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Introduction

Historically it is the existence of a conservation law of higher order that
attracted attention to the equations that have become classical now: the
Korteweg-de Vries equation, the non-linear Schrodinger equation, the sine-
Gordon equation, which were integrated subsequently by the method of the
inverse scattering problem [ l ] - [ 3 ] . The problem of listing equations
with one polynomial conservation law of fixed order η was considered, for
example, in [4], [5]. This requirement, which is comparatively easily
verifiable for a given equation for small values of n, leads to a large volume
of hardly controllable calculations in the classification problem. Moreover,
the approach mentioned does not guarantee the completeness of the list
obtained: the result depends essentially on the order η of the conservation
law.
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Progress began after replacement of the conservation laws by symmetries
of higher order. The first complete list of non-linear equations (Klein-
Gordon models uxg = /(u)) with higher symmetries was obtained in [6]. It
consists of the three well-known equations:

(0.1) ι^ = Λ u^^e^+e^, u^^ev + e-**.

Higher symmetries and conservation laws are important intrinsic properties
of an equation. They are very useful both for the construction of exact
solutions and for qualitative understanding of the behaviour of the solution
as a whole. With appropriate refinements we take the existence of higher
symmetries and conservation laws for the definition of integrability. Thanks
to the symmetry approach it has proved possible to formulate simple and
general necessary conditions for integrability (that is, conditions for the
existence of higher symmetries and conservation laws). The simplest
integrability conditions associated with the existence of a higher symmetry
were established in [7]. It was shown later that the same conditions are
necessary also for the existence of two local conservation laws of higher
order [8].

The integrability conditions proved their effectiveness for the solution of
classification problems; it turned out that the fulfilment of the first few
conditions is sufficient for the complete determination of the right-hand side
of the equations possessing higher symmetries and conservation laws. In
other words, the integrability conditions turn out to be not only necessary
but also sufficient, that is, they yield an integrability criterion. A definitive
result of the symmetry approach consists in complete lists of integrable
systems of the equations

(0.2) u t = Φ (χ, η, du/dx, . . . , 9mu/dzm), m > 2

where u = (ul, . . ., u*1), Φ = (Φ1, . . ., Φ«), whose right-hand side has a
special form, as a rule. The problem of classifying integrable equations led
to an essential extension of the framework of the classical theory of
invertible transformations which goes back to the work of Sophus Lie. New
equivalence relations [9], [10] appeared, which made it possible to
essentially reduce the lists of integrable systems and make them observable.
Not only equations integrable by the method of the inverse scattering
problem, but also the Burgers type equations ut = uxx + uux, satisfy the
conditions that underlie the classification under the symmetry approach.

Classification is carried out modulo invertible transformations. In the
scalar case any two equations of the first order ut = Φ(χ, u, ux), Φ Φ 0, are
equivalent up to point and contact transformations. For m = 2 the
classification of the scalar equations (0.2) leads to the list of three equations
of Burgers type (see [11] and §5). These equations possess higher symmetries
and though they do not reduce to the linear equations ut = uxx -f a(x)ux +
+ b(x)u + c(x) by invertible transformations, they linearize, like the Burgers
equation, after introducing a potential.
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As shown in [12] (compare §3), scalar equations (0.2) of even order
m = 2, 4, 6, ... have no infinite series of local conservation laws, so the
equations of Korteweg-de Vries type, possessing both higher symmetries and
conservation laws, correspond to odd values of m = 3, 5, ... . For m = 3 it
is only the classification of quasilinear equations of the form (0.2) that has
been completed ([13] -[15]). The general case requires an essential
development of the classical theory of invertible transformations (compare
§ §4, 6). The main part of the list of equations (0.2) with Φ = uxxx +
+ F(u, ux, uxx) consists of the four equations known from the inverse
problem [16], [17]:

(0.3)

(0.4)

(0.5)

(0.6)

ut = uxxx-

Ut = Uxxx

ut =

u t =

~T

3
Ο

--Uxxx

[u% +

Μχ-'ll

+ (au2-)rPu)ux,

+ (ae2UH

[uxu%x-

u)], dsQ

Ηββ-2« )ux,

f uxuxxQ'(u)-

1 (u)ldu

(u) ux,

;5 = 0.

L J . Q'2fu\~\_L·
Γ 4 V V / J T

d5(?(«)/dws = 0,

The remaining equations from the complete list obtained in [8] can either
be found from the equations (0.3), (0.4) by a substitution of the form
Uj = ψ(μ) (transfer to a potential) or are Burgers type equations. The
equation (0.5) is one of the first examples of equations whose integration is
related to the Riemann problem on an elliptic curve [18].

We emphasize that the classification results mentioned above have a
definitive character and the lists obtained are complete. In the scalar case a
general algorithm for obtaining integrability conditions for equations of the
form (0.2) is given in the survey [19] (see §3). On the basis of these
conditions a number of classification results for equations of order m > 3
have been obtained (see [13], [20], [21]).

The question of whether a given equation is integrable or not can be
solved either by comparing the equation with the lists obtained from the
classification, or by directly verifying the conditions used for the classification.
As a rule, the second method turns out to be more convenient, since it does
not require searching for an invertible substitution that relates the equation
under consideration with those from the list. The conditions concerned with
conservation laws complete and strengthen the conditions for the existence
of higher symmetries. In the scalar case the equations of Burgers type
satisfy these strengthened conditions too for odd m, so the lists obtained by
the purely symmetry approach do not differ in practice from the lists
obtained by using the strengthened conditions.

A number of essentially new examples of equations, integrable by the
method of the inverse scattering problem, have been obtained by classifying
the chains of non-linear equations ([22], [23])

(0.7) .££-=φ(»„_,, u v un+l) (» = 0, ± 1 , ± 2 , . . . )
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and the systems of two equations ([9], [24], [25]) of the form

(0.8) Uj^i l i tOu^-fFiu, VLX), deti4(u)=£0.

We note that in these two cases the strengthened symmetry conditions
obtained by using conservation laws almost completely eliminate equations
of Burgers type.

