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Abstract

New Bicklund transformations of integrable 2 4+ 1 dimensional generalisations of nonlinear Schrédinger type equations
are found. The corresponding Miura transformations and modified equations are constructed. The Bicklund transformations
being treated as two-dimensional chain equations provide examples of new integrable difference-differential equations. ©

1997 Elsevier Science B.V.

1. Introduction

In the one-dimensional case there is a comprehen-
sive description and classification of integrable non-
linear Schrodinger type equations [ 1-3]. In the two-
dimensional case the problem is much less studied
and such a coherent picture does not exist at present.
Apart from the famous Benney-Roskes (Davey-
Stewartson) equation [4,5], only a few examples of
integrable equations of this type are known (see for
instance Refs. [6,7]). The aim of this work is to ex-
tend the list of two-dimensional integrable equations
in order to collect more “experimental” material for
future comprehensive theory. Here we extend the one-
dimensional theory of Bicklund and Miura transfor-
mations. Simultaneously, Bicklund transformations
being treated as two-dimensional chain equations give
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examples of new integrable two-dimensional lattice
equations.

2. The Benney-Roskes family of equations

The Benney-Roskes (Davey-Stewartson) (BRDS)
equation can be written in the following form,

10 =y +¢‘}'y + 2P, @I}‘ = f’:ﬁ'{ix + E*Mf\ (1)

There are a few standard forms of writing the above
equation (see e.g. Refs. [8,9]). They even have dif-
ferent names (DS-1, DS-2, DS-3) and are indeed dif-
ferent from the analytical point of view. The symme-
try structure for all of these forms is exactly the same
and we shall treat them as a single equation. More-
over, instead of (1) we shall consider the following
two systems of equations,

=g+ 2pu, — 0w =uv, +2po,

py = (un)y, (2a)
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Orut = Uy + 2qu,  — 40 = vy, + 240,

g = (uv),. (2b)
It is known that Egs. (2) are integrable [9]. Egs. (2)

are compatible and any linear combination of them is
integrable. The BRDS equation (1) is nothing but the
sum of these flows?. They have the same algebra of
higher symmetries, Béicklund and Miura transforma-
tions. Moreover, both systems (2) have the same L
operator

4, —v
= (%) ®

in the Lax representation [8].

Following Ref. [10] (see also Refs. [11,12]) we
shall consider a sequence up, Uy, P, g, generated by
an auto-Bicklund transformation (adjacent sites with
index n and n + 1 are related by the Bécklund trans-
formation). Variables u,, Uy, Pu,gn, 7 € Z and their
derivatives in x and y we shall call the extended set of
dynamical variables. Variables p, g we shall call non-
local, because they cannot be locally expressed ( with-
out taking a quadrature) in terms of variables u,v
which satisfy evolutionary equations. Presence of non-
local variables is the important feature of integrable
multidimensional equations. The corresponding L op-
erator will also be indexed by n.

In the operator form the auto-Bicklund transforma-
Asafinad ‘-\w fr“f an {13})

1781 B 1
ion 18 aginea

WoLy = Lysi W, (4)

One of the Bicklund transformations [7,14] of (2) is
nothing but the Darboux equation?® (see for example

Ref. [16])
Xnxy = €Xp{ Xns1 — Xn) — exp{Xn — Xn-1), (5)
where u, = exp Y», Uy = —exp{—xn—1). The corre-
sponding operator W, is of the form
W [ 0 —exp{—x») \ (6)
W, = A3
\epr” {?}r—ax"‘i_/\/n_x
2 1n order to make the notations consistent we have to change

& + 3y — idr, and assume that ¢ = u, ™ =v, P =p + 4.

* After Ref. [15], where the integrability of Eq. (5) was shown,
this equation is often called the two-dimensional Toda lattice. We
consider that it would be more natural to call it after Darboux,
which has discovered and used this equation at the beginning of
the century.

