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Abstract 

We generalise to the two-dimensional case a list of integrable Toda type lattice equations. As a result, 1 + 2 dimensional 

systems similar to the Davey-Stewartson coupled system are obtained together with explicit auto-EGcklund transformations 
and 2D Miura type transformations. 

1. Introduction 

In Ref. [l] (see also Refs. [2,3]), we developed a 
transformation theory of the coupled Schriidinger 
type systems 

iu, = u.,, +f( u., , u,, u, u), 

-iu,= u.,., +g(u,, u,, u, u), (1) 

using a close connection between systems of the 
class (1) and Toda type lattice equations (chains). To 
all the key integrable systems of the Schrijdinger 

type (a complete list of them has been obtained in 
Refs. [4,53x there correspond integrable lattice equa- 
tions of the form 

4,.X I =F(qn,, 4fI-tll 9n* sn-I> (2) 

(n is a discrete integer variable). 
The shift transformation (n -+ n + 1) in a chain 

generates a special Backlund transformation for the 

’ On leave from: Ufa Institute of Mathematics, Russian 

Academy of Sciences, 112 Chemyshevsky Street, 450000 Ufa, 

Russian Federation. 

associated system (i.e. system (1) corresponding to 
this chain). That is an explicit auto-transformation 
which has the form of a differential substitution of 
the second order 

IA * =F(u,X, u,.,, U,, u,X, u> II), 

U * =G(u,.r, U.,,, u,, U.,, 11, U) (3) 

and is invertible. The inverse transformation corre- 

sponds to the backward shift (n + 1 e n) and has 
the same form (3). Such a transformation brings 
solutions of (1) again into solutions and allows one, 
for example, to construct exact solutions (see e.g. 
Ref. [3]). 

On the other hand, all integrable lattice equations 
of the form 

4n.U=F(4”*I 9n+1-9”. 4n-C/n-I) (4) 

can be reduced to the Toda model by discrete Miura 
type transformations (the reader can find all of them 
in the next section). Those discrete transformations 
generate continuous analogs for the associated 
Schriidinger type systems (1). Since the Toda model 
corresponds to the nonlinear SchrGdinger coupled 
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system, resulting continuous Miura transformations 
reduce the associated systems (1) to the Schradinger 
system. 

In the present paper, we generalise this approach 
to the two-dimensional case. First, we construct 
two-dimensional analogs of known (see Refs. [6,1]) 
integrable chains (4) and obtain a list of lattice 
equations of the form 

4nry=Gn.U qny, 9n+l--9,, SJl-SJl-1) (5) 

together with discrete transformations which relate 
equations of that list. 

There are new examples in the list. Chains which 
are associated with 2D analogs of the degenerations 
of the Landau-Lifshitz model seem to be most inter- 
esting (see (22) below). In particular, the following 
lattice equation, 

1 1 
qnry + qn*qny - =O, (6) 

4n+ I - qn qn-9,-l 

corresponds to the totally isotrophic case. 
Second, we build up systems of the Davey- 

Stewartson type associated with chains of the form 
(5). We obtain those systems, using continuous 
analogs of discrete Miura transformations which link 
together 2D chains (5). We also demonstrate that all 
continuous 2D transformations we use (both auto- 
B’ricklund transformations and Miura type ones> not 
only are local but also admit the local prolongation 
to additional nonlocal dynamical variables which are 
characteristic features of the multi-dimensional case. 

2. Discrete Miura transformations in the two-di- 
mensional case 

We start with two classes of one-dimensional 
chains related by Miura type transformations. The 
first of them consists of the following lattice equa- 
tions, 

qn,r= (Cl&, +c,q,, +C3)[fhl+t -%I) 

-f(%-4ndl. 

y=c,f2+C4f+C5. (7) 

Here ci are arbitrary constants, the function f is 
defined by an ordinary differential equation. One can 
see that the well-known (exponential) Toda model 

belongs to this class. The lattice equations (7) can be 
found in Ref. [6] in which equations of the form (2) 
possessing local conservation laws of a high enough 
order have been completely classified. 