The complete list of equations (0.7) obtained from three conditions (see
below) has much in common with the list of scalar equations (0.2) for
m = 3. The main part of the list consists of the four equations:

(0.9) ^ - = /»(«n)(un + 1-un_1), P" = 0,

(0.10) ^ - = n *" 0

(0.11) -̂ f- =

(0.12) -$£- = K-H-Un-ιΓ1 [R K-i, un, un+1) +

n_i, Un, l i n _ 1 ) i?(u n + 1 , «η,

where R(u, v, w) = (w- v)(u~ υ)(β+ Q"(v)l\2)+ (w- 2v + u)Q'(v)/4+ Q(v),
Q is an arbitrary polynomial of degree 4, |3 G C, α = 0, ±1. The remaining
equations from the list can be obtained from (0.9)-(0.11) by the operations
vn+i ± vn = φ (un), which are analogous to introducing a potential. The
conditions on which the classification of chains of equations (0.7) is based can
be represented in the form

(0.13) dpjdt, pi Ρ;ςΙπι(Ζ>-1),

where D is the shift operator acting on the set of functions of finitely many
variables u0, u±u υ ± 2 , . . . The functions pu p°, p% are expressed in terms
of the right-hand side Φ = O(un_j, un, un+j) of (0.7) by the formulae

The conditions (0.13) are necessary conditions for the existence of a pair of
local higher-order conservation laws. The derivation of these conditions in
the framework of the symmetry approach is based on a general scheme
presented in Chapter I (§3). It can be shown (see [22], [23]) that all the
equations (0.7) satisfying (0.13) have an infinite series of local conservation
laws and that the equations (0.10) and (0.12) for α = 0 are difference
approximations of the equations (0.4) and (0.6) respectively. The limit
passage from (0.10), (0.12) to (0.4), (0.6) is carried out in the same way as
for the well-known equation (0.9), which is a difference analogue of the
modified Korteweg-de Vries equation (0.3).
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Chapter IV is devoted to a description of the vast list of systems of
equations (0.8). The classification is carried out over the enlarged module of
invertible transformations described in Chapter III. This allows us not only
to shorten the list and make it observable but also to reveal connections
between equations that were assumed previously to be essentially distinct.
As in the case of the chains of equations (0.7), the classification is based on
the first few necessary conditions for the existence of a pair of local
conservation laws. The question of whether the set of conditions under
consideration is sufficient for the existence of an infinite series of conservation
laws for most of the equations in the list can be solved by using the theory
of transformations from Chapter III and by revealing connections with the
following three classical equations, which are integrable by the method of
the inverse scattering problem:

(0.14) iut = uxx+\u\*u,

(0.15) utt = uxxxx+(u2)xx,

(0.16) St = SxSxx + Sx IS, Sl + Sl + Sl = i, /=diag(/1, I2, I3).

As already mentioned, in principle the equations of the lists satisfy only
the first few necessary conditions for the existence of higher-order symmetries
and conservation laws, and the question of their integrability and the so-
called representations of zero curvature must be solved beyond the framework
of the symmetry approach. The most familiar method of constructing the
commutation representation

(0.17) At — Bx + [A, B] = 0

of a given non-linear equation is the direct method based on the definition
(0.17). The problem then reduces to the construction of a matrix Lie
algebra with a partially given multiplication table. It should be kept in
mind, however, that the representation (0.17) itself without additional
requirements on its structure does not guarantee the integrability of the
equation under consideration. The system of equations found in [26]

ut = uxx + a (u?'Wz)x + βιΑ;, — vt = v^—

which does not satisfy the necessary conditions for the existence of local
conservation laws, can serve as an example. In any case, commutation
representations have been constructed by now for all systems (0.8) from the
lists of Chapter IV except for the three systems (c), (n), (p), and it is lack
of space that has not allowed us to include them in this survey. The
systems (n) and (p) can be regarded as an illustration of the fact that the
verification of integrability conditions is a much simpler problem than the
problem of commutation representation.

As a matter of fact, the symmetry approach is simple. At the first stage a
canonical series of conservation laws is constructed. It is proved that the
local property of these laws is a necessary condition for the existence of
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higher symmetries and conservation laws. The second, more difficult stage
consists in the investigation of conditions that arise from the requirement of
the local property of the first few canonical laws.

For integrable equations the algorithm for calculating the canonical series
given in Chapter I is a convenient way of constructing higher conservation
laws. We note that this algorithm is not unique; a close algorithm is
contained in [27]. The series of conservation laws constructed by the
method of the inverse problem from the scattering matrix coincides, as
experience shows, with the canonical one.

We have not included results on classification of hyperbolic equations.
An interesting and most investigated class is the exponential systems of
Liouville type [28], [29], which are closely related to finite-dimensional Lie
algebras. Though the analysis of hyperbolic systems follows the general
scheme, there are specific difficulties in comparison with systems of the
form (0.2) (see [30]).

The case of three or more independent variables differs essentially from
the case of two independent variables. Strong results, related to the
classification of integrable systems on the basis of analysis of series of
perturbation theory, the S-matrix, and additional conservation laws, have
been obtained recently in [31], [32].

CHAPTER I

INTEGRABILITY CONDITIONS

In this chapter we present a general scheme for deriving necessary
conditions for the existence of higher symmetries and conservation laws for
systems of equations of the form (0.2). In § 1 we introduce the basic
concepts of the symmetry approach. In § 2 we present a technique related
to formal series in inverse powers of the differentiation operator (compare
[33], [34]). In §3 we state the main results (Theorems 3.2, 3.6) and give
examples illustrating the general algorithm for evaluating canonical
conservation laws. In many respects we follow [19]. For the sake of
simplicity we assume throughout this chapter that the right-hand side of
(0.2) does not depend on x.

§1. Formal symmetries and conservation laws

1. Under the symmetry approach the system of partial differential equations

(1.1) u t = O(u, duldx, ...,aruldxm), u = (u1, . . ..a*1)

is replaced by a pair of infinite-dimensional dynamical systems of the form

(1.3) -jf- =
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The compatibility condition for (1.2), (1.3)

leads to the recursion relations

where

(1.5) D=u1-±- + n2-±-+...

is the total differentiation operator with respect to χ on the set of functions
of u0, Uj, u s, . . . Setting

Φο Κ , u f, . . . , umo) = Φ (u0, u t, . . . , um),

where Φ is the right-hand side of the system (1.1) under consideration, we
obtain the infinite system of equations (1.2), (1.3), which is equivalent to
(1.1) (with an appropriate change of the initial conditions).

Infinitesimal symmetries of an infinite-dimensional dynamical system are
defined in the same way as in the finite-dimensional case. We recall that for
a finite-dimensional dynamical system

(1.6) ^ = Oh(u0 uN) (* = 0, ...,JV)

the infinitesimal symmetry transformations

uk = uk + Tfk(u0 uN)

are determined from the condition that dujdt = ΦΛ(ΖΓΟΙ · · ·> ujy)for all k
up to the first order with respect to the small parameter r. This leads to the
following equations for/0 ) ..., fN:

where d/dt is the total differentiation operator with respect to t acting on
functions of the dynamical variables u0, ..., uN:

It is easy to check that the invariance condition (1.7) coincides with the
condition of commutation of the operator (1.8) with the operator

In other words, the condition (1.7) coincides with the condition d/dt(d/dT) -
= d/dr(d/dt) of compatibility of the system (1.6) with the dynamical system

(1.10) -$—/*(«o, ...,«w) (* = 0 N).
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In the infinite-dimensional case the conditions of compatibility of the
system (1.2), (1.3) with the dynamical system

(1.11) - ^ - « = th (u0, . . . , unjk) (ft - 0, 1, . . . )

lead to the relations

(1.12) ^ _ = 2

The first of these relations is the condition that the operators

fc»0 ft«=0

commute, while the second means that the form of the system (1.11) is
completely determined by the first equation of this system. Since fk = Dh(t0)
and<Dft = Ζ)*(Φ), the relations (1.12) can be written as the following
equation for the vector-valued function f0 of the variables u 0, . . . . u n , :

(1.14) « J > »

This equation can also be regarded as a condition of formal compatibility of
the system of partial differential equations (1.1) with the system constructed
from f0:

(1.15) duldx = f0 (u, dvldx, . . . . 0n«u/da:no).