One can consider (4), (6) as the Lax represen-
tation for (5) (cf. Ref. [15] where another rep-
resentation has been given). The transformation

lirit. hecance one can asxnlicitly evnrece
1L, ULLbRUsL VUL Lall CApLIvIa TAPIVIS

UpilsUntlsUns2, Uni2, ... in terms of u,, v, and their
derivatives.
An implicit auto-Bécklund transformation of (2)

corresponds to (cf. Ref. [17])

_ 1 —Up+1 )
W”_(\u,, Oy —0x—wn J 7

It follows from (3), (4), (7) that

— Upy = Unyi + UpWn, (8a)
Unx = Up—i + UnWn—1, (8b)
Wiy = (UaUnat s = UnlUn — Hor1Unai- {Rc)
"n} AMaEYnR+Ti17% wit .fffiv,l“t’l AV d

We would like to emphasize that a new nonlocal dy-
namical variable w, has been introduced in (7), (8).
The prolongation of transformation (8) on nonlocal
variables p.. o, is of the form

IQUICS P Y 2o

Do — Pntl S Wpxs Gn —Gne1 = (unvn+l )\ (9

The Bécklund transformation (8) is a two-dimensional
analog of

2
— Upx = Upgy + Aty + Ui,
2
Upx = Up—1 + Ap10p + Ugtin_y, (10)

which is the Bicklund transformation of the nonlinear
Schrodinger equation (cf. Ref. [11]). Indeed, assum-
ing x = y one can integrate Eq. (8c) and express w,, =
HaUset + Ay, where A, Is a constant of the integra-
tion. In the one-dimensional case w, is the first non-
trivial canonical conserved density (see Ref. [ 18] ) of
Egs. (10). The well known Bicklund transformation
of NLS {QPP for PYamn]P Refs. 119201

SUC 14 CAQIIIPIT INCLS, HE -2 V2 V0 35 Y

(tnp1 +un)x = (Uny1 — Up)
X [/\ﬁ - (”JH—I + ) (Upg1 + Un)]l/z

{; 4 Yo f P 3
Wil T Vnix F \Wayi —UnjJ

x [Aﬁﬂ(un-i-l+“n)(vn+]+vn)]]/2, (1y
is nothing but a composition of two transformations.

The first one is (10) and the second one can be ob-
tained from (10) by an exchange u, < v,. In (8) we



do not have the “spectral” parameter A,. In the two-
dimensional case it can be absorbed in the definition
of w,.

To our knowiedge (8) is a new sysiem of inte-
grable two-dimensional lattice equations. It has in-
finitely many symmetries. Indeed, any member of the

LY iiass ARNICUIOS, 20U, TV

BRDS hierarchy is a symmetry of (8). The chain
(8) defines the auto-Bicklund transformation for both
Egs. (2) and any of their linear combinations. Eq.
(8) is a generalization of the Darboux lattice (5). In-
deed, let us make the following change of variables:
uy = €"exp(y). v, = € "exp(—@n—1). In the new

varinhlaocs Eac Q) ara
Varidaoils 4. (6 aid

iy = €eXp(Wyr1 — Wy) + Wy,

—Pnx = fCXp(QOn — @1 ) + Wy,

Wyy = exp(y — @n_1) — exp(‘//rw] — Pn). 12y

PR

In the limit € — 0 the above equations turn into (35).
We shall follow a modern interpretation of Miura
transformations [ 121, namely, we shall treat them ag
invertible transformations in the extended set of dy-
namical variables generated by a sequence of auto-
Bécklund transformations. Let us consider the follow-
ing transformation,
(13)

Up =y, Vy=Unsr,

of the extended set. This transformation is obviously
invertible. In the new variables chain equations (8)
take the form

~Upy =Uppr + UnWm Vix = Vao1 + W,

Wny = (U, V)= Unvn—l - Un+l Va- (14)
It follows from the above system of equations that
variables u,, v, can be expressed in terms of U/, ¥,

i it

“na

-~

17
Wi

\./

>
where
Wny = (Unvn)x'

This defines a Miura transformation

u=U ov=V,~-W, W,=(UV), (16)

297

To find the transformed equations let us rewrite the
system of equations (2a) in the new variables U, V. It
follows from (13) that