The following simple transformation, 

“,=f(q,+, -4,)y “,=q,,, 

maps (7) into the class 

(8) 

u n .I =P(“,)(“,+, -“n)v “n.,=s(“J(~n-%?J~ 

(9) 

with 

p(z)=c,z2+c,z+c,, q(z)=c,z2+c2Z+c,. 

This is the second class we discuss here. All the 
systems of the form (9) can be found, for example, 
in Ref. [l]. 

The lattice systems (9) are reduced to the Toda 
chain by Miura transformations. In fact, if c, # 0, 
we can without loss of generality put p( z> = z2 - b2 
and q(z) = z2 - a*. Now, either of two transforma- 
tions, 

iin=(“,+b)(“,+, +a), 

8, = (u, - b)( u, - u), 

ii,,=(u,+b)(u,+a), (10) 

C,=(U,-,-b)(u,-a), 

gives the Volterra coupled system 

UK, = %( “rl+ I - “n) 7 “,,=“,(%-%I) (11) 

(the renumeration u, = wZn, “, = wZn_ , allows one 
to pass to the usual form of the Volterra equation in 
terms of w,). In its turn, the system (1 I) is reduced 
to the polynomial Toda chain 

U = 
“.I U,(“,+,_“,), “,,=U,-Uu,_I. (12) 

Transformations in this case are 

u’, = “,“,+ ,, iT,=u,+u,, 

fin = U,“, , 0, = u,_, + u,. (13) 

We are now going to construct two-dimensional 
local generalisations for all above transformations 
except for (13) (a generalisation would not be local 
in this case, see the conclusions). The first three of 
them 

U,=exp(q,+, -4”) “,=qny. 

6, = q,., 9 fi,=q,-4,-l, 

(14) 

(15) 
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c,=s,,. ~,=exd4,-4,-l)v (‘6) 
are direct analogs of (8). These link the chains 

4n.ry=expt4,+, -4,) -exptqj1-4,-,), t 17) 

4n.ry=4n1(4n++ -24,+4,-,), (18) 

4”.lY = 4” I [exp( 4,+ I - 4,) - exr-0, - 4,- ,)I 

(19) 

and the well-known 2D Toda and Volterra lattice 

systems, 

u nv =u,(u,+,-u,), u”,,=~,--u,-,. (20) 

11 
nY = un( U,+ I - 3). Um = Un(% - u,- / 1 (21) 

(cf. (12) and (II)). The chains (17) and (181 are 

reduced to (20) by (14) and (I 5), respectively. The 

relation between (19) and (21) is (16). 
From our point of view the most interesting two- 

dimensional chains are of the form 

4n.~~=(4n*+a)(4,,-a)[f(4,+,-4,) 

-f(s,-%-Jl~ 

f’=f2+2, (24 
where u and b are arbitrary constants. There is a 
relationship between (22) and the 2D Volterra cou- 
pled system (21), though it is not so simple as the 

above transformations. In fact, introducing 

%?=f(4n+, -4,)* u,=qn.,, wn=4ny7 (23) 

we are led to chains of the form 

~,,=(~~--2)(u,+,-u,), 

%,=(U:-b2)(W,+, -w,), 

U 
flY 

= NJ”, = 
(U,+a>(w,-a)(u,-u,-,), (24) 

which generalise the modified Volterra systems (9) 
with c, # 0. 

In contrast to (201 and (21), the lattice systems 
(241 are, in a sense, nonlocal. However, the usual 
structure is restored on the next step. Namely, using 
the following analogs of the Miura type transforma- 

tions ( 101 (any of them) 

G n =(u,+6)(u,+, +a), 

iXz=(U,-b)(w,-a), 

a, = ( u, + b)( u, + u) ) (25) 

;,=(U,-,-b)(w”-a), 

we obtain (2 I ). 

One of two compositions of (23) and (25) will be 

the following transformation, 

ii,= - 4,., 
o,, = - 

4 nY 
1 

4 “+I-4” 4,-q,-, . 
(26) 

if we restrict ourselves to the simplest case a = b = 
0, fl z> = - l/z. This local transformation reduces 

the chain (6) of Introduction to the 2D Volterra 

coupled system (21) (cf. Ref. [s]. where (6) and (26) 

have also arisen). 