A vector-valued function f of a finite set of variables u 0, ua, u2, . . .,
satisfying (1.14) is called a symmetry (generator of an infinitesimal symmetry)
of the system of partial differential equations (1.1). In contrast to the
finite-dimensional case (1.6), the infinitesimal transformations u k = u k +
+ τ/>*ί (u0, . . . , un) corresponding to higher symmetries (n > 1) do not
generate a one-parameter group of local transformations of the form
«k = Ψ*(τ, u 0, . . ., unfc)(see §4).

Example. For the Korteweg-de Vries equation u, = a*,, + uux the
function / = u5 + 5(2u0u3 + 4u1ujl + ujujj/e satisfies the equation (1.14)

and so it is a symmetry. From the compatibility of the dynamical systems

g ^ * (ft = 0, 1, . . . )

it follows that the finite-dimensional dynamical system obtained from (1.2),
(1.3) by adding the conditions Dk(f) = 0 (k — 0, 1, ...) generates a finitely
parametric family of solutions of the Korteweg-de Vries equation [16].

In contrast to symmetries, the notion of first integrals does not carry over
to the case of an infinite-dimensional dynamical system; their place is



The symmetry approach to the classification of non-linear equations. 9

occupied by local conservation laws. A local conservation law of the system
(1.2), (1.3) is by definition a relation of the form

(1.16) f=D(o),

where ρ and σ are functions of finitely many dynamical variables
u0, Oj, u 2 , . . . The function ρ will be called the density, while σ will be
called the flow. If we return to the language of the partial differential
equation (1.1), then (1.6) goes over to the equation of continuity pt = σχ,
which is well-known in mechanics and physics. In the problem periodic in χ
(with period T) integration of the density leads to the motion constant

τ

I = J pdx, /« = 0.
ο

We introduce the following notation. We shall write the infinite-
dimensional system of equations (1.2)-1.4) in abbreviated form as a single
equation, omitting the subscript in u 0 :

(1.17) u, = <D(u, u l 5 . . ., u m ) , m > 2.

(1) We define a linearization operation * by

(1.18) / # (v) = -^- f (u + 6v, Z?(u-fev) Z?"(u + ev)) U o

and rewrite the equation (1.14) that defines symmetries in the form

(1.19) f, = O»(f),

where by the definition (1.18)

(1.20) Φ* = Φ Ι 1 + Φ υ 1 Ζ > + . . . + Φ ι Ι η £ > η .

We recall that u = (u1, . . ., uM)x, Φ = (Φ1, . . ., Φ Μ )* and so Φ ϋ ( ι is an
Μ χ Μ matrix with entries ΘΦ*/θιι{.

(2) AT denotes the differential operator formally adjoint to A,

(1.21) A = ^AhD
h, ΑΤ = Σ(-ί)"ύ*Αΐ

(the matrix A\ is obtained from Ak by transposition).
(3) We define the variational derivative 5/6u of a scalar function

h = h(u, u,, . . ., Up) by the following rule:

d-22) «.= 2 (-!)»*(£).
h

The variational derivative is the column vector i ^ , . . ., —-̂ j .

(4) We denote by Im D the linear space of the image of D (h G Im D
means that there is a function h, depending on finitely many dynamical
variables, such that Dh = h). The following equality is a criterion for a
function/to belong to the space Im D+C (see [35]):

(1.23) -^- =

We note that Ker D, the kernel of D, coincides with C.



10 Α. V. Mikhailov, A.B. Shabat, and R.I. Yamilov

We also state some easily verifiable properties of the operations introduced
(see, for example, [36]):

(1.24)

(1.25)

(1.26) («*)· = «*,

(1.27)

ΙΑ 0£Λ A-A. — JLJ. φΓ 6

y1*0' dt δα~~ δα dt * δα '

where α and β are arbitrary scalar functions. The relation (1.28) follows
from (1.26) and the definition (1.22).

The order of the differential operator /, is called the order of the
symmetry f(u, u 1 ( . . .). A symmetry is called non-singular if the leading
coefficient of this operator is a non-singular matrix.

The conservation laws (1.16) are assumed to be equivalent if their
densities differ by a total derivative. The order of the conservation law with
density ρ is the order of the differential operator

(1).·
Obviously, equivalent conservation laws have the same order. A conservation
law is called non-singular if the matrix of the leading coefficient of this
operator is non-singular. The variational derivative of the density of the
conservation law of the dynamical system (1.17) satisfies the well-known
equation [37]

(130) Αϋ£__ι_φτ_δΡ_ = ο
V·™' dt 6u + * 6u υ '

which follows directly from (1.16), (1.23), and (1.28).

2. Our aim is to obtain necessary conditions for the existence of symmetries
and conservation laws of higher order. For this it is convenient to pass from
the equations (1.19), (1.30) to

(1.31) Lt-^,L] = 0,

(1.32) 2?< + ΛΦ# + Φ Ϊ / ϊ = 0 .

Here L and R are formal series of the form

(1.33) L = lnD
n + In.,i>"-» + . . . + /, + l_

(1.34) R = rp£>" + r^D™ + ... + r0 + r.

the matrix coefficients lk and rk being functions of a finite set of dynamical
variables

h — h (a, . · . , uB h), r k = rk (u, . . ., uP j [).
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The equations (1.31) (and similarly (1.32)) should be viewed as a compact
way to write down the system of equations for the coefficients of the
formal series L (respectively, R). The rules for multiplying formal series are
given as follows:

(1.35) [Z>\ ΖΠ = 0,

(1.36) Dha = a&+(\)D(a) />*-«+( \ ) &(a) D^+.. .,

where Λ is a function of the dynamical variables, Ds(a) is the 5-fold

differentiation (1.5), (*) = k(k — 1)· . . . -(jfc — η -f i)ln\. Formulae

(1.35) and (1.36) are valid for any integers k and m.
The maximal degree of the symbol D is called the degree of the formal

series.
For example, in (1.33) deg L = n, in (1.34) deg R = p. Unless otherwise

specified, the leading coefficient of the series is assumed to be a non-singular
matrix.

Definition. A formal symmetry of order Ν of the dynamical system (1.17)
is by definition a formal series L of non-zero degree that satisfies the
equation

(1.37) Lt — [Φ*, L] = Q

with 'remainder' Q such that deg Q ^ deg Φ^ + deg L — .V. deg L is called
the degree of the formal symmetry.

Theorem 1.1. // the dynamical system (1.17) possesses a symmetry f of
order at least Ν or two conservation laws of orders iVj > 7V2 > N+ m and
one of them is non-singular, then it has a formal symmetry of order N.