Upi = Upex + 2pnUp, = Vor = Voex + 2P0t Vi,

where

rr ‘/

\ r7
YUn¥n—1)x

— — . — i/
Pny = Praty = (Uni Vi) s

The variable V,_; is already expressed in terms of
U, V, (15). It follows from (14) that

IFT

Uper = ~(Upx +

¥ Jn Illn) \( 17}
Thus the Miura transformation (16) of the system of
equations (2a) is of the form

= _(VU\’ + UVW)_".
(18)

There are three “nonlocal” terms A, B, W in the above
equation, but they are linearly dependent: A, — B, =
Wy Therefore introducing P = A + B we can rewrite

Egs. (18) in the form

U=U.,+UP+W,),
V=V V(P - W3,
P_\' — (UVY — VUX —2UVW)ra

The Miura transformation ( 16) of the system of equa-
tions (2b) can be accomplished in a very similar way,

U, = Uy +U(Q + (UV),),

(20)

The BRDS equation is a two-dimensional integrable
generalisation of the nonlinear Schrédingér equation
(NI1.SY. but Enc {10y f')n\ and any of "‘gp:r linear

AivAaS J, Vet LiF ), (&) anl Cil kAl

combinatxons are corresponding generahzanons of one
of three well known derivative nonlinear Schrédinger
equations DNLS1 [21]. The Miura trarisformation
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(16) is a two-dimensional generalization of the cor-
responding one-dimensional transformation {2]. It is
known [12] that there are two Miura transforma-
tions that link NLS and DNLS1. To construct the sec-
ond Miura transformation we express variables u =
Upy1, U = Upeq in terms of U = U, V = V. It follows
from (13) upay = Upyt, Upey =V, and from (17) that

u=—(U, +UW), v=V¥ (21

This is the second Miura transformation linking Egs.
(2) and (19), (20).

The action of the Miura transformation can be pro-
longed on the nonlocal variables (cf. Ref. [7]). The
first Miura transformation (16) gives

p=P+W,, 2=0+(UV)y (22)

the prolongation of the second transformation (21) is
of the form

2p=P—-W,, 29=0Q - (UV),. (23)

We would like to emphasize that together with
the Miura transformations (16), (21) we have the
Biicklund transformations of the modified equations
(19), (20). The Bicklund transformations are given
in the form of the chain equations (14).

3. Two other examples

It was shown in Ref. [7] that another derivative
nonlinear Schrodinger equation DNLS2 [22],

Uy = Uy + 2UbUy,  — Uy = —Uxx + 2000y, (24)

and the Kaup equation {23]

Uy = Uyy + 2(” + U)ux,
— Uy = —Ugy + 2(u + 0) vy, (25)

also have integrable two-dimensional generalizations
[7]. In this section we shall give implicit auto-
Bicklund transformation of these two-dimensional
equations. The Bicklund transformations themselves
are new integrable two-dimensional systems of chain
equations. As above, we shail construct Miura trans-
formations and the corresponding modified equations.

Let us start with the DNLS2 equation. It has two
different integrable two-dimensional generalizations

(71

Up = Uy + 2pUy,  — Up = Ugx ~ 2pUy,

py = (uv) 5 (26a)

Uy =y +u({uv)+q),  —v; = vy —v{(uv)y—q),

gx = (vuy — uvx)y- (26b)

We have checked that they are compatible and that any
linear combination of these flows is integrable. An ex-
plicit auto-Bécklund transformation for Egs. (26) has
been found in Ref. (7]. The implicit auto-Bécklund
transformation of the DNLS2 Eq. (24) is of the form
[11,24]

Upx = Wy (Uny "'un)a Upx = Wy {(Un — Up—1),

Wn = UnUni1 + Ap. (27)

The first canonical density of (27) is w, = upUns1+ A,
Now, comparing (27} with (10) and (8), it is easy to
guess that the two-dimensional generalisation of (27)
is of the form

Unx = Wy (Upsl = Up)s  Upx = Wy (Un — V1),

Wpy = (Untp+1) x- (28)
A routine check that (28) represents a true Biacklund
transformation of {26) was quite tedious and we used
a computer with a symbolic software (Mathematica)
to accomplish this verification. System (28) is a new
integrable two-dimensional chain equation.

