summer school, Montreal, Canada, June 8–21, 2008, Cambridge: Cambridge University Press, 2011, |
|
20. |
D. Levi, R. I. Yamilov, “Generalized symmetry integrability test for discrete equations on the square lattice”, J. Phys. A, Math. Theor., 44:14 (2011), | 21 |
21. |
D. Levi, R. I. Yamilov, “Integrability test for discrete equations via generalized symmetries”, Aip Conference Proceedings, 1323, no. 1, AMER INST PHYSICS, 2010, |
|
22. |
D. Levi, P. Winternitz, R. I. Yamilov, “Lie point symmetries of differential-difference equations”, J. Phys. A, Math. Theor., 43:29 (2010), | 12 |
23. |
D. Levi, R. I. Yamilov, “On a nonlinear integrable difference equation on the square”, Уфимск. матем. журн., 1:2 (2009), | 9 |
24. |
D. Levi, R. I. Yamilov, “The generalized symmetry method for discrete equations”, J. Phys. A, Math. Theor., 42:45 (2009), | 26 |
25. | Decio Levi, Matteo Petrera, Christian Scimiterna, Ravil Yamilov, “On Miura Transformations and Volterra-Type Equations Associated with the Adler–Bobenko–Suris Equations”, SIGMA, 4 (2008), 77 , 14 pp., arXiv: 0802.1850 | 26 |
26. |
Р. И. Ямилов, “Условия интегрируемости для аналогов релятивистской цепочки Тоды”, ТМФ, 151:1 (2007), | 3 |
27. |
R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A, Math. Gen., 39:45 (2006), | 103 |
28. |
Р. И. Ямилов, “Релятивистские цепочки Тоды и преобразования Шлезингера”, ТМФ, 139:2 (2004), | 3 |
29. |
R. Yamilov, D. Levi, “Integrability conditions for | 11 |
30. |
D. Levi, R. Yamilov, “On the integrability of a new discrete nonlinear Schrödinger equation”, J. Phys. A, Math. Gen., 34:41 (2001), | 6 |
31. |
D. Levi, R. Yamilov, “Conditions for the existence of higher symmetries and nonlinear evolutionary equations on the lattice”, Algebraic methods in physics. A symposium for the 60th birthdays of Ji\ví Patera and Pavel Winternitz. Centre de Recherches Mathématiques (CRM), Montréal, Canada, January 1997, Springer, New York, 2001, |
|
32. |
В. Э. Адлер, А. Б. Шабат, Р. И. Ямилов, “Симметрийный подход к проблеме интегрируемости”, ТМФ, 125:3 (2000), | 126 |
33. |
D. Levi, R. Yamilov, “Non-point integrable symmetries for equations on the lattice”, J. Phys. A, Math. Gen., 33:26 (2000), | 3 |
34. |
D. Levi, R. Yamilov, “Dilation symmetries and equations on the lattice”, J. Phys. A, Math. Gen., 32:47 (1999), | 4 |
35. |
V. E. Adler, S. I. Svinolupov, R. I. Yamilov, “Multi-component Volterra and Toda type integrable equations”, Phys. Lett., A, 254:1–2 (1999), | 70 |
36. |
A. V. Mikhailov, R. I. Yamilov, “Towards classification of | 33 |
37. |
A. V. Mikhailov, R. I. Yamilov, “On integrable two-dimensional generalizations of nonlinear Schrödinger type equations”, Physics Letters, Section A: General, Atomic and Solid State Physics, 230:5–6 (1997), | 10 |
38. |
A. B. Shabat, R. I. Yamilov, “To a transformation theory of two-dimensional integrable systems”, Phys. Lett., A, 227:1–2 (1997), | 47 |
39. |
D. Levi, R. Yamilov, “Conditions for the existence of higher symmetries of evolutionary equations on the lattice”, J. Math. Phys., 38:12 (1997), | 110 |
40. |