It is clear that up to point transformations there 
are several main one-dimensional cases among (7) 

and (9), and the chains (17)-(22), (24) generalise all 

of them. 

3. Auxiliary linear problems 

The two-dimensional lattice equations presented 

in the previous section are closely connected to the 
Laplace-Darboux transformations of a second order 

linear PDE with two independent variables which 
can be written in the form 

L*~a,ayII,+ua,(I,+ba~JI+ctl,=O (27) 

(coefficients a, b, c depend on x and y). Not only 
the lattice equations arise in a natural way but also 
corresponding L-A pairs and transformations relat- 
ing these equations. We explain in this section how 
to derive the 2D Toda and Volterra systems (20) and 
(21) which play here the key role. If one consider 

some different Laplace-Darboux transformations, 
one could in principle be led to different (or even 
new) integrable equations. 

The Laplace-Darboux transformations 

A: +I$, L-i, 

are defined by differential operators of the form 

A= cyan +pg+ y (28) 

and transform solutions of (271 as follows: $ = A$. 
These operators have to satisfy the following opera- 
tor relationship, 

h - /CL = c u;,a,;a,i = 0, (29) 
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where 

Equating the coefficients aij to zero, we can find 
constraints for the coefficients of A and i. For 
example, a,, = a - & and a,* = p - a, therefore 

ar=B, p=p. 

Also, Eq. (29) allows us to know how the coeffi- 
cients of L are transformed. 

The zeroth order Laplace-Darboux transforma- 
tion is defined by the operator of multiplication by a 
function y and is called the gauge transformation. In 
this case A = A^ = y. The gauge transformation has 
two invariants 

A classical example of the first order transforma- 
tion goes back to Laplace and is defined by 

r=c-ab-b,, p=c-ab-a,, (30) 

(r and p are not changed under its action, i.e. i = r 
and fi=p>. 

-(a,+b,)(a),a,+a,a,+6,ay-tC2)=o. 

(31) 

Relation (3 1) is equivalent to 

a, =a2, b,=6,-(log r2)+, pI=r2, (32) 

where ri and pi are the invariants (30) correspond- 
ing to the operators Li. Formulae (32) allow us to 
express the coefficients of L, via the coefficients of 
L, and vice versa. The iteration of this transforma- 
tion (31) which will be called the Laplace transfor- 
mation generates a set of operators Li (i = 0, f 
1, * 2,...). 

The Laplace transformation is closely connected 
to the 2D Toda model. Evidently, all the operators Li 
have the same coefficients ai = a. The gauge trans- 
formation enables one to make ai = 0 for all i, and 
then L, = axa, + bid, + ci. Now, Eqs. (32) give 

ci.v ==c;(b;+,-bi), biy=ci-ci_,, (33) 

i.e. we are led to the 2D polynomial Toda chain (20) 
((33) coincides with (20) if we change ci -P u,,, bi 
-+u,, x-y). 

The operators Li satisfy not only (3 1) but also the 
operator relation 

Li($‘ay= ay(ci_,)-ii_,. (34) 

One can verify the equivalence of (31) and (34) by 
direct calculation. The last relation reflects the in- 
vertibility of the Laplace transformation and gives 
rise a new operator: Bi = <~,>-‘a,. It is easy to check 
that the pair of the operators Ai and Bi generates the 
auxillary linear problem for the 2D Toda chain. 

First, the system of equations 

On the other hand, introducing the shift operator 
T, we can rewrite the system (35) as follows, 

Ai$;=rFli-j, Bi$i= -$;+I (35) 

rewritten as a pair of equations for +i and Gi+, 
immediately implies that L, 1+4~ = 0 (k = i, i + 1). 
Thus, one can consider (35) just as a representation 
of the linear equation (27) in the form of a system of 
two first order equations. 