Like the case of the BRDS equation, the invertible

change of variables (13) leads to a Miura transforma-
tion
u=U v=V-=V/W (29)

where W, = (UV),. This Miura transformation links
{26) and the corresponding modified equations,

Uy =Ug + U (2W — (logW) . + P),
V=V~ Vi(2W + (IOgW)x + P),
Py =[(W, - UV;) /W1, W,=(UV),, (30)

U, = Uy + U((UV), + Q),
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=V, =V, - V((UV), - Q),

Qv = (W, — UV, = 2U Vi /W),,

Wy = (UV),. (31}
The second Miura transformation which links (26)
and (30), (31) is of the form

u=U+U/W, v=V (32)

Another example is a two-dimensional generalization
of the Kaup equation. There are two integrable gener-
alizations of this equation (see for example Ref. [7],

v tha Argt +1 h 1Y
in a slightly different form the first equation has been

previously found in Ref. [6], the second one in Ref.
(251

Up = Uyy + 2pUy,  — U = Uy — 2P0y,

py =(u+uv)y, (33a)
Ur = Uypy + (”2 +uv)y +4q.

—ly = Uy — (0 + uv)y + g,

gx = (vUy — uby),. (33b)
We found the following implicit auto-Bécklund trans-
formation of (33),

Upe = Wy Uy = Uy)y  Une = Wy (Up ~ Up—y ),

Wyy = (ty + Ups1)xe (34)

Again, it is a simple generalisation of the known
one-dimensional auto-Bicklund transformation of the
Kaup equation {25) [11,24] (in the one-dimensional
case w, = U, -+ v,y is the first canonical density).
By direct computation we have verified the fact that
(34) defines a Bicklund transformation of (33).

The invertible transformation (13) gives the fol-
lowing Miura transformation,

u=Uov=V-V/W (35)
which links Egs. (33) with

U =Us + U QW — (logW) . + P),

—V, = Vo = Ve (2W + (log W), + P),
Po=[(U; = V) /W], Wy=U+V),, (36)

Ur = Uy + (U +UV), + 0,

—V, =V, = (VP +UV), + 0,
Ox = (W, — UV, =2UV,/W),,
W, = (U+ V). (37)

The second Miura transformation that links (33) with
(36), (37} is of the form

u=U+UJW, v=V (38)

4. Conclusions

We have found implicit auto-Bickiund mansrorma-
tions (8), (28), (34) of the Benney-Roskas equation
(2). two-dimensional generalizations of the DNLS2
(26) and Kaup (33) equations respectively. The
explicit auto-Bécklund transformations of these equa-
tions which were recently found in Ref. [[7] can be
obtained as degenerations of our implicit bnes. Egs.
(8), (28), (34) themselves are new integrable two-
dimensional lattice equations. Using thege implicit
auto-Bécklund transformations we have constructed
Miura transformations (16), (21), (29), (32), (35).
(38) and the corresponding modified Hgs. (19).
(20), (30), (31), (36), (37). The latter| equations
are new integrable examples of two-dimensional
generalizations of NLS-type equations. In the one-
dimensional case there are three well known forms
of DNLS, namely the equation found by Kaup and
Newell [26], the equation of Chen, Lee and Liu [22]
and the equation of Ablowitz and Segur:{21]. Up
to so-called symmetrical transformations all of these
equations are equivalent [2]. A two-dimensional gen-
eralization (26) of the Chen-Lee-Liu equation (24)
(DNLS2) has been recently found in Ref. [7], gener-
alizations of the Ablowitz-Segur equation (DNLS1I)
are (19), (20). We have found a two—dimensional
generalization of the third DNLS equatign (Kaup-
Newell equation) in a way a little bit different which
we will publish in our next paper. Existence of a two-
dimensional analog of symmetrical transfofmations is
still an open problem.
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