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Integrable differential-difference analogues of the generalized Schrédinger equations are constructed. A one-to-one correspond-

ence between them and the triple Jordan algebras is established.

1. As is known the nonlinear Schrédinger equation
W, =y +21y?y, w=w(1x), (1)
is a reduction of the integrable equation
U =u.+2uv, v,=—v.-20%u, (2)

u=u(t, x), v=v(t x).

It is shown in ref. [1] that there is a Bécklund
transformation

de=u+i’v, v.=—0—0% (3)

foreq. (2). Inref. [ 1] Bicklund transformations are
interpreted as infinite systems of ordinary differen-
tial equations. In particular the Bicklund transfor-
mation (3) corresponds to the integrable lattice (i.e.
having higher symmetries and local conservation
laws)

(urz),\'=u11+l +u/21UIn (vn),\'=_vn—l _Uleun’ (4)
u,,=u,,(x), U,,——-Z),,(.X) .

It is natural to call this lattice a differential-differ-
ence analogue of eq. (2). The integrable lattice (4)
yields a system of ordinary differential equations
which allows one to construct soliton and finite-gap
solutions of eq. (2) quite easily. The approach to the
construction of exact solutions of nonlinear partial
differential equations which uses the existence of an
integrable differential-difference analogue is dis-
cussed in refs. [1,2].

In this Letter we consider the multi-field integra-
ble lattices
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where @y, @ (A = Aty Gopm =d'ni;) are con-
stant coefficients. In (5) and everywhere below
summation over repeated indices is assumed. The
lattices (5) generalize (4) and are differential-dif-
ference analogues of the multi-field Schrédinger
equations

ui=ul +2al,wvtum, i=1,.., N,
vy = =i, =2ah,, vutv", i=1,. M. (6)

Equations of the form (6) were considered in refs.
[3-6]. Inref. [5] wide classes of equations (6) pos-
sessing an (L, A) pair associated with Hermitian
symmetric spaces have been constructed. In ref. [6]
the conditions on the constants @', @', have been
formulated. These conditions are necessary and suf-
ficient for eq. (6) to have at least one higher sym-
metry or local conservation law of high enough or-
der. If eq. (6) possesses a Biacklund transformation
of the form

Bo=u'+ Ay, @ a", i=1,..N,

vl\=—°5l— ~J’:kmvlﬂkvms l=15M> (7)

the conditions on the constants will be the same.
Proposition 1. Eq. (6) has the Backlund transfor-

mation (7) if and only if the constants

Al gy Al Ao satisfy  the  following
constraints,
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aj"knamsp _a:nxn ajkp - anspajkm +amnpakjs - O - (9 )

As in the case of the scalar Biacklund transfor-
mation (3), one can interpret (7) as a discrete equa-
tion of the form (5). Thus differential-difference
analogues of the generalized Schriodinger equations
(6) have been constructed. Lattices (5) with con-
stants aly,,, d', satisfying the identities (9) will be
called many-field Schrodinger lattices.

2. Before going to discuss the integrability of the
Schrodinger lattices, we have to explain how to de-
scribe the constants aly,,, /.., satisfying the con-
straints (9). We shall recall the algebraic interpre-
tation of integrability conditions (9) which has been
given in ref. [6]. Let L be a linear space, U and V
be subspaces, and L=U®V, dimU=N, dim V=M.
Let us provide L with the structure of a commutative
triple algebra by multiplication ( ): LXLXL-L
such that

(xyz)=0, (Xp2)=0,
(kyz)=(2yx), (xPz)=(2Px), (10)

where x, v, zeU, X, §, ZeV. Let e, e,, ..., ey and é,,
&,, ..., &y, be bases of U and V respectively. Then the
multiplication ( ) is determined by the structure
constants a',,, di,, such that

(ejék em) =a;km €, (éjek ém )dji'km éi . ( 11 )

A change of bases of linear spaces U and V corre-
sponds to the linear transformations

w=JiU", vi=JiVr (12)

of the variable #‘, v' in (6).

