Vladimir E. Bobkov

Common information
  • Position: Reseacher of Department of Computational Mathematics
  • Degree: Candidate of Scienes (CSc.) (2015)
  • E-mail: bobkovve@gmail.com
  • Subject of reseach: elliptic problems, parabolic problems, existence of solutions, qualitative properties of solutions

Publications and preprints

1. V. Bobkov, S. Kolonitskii, On qualitative properties of solutions for elliptic problems with the $p$-Laplacian through domain perturbations, 2017 (to appear) , 20 pp., arXiv: 1701.07408
2. B. Audoux, V. Bobkov, E. Parini, On multiplicity of eigenvalues and symmetry of eigenfunctions of the $p$-Laplacian, 2017 (to appear) , 14 pp., Topological Methods in Nonlinear Analysis, arXiv: 1704.03194
3. V. Bobkov, P. Drábek, “On some unexpected properties of radial and symmetric eigenvalues and eigenfunctions of the $p$-Laplacian on a disk”, Journal of Differential Equations, 263:3, 5 August (2017), 1755–1772 link, arXiv: 1605.01175  crossref  isi  scopus
4. V. Bobkov, M. Tanaka, Remarks on minimizers for $(p,q)$-Laplace equations with two parameters, 2017 (to appear) , 33 pp., arXiv: 1706.03034
5. V. Bobkov, E. Parini, On the higher Cheeger problem, 2017 (to appear) , 27 pp., arXiv: 1706.07282
6. V. Bobkov, S. Kolonitskii, On a property of the nodal set of least energy sign-changing solutions for quasilinear elliptic equations, 2017 (to appear) , 9 pp., arXiv: 1707.02816

7. V. Bobkov, Y. Il'yasov, “Maximal existence domains of positive solutions for two-parametric systems of elliptic equations”, Complex Variables and Elliptic Equations, 61:5 (2016), 587–607 link, arXiv: 1406.5275  crossref  isi  scopus
8. V. Bobkov, M. Tanaka, On sign-changing solutions for $(p,q)$-Laplace equations with two parameters, 2016 (to appear) , 29 pp., Advances in Nonlinear Analysis, arXiv: 1606.06092  crossref
9. T. V. Anoop, V. Bobkov, S. Sasi, On the strict monotonicity of the first eigenvalue of the $p$-Laplacian on annuli, 2016 (to appear) , 19 pp., Transactions of the American Mathematical Society, arXiv: 1611.03532

10. J. Benedikt, V. E. Bobkov, P. Girg, L. Kotrla, P. Takáč, “Nonuniqueness of solutions of initial-value problems for parabolic $p$-Laplacian”, Electronic Journal of Differential Equations, 2015, no. 38, 1–7 pdf  isi (cited: 1)
11. V. Bobkov, M. Tanaka, “On positive solutions for $(p, q)$-Laplace equations with two parameters”, Calculus of Variations and Partial Differential Equations, 54:3 (2015), 3277–3301 link, arXiv: 1411.5192  crossref  isi  scopus

12. В. Е. Бобков, “О существовании непрерывной ветви знакопеременных решений эллиптических уравнений с выпукло-вогнутыми нелинейностями”, Дифференциальные уравнения, 50:6 (2014), 768–779  crossref  elib; V. E. Bobkov, “On the existence of a continuous branch of nodal solutions of elliptic equations with convex-concave nonlinearities”, Differential Equations, 50:6 (2014), 765–776  crossref  zmath  isi  elib  scopus
13. V. E. Bobkov, P. Takáč, “A Strong Maximum Principle for parabolic equations with the $p$-Laplacian”, Journal of Mathematical Analysis and Applications, 419:1, 1 November 2014 (2014), 218–230 pdf  crossref  mathscinet (cited: 2)  zmath  isi (cited: 2)  scopus (cited: 2)
14. V. Bobkov, “Least energy nodal solutions for elliptic equations with indefinite nonlinearity”, Electronic Journal of Qualitative Theory of Differential Equations, 2014, no. 56, 1–15 pdf  crossref  isi (cited: 1)

15. В. Е. Бобков, “О существовании знакопеременного решения эллиптических уравнений с выпукло-вогнутыми нелинейностями”, Уфимск. матем. журн., 5:2 (2013), 18–30  mathnet (цит.: 1)  mathscinet (цит.: 1)  elib; V. E. Bobkov, “On existence of nodal solution to elliptic equations with convex-concave nonlinearities”, Ufa Math. Journal, 5:2 (2013), 18–30 pdf  crossref  mathscinet
16. V. Bobkov, Y. Il'yasov, “Asymptotic behaviour of branches for ground states of elliptic systems”, Electronic Journal of Differential Equations, 2013, no. 212, 1–21 pdf  mathscinet (cited: 3)  zmath



  • 2011-2013 гг. Ассистент кафедры математики УГАТУ.


  • RFBR 13-01-00294, "Development of variational methods for investigating special classes of solutions of nonlinear boundary value problems", 2014-2015, participant
  • RFBR 14-01-31054, "Stability of resonance phenomena in nonlinear models", 2014-2015, participant