(~v+b;-T-l)$i=O~ Ca ’ Y 

The consistency condition for 
lowing commutator relation, 

[ ?r + bi - T- I, ay + C,T] = o. 

c;T) CCI, = 0. (36) 

(36) will be the fol- 

(37) 

So, we obtain the L-A pair of the 2D Toda system 
(33) found in Ref. [9]. We will use this L-A pair for 
the construction of higher symmetries. 

The two-dimensional Volterra chain corresponds 
to the case ci = 0 for all i and can be obtained by the 
gauge transformation. Let us introduce a set of solu- 
tions {qi} of the linear equation (27) linked together 
by the Laplace transformation, i.e. Li ‘pi = 0, A i cpi = 

Pi- It where 

L; = Q7, + b,dy f ci, Ai = ~3, + bi. 

Using the gauge transformation, we construct new 
operators zi = ~7,: ‘Lipi and new +-functions 6; = 
Gi/cpi. It is clear that Liqi = 0, and the correspond- 
ing Laplace-Darboux transformation is defined by 
ii = 40,;‘~ A i ‘P;. 
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The new operators have the form ii = ~?,a, + Zja, 
+ &, 8,. where 

a”i = cp, ,/cp; > b, = ‘Pi- I/cPi’ (38) 

It is easy to see that the functions ‘pi satisfy the 
equations 

cPi,=cp,-i-b;cp,, ‘pi,= -c;(P;+i. (39) 

Using these equations together with Eqs. (33) of the 

2D Toda chain, we can check that Zi and ii satisfy 

the 2D Volterra chain 

&\ = c?, &+ , ( -g;), iiY= -Q+Q. (40) 

The chain (40) coincides with (21) if we change 

&-t -u,,, gi+ u,, X@Y. 
Using (39), one can invert the formulae (38) and 

obtain a transformation which will reduce the 2D 

Volterra chain to the 2D Toda chain and will be a 
two-dimensional analog of (13) (see the conclusions). 
On the other hand, if we pass in (35) to the new 

$-functions, we are led to new operators 

A”, = 6, ‘g + 1 . I.?;= -(li;‘a, + 1) 

and, as in the previous case, obtain the L-A pair for 
the 2D Volterra chain (4O), 

[CY,+6,(1-T-‘),~“-Zi(7--1)]=0. (41) 

It should be remarked that in the case of the periodic 
closure Li+ N = Lj, the relations (37) and (41) define 

zero curvature representations for corresponding hy- 
perbolic systems. The spectral parameter can be 
introduced by the Bloch periodicity property of the 
*-function: ij~~+ N = vtii. More precisely, the replace- 

ment in (37) and (41) of the shift operator T by the 
N X N matrix (ZJj), such that q,i+, = 1, TN., = v, 
and all other elements are zeros, gives the standard 
(matrix) zero curvature representations. 

4. Sketch of classification of Davey-Stewartson 
type systems 

In this Section, we (following Refs. [2,1]) con- 
struct the associated systems for the two-dimensional 
chains of Section 2 which will be integrable 1 + 2 
dimensional systems similar to the Davey-Stewart- 

son coupled system. Systems associated with the 2D 
Toda and Volterra chains are derived, using corre- 
sponding L-A pairs. For the construction of the 
others, continuous analogs of discrete Miura type 

transformations of Section 2 are used. In all the 
cases, the above 2D chains generate explicit auto- 

Bscklund transformations for corresponding associ- 

ated systems. 

As it follows from what has been said above, the 

2D polynomial Toda chain (20) has the representa- 
tion 

[d,+u,T, $+u~-T-l] =0 (42) 

(cf. (37)). A more or less standard scheme allows us 

to derive higher symmetries. 
We can introduce formal series of the form 

W(“=U~T-V~-?~T-‘- . . . . n 

Wn(” = -T- ’ + u,, - U,,T - C7,T2 - . . 

in negative and positive powers of the shift operator 
T, respectively, satisfying the Lax relations 

Wn’,;)= [Wf), unT], W’“dn,= [W,,(l), u/T-‘]. 