Later on we shall be interested in nonreducible
equations which cannot be reduced to the “triangle”
form by means of linear transformations. In more
invariant terms one can formulate the property of
nonreducibility in the following way. If one can ex-
tract a closed subsystem of smaller dimension from
the system (6), then (6) will be called a reducible
system. In the opposite case it is a nonreducible one.
Obviously the differential-difference analogues (5)
of the nonreducible equations (6) are nonreducible.
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Let the structure constants satisfy the constraints
(9). It means that we have the following identities:

(xP(yxz)) = (yX(xpz) ) = (zX(xy))
+(y(¥xx)z)=0,

(Xy(7xZ)) — (Px(Xyz) ) — (Zx(Xy¥) )
+ (¥ (¥Xx)2)=0, (13)

for any elements x, y, z € U, %, 7, Z € V. The triple
algebras satisfying identities (10) and (13) are called
Jordan pairs. They are quite familiar to the experts
in algebra. The term ““Jordan pairs” is motivated by
the close connection of these triple algebras with Jor-
dan algebras. One can find a detailed algebraic the-
ory of Jordan pairs in ref. [7]. To obtain the sim-
plest example of a Jordan pair one can choose the
linear space M, ,(C) of matrices for U and V and
define the multiplication by the formula
(xPz)=xPTz+z9Tx,
(Xy2)=Xy 2+ 37X, (14)
where the superscript T means the transposition.
Nonreducible lattices are the most interesting
among the lattices (5). As in the case of eqs. (6) (see
ref. [6]), the nonreducible lattices correspond to the
simple (i.e. having no nontrivial ideals) Jordan pairs.
Ref. [7] contains an exhaustive classification of
simple Jordan pairs. There is a list in this work which
consists of four series of arbitrarily-high-dimension
algebras and of two special algebras. This permits one
to obtain in explicit form all the nonreducible in-
tegrable lattices (5) and corresponding equations
(6). For example, the triple algebra L=(M,(C),
M, ,(C)) is a simple Jordan pair. In the case p=1,
g=N the corresponding equation (6) is the well-
known vector Schrédinger equation,

wi=ul,+2u'R(u,v), i=1,..,N,
vVi=—vl . —2vR(u,v), i=1,..,N, (15)
R(u, v)=u'"v'+u?’+ ... +u™V.

The lattice

W) e=ul, +ubR(u,,v,), i=1,..N,

(V) e=—0vi_  —vER(u,, v,), i=1,..N, (16)

is the differential-difference analogue of (15).
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3. Let us discuss the integrability of the lattices (5).

Proposition 2. Two multi-field Schrédinger lattices
(5), (9) are integrable.

An integrability property can be realised as the ex-
istence of higher symmetries, local conservation laws
or a recursion operator. The Schrodinger lattices
connected with Jordan pairs have all these proper-
ties. Let us reproduce the recursion operator

A, B
- n n 7
n=(& 5) an

satisfying the Lax equation
(L,)=G,L,—L,G,,
where
A, =IyD+2a(j, k)u, v

+2a(j, k)ul,(D—-1)"vk,
D,=1,D~'=2a(j, k)v,(D—1)""uk,
B, =A(, kYu,uk+2A(, kyu,(D—=1)""u},
C,=—A(, k)vpvk =24, k)v,(D-1)~"v,
G,

_(IND+ 2a(j, k)w, vk

A, k)ujuj )
- _'/T(.}a k)vjnvi‘t '

—LyD~'=24a(j, k), uk
Here Iy and I,, are the NXN and M XM unit ma-

trices respectively, a(j, k), a(j, k), AU, k), A(, k)
are matrices with coefficients

a(, kYm=aum, AU, kY =ajm
AU, kY =ics AU, K)o =B
D is a shift operator such that
DUf(Wi, Wisrs o, W)

=f( Wk+ls Wk+29 Wk+m+l) >

where W, = (u), ... ul, v}, .., v¥)T. (D—1)""1is the
inverse operator to {(D—1). In general (D—1)"'is
an infinite formal series

(D—1)"'=D~'+D~2+D"3+ ..,
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though it can act on functions H, which are repre-
sented in the form

H,=(D-1)())=fus1 =10 (18)

If the recursion operator L, acts on the right-hand
side of the lattice (5), (D—1)~" will be applied only
to functions of the form (18). Therefore, acting by
L, step by step on the right-hand side F, of the
Schrodinger lattice dW,/dx=F,, one can get arbi-
trarily many of its higher symmetries dW,/
dt.=L%(F,), k=1,2,3, ...

Let us recall that in the case of lattices a local con-
servation law is a relationship of the form
(p.)=(D-1)(0,), where p,, g, are functions de-
pending on a finite number of variables u}, v;. The
integrable Schridinger lattices possess an infinite se-
ries of local conservation laws. Conserved densities
Pn(1), pa(2), pa(3), ... may be constructed through
the formula p, (k) =tr(res(L%)), where

res(a,D"+a,_ D" '+ .. +a,D+a,

def

4a_ D'+ ..)=a,.