Proof. We linearize the equation (1.19), using the operation *. Using the
relations (1.24)-(1.26) and replacing 2 φ ^ υ Λ Dh(i)D' by (Φ,.)τ in accordance
with (1.11), we obtain ' · *

(1.38) Lt - [Φ*, L] = Φ*,,,

where L = /„. Obviously, deg Q = deg Φ * , τ ^ deg Φ*, so it follows by
definition that L is a formal symmetry of order N.

Suppose that there are two conservation laws with densities px and p 2 of
orders Nx > N2 (to be definite we shall suppose that a non-singular
conservation law is associated with p2). We linearize (1.30). Using (1.24)-
(1.27), we obtain

(1.39) Bt,t + Ri®* + <t>lRi = Qi ( i - 1 , 2),

where Ri — (5pi/6u),,, deg Qx < 2m,

i. ft
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and ψ) is a coefficient of the operator <DJ = 2] φβ*. From the operator R2

with a non-singular leading coefficient we can evaluate uniquely the formal
series i?; 1, deg R~* = —deg Rt = —;VS, such that J?2i?~' = R;'Rt = Ε
(see §2). The formal series L = R^Rx, deg L = Nx — N2r satisfies the
equation (1.37) with remainder Q = Rl*Qr — R-'QiR^Rj,, deg Q^2m —
— 2N2 + N^ •

By analogy with formal symmetries we define formal conservation laws.

Definition. A formal conservation law of order Ν > m of the dynamical
system (1.17) is by definition a formal series/? satisfying the equation

(1.40) R t + R<t>* + <l>lR = Q

with remainder Q, where deg Q^.deg R + deg Φ φ — Ν.
If a system possesses a conservation law with density ρ of order Ν > m,

then it possesses a formal conservation law R = (j~\ of the same order (see

the proof of the theorem). The solubility of the equations (1.31), (1.32)
means the existence of formal symmetries and conservation laws of an
arbitrarily large order.

The conditions for the existence of formal symmetries and conservation
laws are a criterion for the formation of the lists of equations discussed in
the Introduction. For example, the list of equations of the form
ut = M3+ Φ(«, «ι, u2) consists exactly of those equations that possess a
formal symmetry of order 7. The assertion of Theorem 1.1 means that
these conditions are necessary for the existence of higher symmetries and
local conservation laws.

As an example we obtain a condition for the existence of a formal
conservation law of order m+ 1. Substituting (1.34) in (1.32) and equating
the coefficient of the highest power of the symbol D to zero, we obtain

We consider first the scalar case. The relation (1.41) is valid only for odd m;
this means the absence of local conservation laws (of order greater than m)
for scalar evolution equations of the fourth order (compare [12]). For
systems of two equations {M = 2) of even order with a non-singular
principal differential part det Φ υ Φ 0 it follows from (1.41) that firstly

m

trace Φ η = 0 and secondly the conservation laws are non-singular if they
τη

exist (compare [9]). For systems of Μ equations of even order with a non-
singular matrix Φ η possessing non-singular conservation laws it follows
immediately from (1.41) that the eigenvalues of the matrix Φ ^ occur in
pairs:

(1.42) . Xj + λ2 = λ, + λ4 = . . . . = 0 (Λί is even).
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§2. The technique of formal series

The procedure for finding conditions for the existence of formal symmetries
is essentially simple, but it leads to a great volume of algebraic transformations.
It is convenient to formulate the calculation algorithm in the language of
formal series, to which this section is devoted. It is easy to explain this
language to a computer; this language is general and has turned out to be
useful in many problems arising in the theory of integrable systems. By now
programs of analytical calculations on computers have already been created,
which help to obtain and analyse criteria for integrability of non-linear
equations.

Though integrability conditions admit an invariant matrix formulation, it
is convenient to reduce the equation (1.31) connected with formal symmetries
to the diagonal form and reduce the problem to a scalar one. We use the
invariance of the equations (1.31), (1.32) under gauge transformations

(2.1) L *— TLT~\ R *— TTRT, Φ*

where Τ is an arbitrary formal series.

Proposition 2.1. Suppose that the matrix Φ,, {the leading coefficient of the

operator Φ.) has no multiple eigenvalues and is reduced to the diagonal form

by the conjugation To:

Φ ϋ η ι = T?AT0, Λ = diag (λ, λ*).

Then there is a unique formal series

(2.2) T =

satisfying the condition diag Tk = 0 (k = — 1, - 2 , ...) such that all coefficients
of the formal series

(2.3) Φ

are diagonal.
tn A wi

Proof. We substitute (2.2) and Φ* = 2 <&m-kD
m-k, Φ = H qWfeZ?"1-* in

fc=0 ft=0

(2.3). As a result of successively equating the coefficients of D7"'1

(/ = 1, 2, ...) to zero we obtain a recursive sequence of relations of the form

(2.4) [Λ, Γ_,] + (fm_i = Δ,,

where Aj = A(T;\ To, . . .; T^; Τ0Λ, . . ., Tm_iti; <pm_x, . . ., <pm_/+1;
Φ, Φ,,,, Φ™-!, . . ., Φπι_ί) is a differential polynomial in the variables
indicated. The relations (2.3), with regard for the condition diag Tk = 0.
allow us to successively calculate the coefficients

,- and ?'_,• = ad^1 (Δ, — <pm^). m
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The gauge transformation indicated in the proposition reduces L to the
diagonal form

(2.5)

For it follows fiom (1.31), (2.3), C2.5) that

(2.6) £ t = [ 0 , L ] ,

Φ being a formal series with diagonal coefficients whose leading coefficient
A

has no multiple eigenvalues. We substitute L = lnD
n + ln.lD

n~l -f . . . in
(2.6). As a result of successively equating the coefficients of Dm*n-*
(fc = 0, 1, ...) we obtain a chain of relations, the first of which has the
form [Λ, /„] = 0 and means that /„ is diagonal. The fact that the next
coefficients are diagonal can easily be obtained by induction.

The formal series L obtained from a formal symmetry L by the gauge
transformation (2.5) will also be called a formal symmetry of the dynamical
system (1.17). Obviously, the order of a formal symmetry is a gauge
invariant characteristic.

For odd m the formal series R = TTR Τ is diagonal (this can be proved
in the same way as in the previous case of formal symmetry). If m is
even and the conditions (1.42) are satisfied, it is easy to check that R is
a block-diagonal matrix with (2 χ 2)-blocks corresponding to pairs of
eigenvalues with opposite signs. Every (2 χ 2)-block is an antidiagonal
matrix. Therefore the equation (1.32) splits into Λί/2 equations of the
form

(2.7) Λ»

where

The following theorem shows that, in contrast to the order, the degree
of a formal symmetry is not essential. We recall (see §1) that formal
symmetries and conservation laws are assumed to be non-singular unless
otherwise specified.