(43) 

The coefficients V,,, vn, U,,, (I,, . . . of these series 
will be called the nonlocal variables. For example, 
the first of them are defined by the equations 

KY = “,I 3 %A v,+ I - Vn) = I*,, ’ 

U”, = U?l,v~ un-u*-,=u,t.’ (441 

which easily can be obtained by (43). The right hand 
sides of higher symmetries will be expressed in 
terms of u,, u,, and the nonlocal variables. 

Higher symmetries are constructed, using powers 
of the series W,“‘, and we need the notations 

(w;i))” = . . . +,_;l.i.k)T+ r!;O.i.k) + ,_i- I.f.k)T- I 

+ . . . . 

There are the following simple formulae for the 
higher symmetries (cf. Ref. [7]), 
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In the case k = 2, 

r(“‘.*)= -u,(V,+, +v,), ” 

Fy.2) = “,f + u, + u, _ , ) 

and we are led to two simplest higher symmetries of 

(20) which can be written as follows: 

u n .I 2 = u,,., + 2( UnVn > .I 9 

V 
nx2 

= -v,,, + (vn2)y + 2u,,, (46) 

z4 = 
nY2 

u nyy +2wL)y~ 

V 
“Y, 

= -_v 
“YY + (4 + w)y. (47) 

One can see that (46) and (47) are infinite sets of the 

same (1 + 2)-dimensional systems which generalise 

the well-known dispersive water wave system, 

u, = a.,, + 2(uV).r, 

u,= -v~~-S+(V2)y+2U,, vy=u,, (48) 

u, = llyy + 2( uu>y, 

u,= -vv,,+(u2+2U)y, u,=u,. (49) 

The shift transformation (a,,, v,,) + (u,,+ ,, u,+ ,) in 
the 2D Toda chain (20) gives us the following 
explicit and invertible transformation, 

V * =u+(log u)y, u- =u+u:. (50) 

If we use (44), we can expand this transformation to 

the nonlocal variables, 

V” =V+(log u),, u* =Lr+v;. (51) 

Formulae (50) and (51) define the explicit auto- 

BBcklund transformation for both systems (48) and 
(49). It brings solutions of (48) and (49) into solu- 
tions and enables one to construct exact solutions. 

In the case of the 2D Volterra chain (211, the 

operator representation is 

[g+u,(T- l), a,+UJl -T’)] =o (52) 

(cf. (41)). The chain is symmetrical: it is invariant 
under the involution x c-+ -y, II,, ti u_,. For this 
reason, one needs formulae for the construction of 
only one set of higher symmetries; the second set 
can be obtained, using the involution. As in the 
previous case, we introduce 

W(‘)=Un7--(U,+V,)-IQ-‘- . . . n 

satisfying Lax relations similar to (43). Higher sym- 

metries can be constructed as follows, 

(k) 

k 
(k) = 8, C ,.;j.l.k). (53) 

j= I 

If k = 2, then gf’ = -u’, - u,,(V,,+ , + V,), and one 

obtains a simplest higher symmetry. The correspond- 
ing (1 + 2)-dimensional system has the form 

u, = u,, + (u2 + 2uV).,, 

v,= -v\x+(V*)y+2(uv).~, vy=vs, (54) 

and generahses an integrable system found in Ref. 

[lo]. It is invariant under the transformation 

v * =u+(1og u)Y, u* =u+(log v*)\., 

v* =V+(log U).v. (55) 

The second system associated to (2 1) can be con- 
structed, using the involution XC+ -y, t f, -T, u 
++ v, U ++ V. We are led to one simpler (1 + 2)- 

dimensional system 

VT’ -u,,+(v~+2vU),, Ur=Uyr (56) 

which coincides with (54) if t = T, x = y. In order to 

have an auto-transformation not only for (54) but 

also for (56), we should add to (55) the following 
formula, 

u* = u+ (log U*)y. (57) 

It should be remarked that, in the one-dimensional 
case, the auto-B8cklund transformations (SO), (5 1) 
and (55). (57) have also been obtained for the first 
time in Ref. [lo] and, as in this paper, using the Toda 
and Volterra chains. 