4. Let us choose Hamiltonian lattices among the
Schrodinger ones (5). They can be written in the
form

(Un)X=RT8p/8Vna (Vn)vz'—RSp/BUn’ (19)

where U, = (u), .., u)T, V,=@), .., v/)T,Ris a
constant matrix, 8p/8W,= (8p/dw), ... 3p/Swi)T,

dp et 2 4D'(p)
8an h i=n—m awf,, ’
p=p(W09 Wl?"" Wm) .

In the periodic case
Url=Un+K’ Vn=Vn+K

the lattice (19) will be a finite Hamiltonian system
of ordinary differential equations of the form
P aH/ap'

; : , (20)

x dH/dp"
where S is a constant antisymmetric matrix, r=2KN.
The Hamiltonian H is determined with the help of
the formula
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K
H= ’Zl Di(p).

It is not hard to verify that eqs. (6) are Hamil-
tonian together with their Hamiltonian differential—
difference analogues. Therefore, when we construct
finite-gap solutions of the Hamiltonian equations
(6), we can solve the corresponding Hamiltonian
systems of ordinary differential equations (20).

As in the case of eqs. (6) (see ref. [6]), it is easy
to formulate simple conditions which are sufficient
for the lattice (5) to be a Hamiltonian one. It is suf-
ficient to assume that N=AM and the lattice has a
conserved density of the form

. . Pk
hn=Qijui1+lv}n+Pijkmu£1ujnvnv:1n’ (21)

where Q=(Q;) is a nondegenerate matrix. The
function (21) is a conserved density if and only if
the matrix Q satisfies the condition

Qirdi'jm - Qr:na7kj' =0. (22 )

The Schrodinger lattice (5) satisfying this condition
may be represented as (19) where R=Q ',

_— -
p=ho=Quu i vh+ 30, aiuoubvgvy .

From the algebraic point of view the relationship
(22) means that (Q,;) is the matrix of an invariant
bilinear form defined on a triple algebra L. It is
known (see ref. [17]) that any Jordan pair L pos-
sesses canonical invariant bilinear forms. The struc-
ture constants @', @}, define matrices of these bi-
linear forms by the formulae

Qy=tr(a(i,j)), Qy=tr(ay, ). (23)

Invariant bilinear forms are nondegenerate in the case
of simple Jordan pairs L corresponding to nonred-
ucible lattices. Therefore all the nonreducible inte-
grable lattices (5) are Hamiltonian ones.

5. It is known (see ref. [8]) that if an integrable
equation has a Bicklund transformation, one may
usually construct a new integrable equation. The
equations are connected with each other by a dif-
ferential substitution which is a Miura type
transformation.

Proposition 3. Every equation (6), (9) is con-
nected by means of the differential substitution
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u'=Ul—al,, VU™, vi=V', (24)
with the integrable equation
Ul=U'=2ak,, UVEU™
—Zajk,ndﬁq,UijUqV’U’” ,
Vie =V =2, VUV ™
+ 28} ,ak, ViUV auTv . (25)

Let us show how the substitution (24) is gener-
ated by the Bicklund transformation (7). Let ' and
v, 1" and ¥’ satisfy the generalized Schridinger equa-
tion (6), (9) and they are linked together by the
transformation (7). If we substitute

ﬁi= U’b, Ui= Vi ,
ui= U'\ _aj’:k"’l UijUm s
D= — Vil VIURY ™ (26)

in the equations
dl=d'+2al,, wokam,
l}f =- U,ivx - Zd}krn l)/ukv'n >

we see that U'=#', V'=1v’satisfy eq. (25). Note that
the last two relationships (26) are another form of
the Bicklund transformation (7).

It is easy to see from (26) that egs. (6), (9) and
(25), (9) are connected with each other not only by
the differential substitution (24) but also by

B N o
A=U, D'=—Vi—@l VIUV™.

Note that a substitution of the form (24) connecting
a “‘scalar” equation of the form (25) with eq. (2)
has been obtained in ref. [9] in a similar way.

6. The algebraic nature of the relationships for
constants which define the integrable generalized
Schrodinger equations (6) and their differential-
difference analogues (5) is not unique. For example
it has been shown in refs. [10,11] that multi-field
generalizations of the scalar Burgers and Korteweg—
de Vries equations are closely connected with left-
symmetric and Jordan algebras. In the future we hope
to find algebraic structures which determine multi-
field generalizations of many other “scalar” integra-
ble equations of the form
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U =Uyy +f( U, v, Uy, U\) s
v,=—vtg(u, v, u,v,)

(for an exhaustive list see refs. [12,9]) and to con-
struct their differential-difference analogues.
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