Theorem 2.1 (compare [19]). Suppose that the matrix of the leading
coefficient of the series Φ. has neither zero nor multiple eigenvalues.
Then

1) the existence of a formal symmetry of order Ν is equivalent to the
existence of a formal symmetry of degree 1 of the same order;

2) the existence of a formal symmetry and a formal conservation law of
order Ν is equivalent to the existence of a formal symmetry L and a formal
conservation law R of order Ν of degree 1 satisfying

(2.9) LT=—RLR-\ RT=—R.
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Proof. 1) Let L be a formal symmetry of order N, and L the formal
symmetry obtained as a result of diagonalization of the gauge transformation
(2.5) (Proposition 2.1). The series Ld = diag L is also a formal symmetry of
order N. Together with Ld the series (Ld)

k (k = ± 1 , ± 2 , ...) are formal
symmetries of the same order, therefore without loss of generality we can
assume that the degree of Ld is positive. The series Ld = bnD

n -f
-f bn_1D

n~1 + . . . has diagonal coefficients, and there is a simple method of
taking the rc-th root of it (compare [33], [34]). The coefficients of a series
A = a1Z) + a 0 + ... such that A" = Ld can be found from recursive relations
of the form

(2.10) β» = bn, ..., no?- Vfc = δ»-* + 0ft,

where Qk = Qh(bn, bn.1, . . ., bn_k+1; au a0, . . ., at.h) is a differential
polynomial in the variables indicated. The relations (2.10) allow us to
successively define the coefficients ak up to fixing bnln. It follows from the
identity

(2.11) (La)t-[6, Ld]=t Ah(At - [ Φ , Α])Αη-*-ι
ft=0

that A is also a formal symmetry of order JV and deg A = 1.
2) Together with R the series RL and RT are formal conservation laws of

order N. It follows in particular that there is a formal conservation law R of
order Ν such that deg R = 1. The relations (2.9) are gauge invariant, and it
is sufficient to prove them in the diagonal gauge (see Proposition 2.1). For
odd m = deg Φ, the series R has diagonal coefficients. Therefore the series
R-RT satisfies the second of the relations (2.9) and deg(R-RT) = 1. For
even m it may happen that the series R-RT is singular or deg(R -RT) < 1.
However, multiplying R by an appropriate constant diagonal matrix C, we
can arrange that the series RC— CRT is a non-singular formal conservation
law of degree 1. Together with L the series R~lLTR is a formal symmetry.
Let RT = -R, deg R = 1. For odd m the required formal symmetry is
constructed by the formula L — R~XLTR. But if m is even, then as in the
previous case we choose a constant diagonal matrix C such that the series
LC- R~1(LC)TR has non-singular leading coefficient and degree 1. •

The residue of a formal series

(2.12) A= Σ flft^

with scalar coefficients ak is by definition the coefficient of D~l (compare
[34]):

(2.13) res A = a_x.
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The logarithmic residue of a formal series A of degree η is defined as
follows:

(2.14) res log A = an.xlan.

We note that for the logarithmic residue the following identities hold:

(2.15) res \og(AB) = res log A + res log Β + deg A £>(log bn)

(bn is the leading coefficient of the series B),

(2.16) D (res log A) = res ([D, A] A~l).

For the commutator of formal series the following formula holds (compare
[34]), which is easily verifiable for monomials:

(2.17) resU, B] = Da(A, B),

where σ(Α, Β) is a differential polynomial in the coefficients ak, bk of the
series A, B:

p+y+l>0 p+q

(2.18) σ (A, B) = 2 ( p+g+i) Σ (~ W & Κ
p<deg Β, g=gdeg Λ !=0

The logarithmic residue of the commutant of formal series is also a total
derivative:

(2.19) res log(ABA~lB-') = Ds (A, B),

(2.20) s (A, B) = m log bn — η log cm,

where m = deg A, n = deg B. We give one final identity

(2.21) res l o g Λ " ^ res log 4 T — — res log A + nD (logan).

The following obvious lemma holds.

Lemma 2.1. The formal series A and Β of degree 1 coincide if and only if

res log A = res log B, res Ah = res Bh (k= — 1, 1, 2 , 3 , . . . ) .

Moreover, the first k coefficients α_1( α0, . . ., aft_2 of the series A
(deg Λ = 1) are in a one-to-one correspondence with the set of residues
P-n Po» · · -ι Pk-2, where p 0 = res log A, pn = res Λ", η Φ 0. For,
evaluating the residues we obtain

2 - 2 P-i = i/on Po = «ο/βι» Pi = «-ii · · ·»

where Δ is the familiar differential polynomial in the variables indicated.
This chain of relations can be inverted in the obvious way and allows us to
express the coefficients of A in terms of differential polynomials of the
residues.
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§3. Canonical conservation laws and divergency conditions

1. As shown in the previous section, the equation (1.31) for formal
symmetries of the infinite-dimensional dynamical system (1.17) reduces
(Proposition 2.1, Theorem 2.1) to the problem of calculating the coefficients
of the scalar series

from the commutation relation

(3-2) Lt = [F, L],

where the coefficients of the formal series

(3.3) F*

are expressed by explicit formulae in terms of the right-hand side Φ(ιι,..., u m )
of the dynamical system under consideration. In particular, the first
coefficient λ of the series (3.3) is one of the eigenvalues of <Dum· We recall

that the series (3.1) is called a formal symmetry of the dynamical system
(1.17) of order TV if

(3.4) deg(L( — IF, i ] ) < m + l - N.

Clearly, to construct a non-singular formal symmetry of the dynamical
system (1.17) we have to construct Μ approximate solutions (compare the
proof of Theorem 2.1) to equations of the form (3.2) corresponding to Μ
distinct eigenvalues of Φ υ .

Substituting the series (3.1) in (3.4) and equating the coefficients of
Dm, Dm~1, . . ., D to zero, we arrive at the chain of equations for evaluating
the coefficients of the series (3.1). The first equation of this chain yields

(3.5) mXD (/,) = ltD (λ) <=>/, = const λ1"".

For m > 2 the first m~ 1 coefficients of the series (3.1) can be found in a
similar way, and without loss of generality we can assume that these
coefficients coincide with the first m - 1 coefficients of the series

(3.6) F*'*

that is,

(3.7) h = λ'/™, /„ = Γο, - · •, h-m = 7s-m.

For it follows from (3.5) that by multiplying Ζ by a constant we can
assume that lx — λ1/"1. It remains to prove that it is possible to choose
constants c0, c_j, . . . such that the coefficients of the series
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satisfy (3.7). In the proof (see [19]) we use the formula

(3.8) dog{(FV»)(_[F, F ^ K l ,

which means that for any dynamical system (1.17) the series (3.6) is a
formal symmetry of order m. This formal symmetry, equivalent to L = F
(see (2.11)), is related to the invariance of a dynamical system of the form
(1.17) under the infinitesimal transformations t = t+τ, χ = χ, ΰ = u (time
shift).