Now, let us pass to systems associated with the 
chains ( 17)-(19>, (22). All of them can be derived, 
using Miura type transformations, and will be re- 
duced to (48), (491, (54) or (56). A system corre- 
sponding to the exponential Toda chain (17) will not 
be written down because it is the well-known 
Davey-Stewartson coupled system (there is an ex- 
ample together with the explicit auto-B;cklund trans- 
formation in Ref. [3]). 

At first, let us discuss a system associated with 
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the chain (I 8). It has been shown in Ref. [l] that the 
functions r,, = q,,, s, = - q,,_ , satisfy in the one-di- 
mensional case a Schrodinger-type system of the 

form (1). We take the same functions, but intend to 

obtain a (1 + 2)-dimensional system. 
It is clear that the discrete transformation (15) 

which reduces (18) to the 2D polynomial Toda chain 

(20) can be rewritten in the form of a continuous 

one. 

z4 =r n u =r,+sn. n,, n (58) 

For the nonlocal variables U,, V, (see (44j), one has 

U,,, = rn.r,,,. VnY = (r,, + s,,),, and the following for- 
mulae can be added to (58j, 

U”=r,,, V,,=R,. (59) 

Here R,, is the nonlocal variable for a system we are 

going to write down: R,, = (rn + s,),. 
Using the transformation (58j, (59) and the sys- 

tems (46) and (47j, we easily find the time evolution 
of rn, s,. In the second case (if we use (47jj, we 
cannot define the time evolution by differential poly- 
nomials of r,, s,, R, and should introduce an addi- 
tional nonlocal variable S,: S,, , = ( s,,rnl - r,s, ,Jv. 
As a result, the following two systems arise, 

r,=r,,+2Rr,, s,= -s.,,+2Rs,, 

R,=(r+s),, (60) 

rT = rYY + ( r2 + rs) ,” + S, 

s,= -s,,+(s2+rs)Y-S. S.,=(sr.,-~s,)~ 

(61) 

(we do not write n and change x2 + t, y, + 7). 
According to (58) and (59j, the new systems (6Oj 

and (6 1 j are reduced by the transformation 

u = r,, v=r+s, 

U=r,, V=R (62) 

to (48) and (49j, respectively. Both systems (60) and 
(61) are two-dimensional analogs of an integrable 
system found in Ref. [ 1 I]. 

In order to obtain the explicit auto-Backlund 
transformation which corresponds to the shift in the 
chain (1 S), one should express r,,+ , , s,+ , in terms 
of rn, s,, using ( 18) and the formulae rn = q,, s, = 
- q,_ , . That transformation can easily be expanded 
to the nonlocal variables R,, S, (one can rewrite the 

functions CR,,, , -R,,), and (S,,, , -CT,,), in terms 
of r,,, s, and then integrate them w.r.t. y and x j. 

The auto-transformation is of the form 

S “=-_r , r‘+s* =rfs+(log r,)r. 

R* =R+(log r,),, 

S’=S+[2r,-r(l0g r,)Y]r. 

It can be checked by direct calculation that (60) and 

(61) are invariant under this transformation. 

In two other cases, new systems and transforma- 
tions are obtained in a similar way. In the case of the 

chain (19j, we use the discrete transformation (16). 
the systems (54j, (56) associated with the 2D Volterra 

chain (21) and introduce new dynamical variables as 

follows: rn = exp q,,, s, = exp(--q,_ ,I. Resulting 

systems and transformations have the form 

r,=r,,+2Rr,, s,= -s,,+2Rs.,, R,=(rs),. 

r,=r,,+r[(rs),+S]. 

(63) 

s,= -ss,,+s[(rs),-S], S,=(sr,-rs.,),, 

24= (log r).,, u=rs, 

U=(log r),,,, V=R, 

S * zr-‘* r*S* = rs + (log( r,/r))Y. 

R” =R+(log(r,/r)),. 

(64) 

(65) 

S* = S + [2rs + (lOg( r,T))y] y. (66) 

Systems (63) and (64) are generalisations of the 
well-known nonlinear derivative Schrtidinger cou- 

pled system 1121. The transformation (65) reduces 
them, correspondingly, to (54) and (56). The formu- 
lae (66) define the auto-B’acklund transformation for 
each of them. 