I. T. Habibullin, V. V. Sokolov, R. I. Yamilov, “Multi-component integrable systems and nonassociative structures”, Nonlinear physics: theory and experiment. Nature, structure and properties of nonlinear phenomena. Proceedings of the workshop, Lecce, Italy, June 29–July 7, 1995, World Scientific, Singapore, 1996, |
|
41. |
I. Cherdantsev, R. Yamilov, “Local master symmetries of differential-difference equations”, Symmetries and integrability of difference equations. Papers from the workshop, May 22–29, 1994, Estérel, Canada, American Mathematical Society, Providence, RI, 1996, |
|
42. |
I. Yu. Cherdantsev, R. I. Yamilov, “Master symmetries for differential-difference equations of the Volterra type”, Physica D, 87:1–4 (1995), | 51 |
43. |
С. И. Свинолупов, Р. И. Ямилов, “Явные автопреобразования для многополевых уравнений Шредингера и йордановы обобщения цепочки Тоды”, ТМФ, 98:2 (1994), | 10 |
44. |
R. I. Yamilov, “Construction scheme for discrete Miura transformations”, J. Phys. A, Math. Gen., 27:20 (1994), | 50 |
45. |
V. E. Adler, R. I. Yamilov, “Explicit auto-transformations of integrable chains”, J. Phys. A, Math. Gen., 27:2 (1994), | 46 |
46. |
A. N. Leznov, A. B. Shabat, R. I. Yamilov, “Canonical transformations generated by shifts in nonlinear lattices”, Phys. Lett. A, 174:5–6 (1993), | 46 |
47. |
R. I. Yamilov, “On the construction of Miura type transformations by others of this kind”, Phys. Lett. A, 173:1 (1993), | 14 |
48. |
S. I. Svinolupov, R. I. Yamilov, “The multi-field Schrödinger lattices”, Phys. Lett. A, 160:6 (1991), | 29 |
49. |
А. Б. Шабат, Р. И. Ямилов, “Симметрии нелинейных цепочек”, Алгебра и анализ, 2:2 (1990), | 36 |
50. |
Р. И. Ямилов, “Обратимые замены переменных, порожденные преобразованиями Беклунда”, ТМФ, 85:3 (1990), | 24 |
51. |
A. V. Mikhajlov, A. B. Shabat, R. I. Yamilov, “Extension of the module of invertible transformations. Classification of integrable systems”, Commun. Math. Phys., 115:1 (1988), | 82 |
52. |
A. B. Shabat, R. I. Yamilov, “Lattice representations of integrable systems”, Phys. Lett. A, 130:4–5 (1988), | 34 |
53. |
А. В. Михайлов, А. Б. Шабат, Р. И. Ямилов, “Симметрийный подход к классификации нелинейных уравнений. Полные списки интегрируемых систем”, УМН, 42:4(256) (1987), | 188 |
54. |
A. V. Mikhajlov, A. B. Shabat, R. I. Yamilov, “On extending the module of invertible transformations”, Sov. Math., Dokl., 36:1 (1987), |
|
55. |
А. В. Михайлов, А. Б. Шабат, Р. И. Ямилов, “О расширении модуля обратимых преобразований”, Докл. АН СССР, 295:2 (1987), | 1 |
56. |
S. I. Svinolupov, V. V. Sokolov, R. I. Yamilov, “On Bäcklund transformations for integrable evolution equations”, Sov. Math., Dokl., 28 (1983), |
|
57. |
С. И. Свинолупов, В. В. Соколов, Р. И. Ямилов, “О преобразованиях Беклунда для интегрируемых эволюционных уравнений”, Докл. АН СССР, 271:4 (1983), |
|
58. | R. I. Yamilov, “On the classification of discrete equations”, 1982, Integrable systems, Work Collect., Ufa 1982, 95-114 (1982). | |
59. |
R. I. Yamilov, “On conservation laws for the difference Korteweg-de Vries equation”, Din. Splosh. Sredy, 44 (1980), |