It follows from (3.8) that under the substitution of the series (3.1), (3.7)
in (3.4) the coefficients of Dk, k > 1, cancel, and the chain of equations for
evaluating the coefficients of a formal symmetry of order Ν > m reduces to
a system of equations of the form

m^D (Z2_m) + (nt-2) D (λ) I2.m = llt t + r,_m,

mW (Z,_m) + (m - 1 ) D (λ) /,_m = l0, t + r,_m,
(3.9)

KD (ls_N) + (3-ΛΓ) D (λ) 13.N = lm+2.Ni t + /·,_

where η, j < 2-m, is a differential polynomial in the coefficients of the
series (3.3) and the coefficients lk of the series (3.1) with k > j. In
particular, r2_m is a differential polynomial in the coefficients (3.3), (3.6).

In the system (3.9) of N~m equations the coefficients Z2_m, . . ., Z3_N

are unknown. We pass to new variables σ_χ, σ0, . . ., aN.m_2. The
substitution is given by the relations

(3.10) a0^o{FL-^L),ak^a(F,Lk),k=^0,

where σ(Α, Β) is a differential polynomial in the coefficients of the formal
series A and Β defined in (2.19). From (3.10), (3.7) we obtain

(3.11) σο = /ηλ<"-«/'ηΖ1_τπ + Δο, σ» = *ΐ»λ<*+1"-1)/"1Ζ1.ιη_Λ + ΔΛ, &=^0,

where the Ak are differential polynomials in the coefficients of the series
(3.3) and the coefficients /„, n > l — m — k. These formulae show that the
substitution (3.10) has linear principal part, it is triangular, and so it is
invertible. The residues pfc (-1 < k < N~m — 2),

(3.12) pft = resL\ fc=jtO, P o=reslogZ,,

are expressed in terms of the coefficients of the series (3.6) and the variables
σ_υ . . ., oN_m_ 2, which allows us to write down a system of equations for
the ak.

Lemma 3.1. The system of equations (3.9) is equivalent to the system of
equations for the ak:

k.ra,
(3.13) D(ak) = ±Vk(oh_m+i, o k .

where the pk are evaluated by (3.10), (3.12).
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Proof. (3.9) implies (3.4), and so

-jrTesLh = res[F,Lk], — 1<Λ<ΛΓ — m — 2 ,

(3.14) -^-res log L = res [FZri, L].

The assertion of the lemma is a consequence of (3.10), (3.12), (3.14), and
the fact that the substitution (3.10) is invertible. •

The residues pk = res Lk, k Φ 0, p 0 = res log L expressed in terms of the
variables (3.11) are called in what follows the densities of the canonical
conservation laws (3.13). For k < m~ 2 these densities are differential
polynomials in the coefficients of the series (3.6) and the variable K~i/m.
For k > m- 2 the σ;·, / < k, are added to these variables. For example,
p_! = λ"1/"1, and as a consequence of Lemma 3.1 with Ν = m+ 1 we find
that the first equation of the system (3.9) after the substitution (3.10) takes
the form

(3.15) ^

To distinct eigenvalues of Ow, there correspond (see Proposition 2.1) Μ
τη

distinct equations of the form (3.2):

(3.16) -±-Lj = lFitL}] (/=1 M)

and Μ series of canonical conservation laws

(3.17) -|-Pft., = #(**..,) ( A = - l , 0 , 1,2, . . . ) ,

where in accordance with (3.10) σΟιί = a(F}L]', Lj), ohtJ = a(Fj, L)), k Φ 0 t

p f t j = res L). The following theorem is a direct consequence of
Proposition 2.1, Theorem 2.1, and Lemma 3.1.

Theorem 3.1. Suppose that the hypotheses of Proposition 2.1 are satisfied.
Then the solubility of the system of equations (3.17) with k < N— m - 2 is
a criterion for the existence of a formal symmetry of order Ν > m.

Example 3.1. For systems of equations of the form (1.17) with m — 2 the
question of the existence of a formal symmetry reduces to the question of
the solubility of the scalar equation (3.2) with F = λί>2 + FJ) + Fo +
-f F^D-1 -ι- . . . We write down the canonical densities p_ l 7 p 0, p,
connected with this equation. Clearly p_x = l~l = X-l/*(see (3.12), (3.7)).
It follows, in particular, that in the case of a system of two equations
satisfying the condition trace O u , = 0 (see (1.42)) we have

(3.18) Ρ_,= i

To find the next canonical density, in the formula

(3.19) p0 = res log L = l^
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we need to express /0 in terms of σ_χ = a(F, L,-1). Formula (2.19) yields

therefore (see (3.19))

(3.20) — 2P o = λ-νίσ^, - λ-'F, + D (log }*/*).

In exactly the same way we find px = res L = l^:

(3.21) 2 P l = λ-'/2 ( σ ο _ F l P o + F e ) + λ*/* (P;-Z> (Po)).

The resulting formulae are general and will be used for the classification
of systems of two equations of the form (0.8). As already mentioned in the
Introduction, the classification of the scalar equations ut — Φ(Μ, UX, U2) is
based on the existence of a formal symmetry of order 5. By Theorem 3.1
these conditions coincide with the conditions of solubility of the equations

-±-pk = D(ah) ( f c = - 1 , 0 , 1 ) ,

where p1 = (0>u,)~1/2, and p0, βλ can be found from (3.20), (3.21) with

F1 = Φα,, *Ό = Φ«·

Example 3.2. The list (0.3)-(0.6) of equations of the form ut = u3+
+ G(u, «i, u2) is obtained with the help of the canonical densities

po = GU!, pj = 3GUl—(Gut)
2, ρ,=σ 1 ,

( d · ^ P 2 = 27Gu-9GU lGU t + 2 ( ^ ) 8 + 9σ0.

In this example, in accordance with (3.7), lx = I, l0 — GUJ3, p-x = 1.

Therefore the first canonical conservation law is trivial. The canonical
conservation laws (3.17) can be simplified by replacing them by equivalent
ones, using the rule

°k, ι = α*. Ph. j + (rh, j)t + β*.),

where the a.hj, βΛι^ are constants, while the rhti are differential polynomials
in the same variables as pbJ. The conservation laws with densities (3.23) are
equivalent to canonical ones.

In conclusion we note that by Theorem 3.1 for the existence of a formal
symmetry of the system (1.17) of order m+ 1 it is necessary and sufficient
that the system under consideration has conservation laws of the form
(3.15), where λ is an eigenvalue of ΦΜ .

2. The conditions for the existence of formal conservation laws allow us to
refine the form of the canonical conservation laws (3.17). At the end of § 1
we showed that in the case of a system of odd order m the dimension Μ of
the system is even and the eigenvalues of Φ,, split into pairs λ;-, -λ,·

(/ = 1, 2, ..., M/2). The gauge transformation (2.1) (see Proposition 2.1)
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reduces the system (1.32) to the block-diagonal form (2.7), (2.8). Therefore
for the study of formal conservation laws we can restrict ourselves to the
examination of a system of two equations of the form (see Theorem 2.1)

(3.24) F = XDm + Fn.iD""* + ..., G = %Dm + Gm_1Z)

Obviously, (3.24) is equivalent to a single scalar equation

(3.25) r t

A series r (deg r = 1) satisfying the inequality deg(rt+FTr-rG) < m+ I—N
will also be called a formal conservation law of order Ν (compare (1.40)).