The last example is closely connected to the 
degenerations of the Landau-Lifshitz model. If we 
start with the chain (22j, use the transformations 
(23j, (25) reducing it to the 2D Volterra chain, and 
introduce new variables rn, s, as in the case of the 
chain (18j, we are led to the following (1 + 2)- 
dimensional system of equations, 

r, = r,.r + 2( r_,’ - a*)f( r + s) + 4&r, 

+2(r,+a)R, 
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-s, = s,, + 2( s,f - a2)f( r + S) - 4abs., 

-2(s,-a)R, 

f’=f2-b2, (67) 

where a, b are arbitrary constants. Another system 
associated with (22) can be obtained by the involu- 
tion: x@ -y, tt, -7, r* --s, RoXTheMiura 
type transformation 

u= [b+f(r+s)](a+r,), 

u= [b-f(r+s)](a+s,), 

U=S+[b+f(r+s)](a+r,), 

V=R+[b-f(r+s)](a+s,) 

reduces the associated systems to (54) and (56), 
respectively. 

Note that in one-dimensional case (X = y, R = 0) 
these systems will be the degenerations of the Lan- 
dau-Lifshitz model rewritten by the stereographic 
projection. The case a = b = 0, f(z) = - z- ’ corre- 
sponds to the isotrophic Heisenberg model, the case 
a = b = 1, fl t> = - tanh z corresponds to the 
anisotrophic one. If a = 1, b = 0, f(z) = -z-‘, then 
one has one more known integrable system (see e.g. 
Refs. [4,5]). 

5. Conclusions 

In the previous section, we have constructed for 
each of the chains (18)~(22) exactly two associated 
systems which exemplify integrable (1 + 2)- 
dimensional systems of equations. It is clear that any 
linear combination of such a pair of associated sys- 
tems will be integrable too. This linear combination 
admits the same explicit auto-Bgcklund transfonna- 
tion we have written down for the corresponding two 
systems. In the case when there is a transformation 
which reduces both the associated systems to (481, 
(491, (54) or (56), the linear combination of these 
systems will be reduced by the same transformation 
to the same linear combination of the systems (48) 
and (49) or (54) and (56). 

It is known that the Miura type transformations 

are not local in the case of the Kadomtsev- 
Petviashvili type equations (see e.g. Refs. [ 13,141). 
The transformation 

u”, = u,u,+ ,, En = q’a,zf, + v,, 

which reduces the 2D Volterra chain (21) to the 2D 
Toda chain (20) is of the same kind. It is interesting 
that, unlike those, all the 2D discrete transformations 
of Section 2 are local. The continuous Miura type 
transformations of Section 4 as well as the auto- 
BIcklund transformations not only are local as them- 
selves but also admit the local prolongation to addi- 
tional nonlocal variables. 

In the one-dimensional case, there is a complete 
list of integrable chains of the form (2) obtained in 
Ref. [61. It consists, up to point transformations, of 
the chains (7), the chain 

9,,,=exp(q,+, -2q,+qn-& (68) 

and one more exceptional lattice equation which 
generates the explicit auto-B&klund transformation 
for the Landau-Lifshitz model and has a form differ- 
ent from (4). If we restrict ourselves to chains of the 
form (4), the list of equations (7) and (68) becomes 
complete. We have succeeded to build up two-di- 
mensional generalisations for all the integrable chains 
(4); a 2D analog of (68) can easily be added to the 
chains of Section 2 and will have the form 

qn.ry =exp(q,+, -2q,+qn-,) 

(it is reduced to (17) by the obvious transformation 

qn=4n+1 - 4,). 
Schrijdinger type systems (1) associated with the 

integrable chains (4) cover the key integrable cases 
except for the Landau-Lifshitz model [ll. Thus, one 
can hope that the (1 + 2)dimensional systems con- 
structed in Section 4 exhaust, in a sense, a list of 
Davey-Stewartson type systems. Of cause, the prob- 
lem of the generalisation of the Landau-Lifshitz 
model remains open. 
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