Lemma 3.2. A formal series r satisfies (3.25) if and only if

(3.26) res log G~l'm (FT + r tr-1)Vm= res

(3.27) res [(?"/"—(/?r + r1r-i)n/m] = res[Gn/mr-1, r], η > 1.

Proof. We rewrite (3.25) as an equality of two series of degree 1

(FT +

The assertion of the lemma follows from Lemma 1.1, formula (2.15), and
the additivity of residues. •

As we see from (2.18), the right-hand sides of (3.26) and (3.27) are total
derivatives. This allows us to pass to a new set of variables

(3.28) o; = *(G-V», r),

(3.29) aj? = o(Gft/mr-i, r), k

(see (2.19), (2.21), in which the chain of equations for the coefficients of
the formal series r is written in the form

(3.30) P«(af_m+if <jjt_w, . . .)~Ζ)(σί) ( f t-0,

where

(3.31) pi = res log G~l'm (FT + τ·,;

(3.32) p°k = res [Gh/m — (FT + r^-1)"/""], k > i.

It follows from (3.28) and (3.29) that at depends on the coefficients of G
and the variables τΐΛ r0, . . ., rx_ft, the dependence on Γι_Α being linear.
Therefore the substitution (r,, r0, . . ., r_N) >-*• (o°0, oj, . . ., σ^+ι) is
invertible. The residues (3.31), (3.32) for 0 < k < m~ 2 depend only on
the coefficients of F and G:

(3.33) po° = — i - F " - i + G " - x + D log λ,

(3.34) pi = res [Gk<n + (— i)h+iFh/m], 1 < A· < m—2,
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while for k > m— 1 they also depend on the variables σ{|, aj, . . .,
In the derivation of (3.33) we have used the identities (2.2) and

(3.35) res log AVm = -jjj- res log A — u g i £> log om,

where Λ = amDm+ ... . For formal conservation laws the following theorem
is an analogue of Theorem 3.1.

Theorem 3.2. A formal series r satisfies the inequality deg(rt+ F^r-rG) <
< m+ I-N if and only if the finite chain of equations (3.30) with
0 < k < N- 2 is soluble.

Suppose that the formal series L == ( _) satisfies the equation

Lt = [Φ, L], where Φ is the same series as in (3.24). This equation splits
into two scalar ones:

(3.36) Lt = \F, L], Lt=-IG,L].

Their solubility is equivalent to the existence of two series of canonical
conservation laws (3.17). If the equation (3.24) is soluble, then the

equations (3.36) are equivalent (since Σ'= — r~xLTr satisfies the second of
the equations (3.36) (see Theorem 2.1)). Therefore one of the series of
canonical conservation laws must be replaced by the divergency conditions.

Example 3.3. On the example of the dynamical system

(3.37) ut = u2 -f f(u, v, uu vj, —vt = vs + g(u, v, ux, t;,)

we obtain the first canonical conservation laws and divergency conditions.
The operator Φ, for (3.37) has the form

(3.38, <*.

With the help of the gauge transformation (Proposition 2.1) we reduce the
first coefficients of this series to the diagonal form. Equating the coefficients
of Dk (k = 0 or 1) in the expression

where Τ = Ε + T.J)-1 + - · ·, diag Th = 0, F = D* + FJ) +
G = D2 + GJ) + . . . . we obtain

TVgu o j '

The canonical density p_! is equal to 1, therefore σ_α = const. When
evaluating the canonical densities p 0 and px we can use the ready formulae
of Example 3.1, substituting in them the Fk obtained by diagonalization.
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From (3.20) and (3.21) we obtain

(3.39) Po=4-/«.·

(3.40) P l = i- σ0—i- /»„, + i- /„ - ~ £,,,/,. - -f D (/„,).

Directly from (3.33), (3.34) we obtain

(3.41) pS=—§-(/„, + gVl),

(3.42) pl = -^

If the system (3.37) possesses a formal symmetry and a conservation law
of higher order, then p° £ Im D, that is, there is a function Î (M, υ) such that
Ό(φ) = po- It can be proved (see [9]) that the density of the conservation
law

p(u, v, u,, vlt . . ., un, vn)

for η > 2 has the form

ρ = βΦ [auni;n + β (vn_iun—un_,i;n)] + a (^4un + 5 r n ) + C,

where a and |3 are numbers satisfying αβ = 0; A, B, C are functions of the
variables u, v, . . ., u n_ x, ι;,,.!, while for η = 1 it has the form

p = aeV'ulvi-\-a(u, liJiit-f&fH, v)vi-\-c(u, v).

If the order m of the system (1.17) is odd, the question reduces to the
investigation of the scalar equation (1.32).

Lemma 3.3. In the scalar case the series R = r1D + r0+ ...,RT = —R (see
Theorem 2.1) satisfies (1.32) if and only if

2A+1

(3.43) 2 Γ _ 2 Λ + . Σ ( - 1 ) * ( ~ , " 1 ) 0 1
 (Γ_» + , ) = 0 (Λ=0, 1, . . . ) ,

(3.44) 2Fm_l/Fm

(3.45) res{Fn/m—iF + R-Wt)'1''"}^res[F'^R-i, R] (ra = 2, 4, . . . ) .

As before, we define a new set of variables σ^ = σ£ (r,, r0, . . ., r 2_n)by
the relations

(3.46) Ο; = Γ5·^™-',

(3.47) < = a(i"Vmi?-1, i?) (re = 2, 4, . . . )

and express the variables rfc in terms of the ak from (3.43), (3.46), (3.47).
Using the formulae

(n = 2, 4, . . . ) ,

we find p« = Ρη(σ0, σ,, . . ., a n _ m + 1 ) . It follows from Lemma 3.3 that the
solubility of (1.32) is equivalent to the solubility of the chain of relations
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as in the case of even order m of the system (1.17), passing to a self-adjoint
solution of (3.2) (see Theorem 2.1); we remark that 'half of the canonical
conservation laws are replaced by the divergency conditions [19].

The formula (2.1) for rewriting formal symmetries under gauge
transformations is closely connected with the general theory of transformations
and to the question concerning a formula for rewriting a formal symmetry
under the passage from the set of dynamical variables u, u l t . . . to another
set u = i|)(u, . . ., u n ) , Jfc = i|)fe(u, . . ., unk)(k = 1, 2, ...) of dynamical

variables. For example, the following simple assertion holds.

Lemma 3.4 [19]. Suppose that the two dynamical systems

η, = Φ(α, n,, . . . ) . uj = <D(u, 5,, . . . )

are related to each other by the substitution

(3.48) f = f, ϊ = *, ΰ = ψ ( υ un)

and that a formal symmetry L — 2 M«, . . .)Dhand a formal conservation

law R — 2 rh(u, . . .)Dh of the dynamical system u~ = Φ are given. Then
the formulae

(3.49) £ = ψ;'24ν, Λ = (ψΓ)-Γδψ;·, D=D

define a formal symmetry L — 2 lh(u, . . .)Dk and a formal conservation

law R — 2 rh(u» · · -)Dhof the system u, = Φ.

In (3.49) i//. is a differential polynomial of the form (1.20).

CHAPTER II

EVOLUTION EQUATIONS OF THE SECOND ORDER

In this chapter we present results of Svinolupov on the classification of
scalar equations of the form

The results of Chapter I are easily carried over to equations with right-hand
side explicitly dependent on x. In particular, we associate with each
equation of second order a collection of densities p_x, p0, p t of canonical
conservation laws. These densities are calculated by the formulae given in
Example 3.1, and if one includes χ in the set of dynamical variables, the
only thing that changes is the operator of total differentiation
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In §4 the classical Lie theory of contact transformations is presented,
which serves as a model for the extension of the module of invertible
transformations in Chapter III. We note that adding χ to the collection of
dynamical variables is necessary in a sense for the classification of second-
order equations, since the rejection of contact transformations affecting the
variable χ considerably complicates the analysis of the conditions for the
existence of symmetries and makes the list of integrable cases difficult to
observe.

In § 5 we present a complete list of second-order equations possessing
formal symmetries of order 5 (Theorem 5.1). The list consists of the linear
equation

and three Burgers type equations. Symmetries of the linear equation are
given by the formula

]k(u) (ft = 2, 3, . . . ) .

If the Schrodinger operator L = D2 + q(x) commutes with an operator Μ of
odd order, then in addition to the symmetries specified of even order,
generated by powers of L, there are symmetries of odd order generated by
powers of the differential operator M. Burgers type equations reduce to a
linear equation by differential substitutions that generalize the substitution
connected with the introduction of a potential. Explicit formulae for the
substitutions, specified at the end of §5, allow us to rewrite the symmetries of
a linear equation. Therefore the conditions for the existence of a formal
symmetry (the local property of the canonical conservation laws (3.17)) are
not only necessary (see Theorem 1.1) but also sufficient for the existence of
an infinite set of local symmetries.

§4. Invertible transformations

From the general point of view invertible transformations in the set of
dynamical variables x, u, uu ... are given by the formulae

(4.1) ζ = φ ( χ , «, . . . , um),i7=i|-(z, u, . . ., u J . w ^ T h (x, u un,), . . .

Invertibility means the existence of functions φ, ψ, ·ψη . . . such that

X = ψ(χ, U, . . ., M-), U = ψ ( 2 · , U, . . ., ΰ ^ ) , Ul •-•= ψ^-Γ, U, . . ., ΰ-), . . .

In the classical Lie theory, whose simplified version we present in this
section, an additional condition for invariance of the infinite-dimensional
system (1.3) under the substitution (4.1) is introduced. This condition
yields

dx <te D (φ)
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or, more briefly,

(4.2) ψ Λ + 1 = D (ψΛ)/Ζ> (φ) (k = 0, 1, 2, . . . ) .

Theorem 4.1. The invertible transformations (4.1) and (4.2) are exhausted
by the point transformations χ = φ(χ, u), ι 7 = ψ(χ, u) invertible in the
collection of variables (x, u), and the contact transformations

(4.3) χ = φ(χ, u, Ui), ϋ = ψ ( χ , u, u,),

( 4 . 4 )

invertible in the collection of variables (x, u, u{).

We note that for the contact transformations from (4.2)-(4.4) it follows
that «i = i|)u, /<pUland that the functions φ and ψ are not arbitrary but are
functionally independent solutions of the same equation of the form

^ = A (x, u, Uj) *PU t.

The Legendre transformation χ — ux, ΰ = xux-u is a classical example of a
contact transformation.

Proof of Theorem 4.1. For any m > 0 and 0 < / < m we have n, < m.
For if nj > m for some / < m, then by (4.2) nl+l = 1 + nt for any i > j and
the Jacobi matrix d(q>, ·ψ, ψ^ . . .)/d(x, u, ux, . . .) has no right inverse.
Therefore for m > 0 we find from (4.2) that

(4.5) ψ Λ + 1 = — - i - : Λ ^ + ̂ φ ^ " =~i^- (A = 0 · ·•·' m - 1 ) '

where R = 3/5x + u^d/du + . . . -f umdldum_x. It follows from (4.5) that
ififtiUm = dtykldum Φ 0 (otherwise ψ Λ + 1 = 0 and the substitution (4.1) is not
invertible) and that

Let us show that the assumption m > 2 leads to a contradiction. It is
easy to check that 7ί(φ) — Ayu , Λ(ψ) = A% implies the relation

Taking into account that ifo = ij5Um/<pUm we obtain the equality Yiim<Ptim x —

— <fut^\'um_i = 0, which means that ψ is expressed in terms of φ by the

formula ψ = ΛΓ(χ, u, . . ., Mm_2, φ). It now follows from (4.5) that the last
two columns of the matrix d(q>, ψ, . . ., tym)/d(x, u, . . ., um) are
proportional. This contradicts the invertibility of the substitution.

The cases m = 0, 1 can be considered in a similar way and lead to contact
and point transformations. •
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A given function u of the variables t and χ goes over under point and
contact transformations of the form (4.1) to a function U(t, x) (t = t); also,
uk = dku/dxk, dku/bxk (k = 1,2, ...) (see (4.3)). The partial derivative of
u(t, x) with respect to the variable t (taken under the condition dx = 0) is
given by

(4.6) u-t=Jut, / = ψ α _

In the case of point transformations J = [ί)(φ)]~15(φ1 ^)ld{x, u), while in
the case of contact transformations it follows from the formula Z?(\|))q>Ul =

= it>UlZ>(cp)that / = (qv,)" 1 ^, ty)/d(ui> u). Therefore the invertible

transformations (4.1) and (4.2) allow us to consider the equations
ut = Φ(χ, u, ux, . . .) and u7 = Φ(ΐ, u, n^ . . .) related to each other by

(4.7) / Φ ( ΐ , u, uu . . . ) = Φ ( φ , ψ, Ψι, .·•),

as equivalent equations. It is easy to check that the conditions for the
existence of formal symmetries are invariant under invertible transformations.

§5. The classification theorem

As mentioned in the beginning of the chapter, the classification of second-
order equations is based on the criterion for the existence of a formal
symmetry stated in Theorem 3.1. In the case of the infinite-dimensional
dynamical system corresponding to the equation

(5.1) ut = Φ(ζ, u, i*!, u2),

the criterion for the existence of a formal symmetry of order 5 consists in
the solubility in the class of functions of x, u, uu of the system of three
equations for a_j, σ0, σχ:

(5.2) -^- = D(ak) ( A = — 1, 0, 1),

where the densities of the canonical conservation laws (5.2) are evaluated in
Example 3.1.

Theorem 5.1 [11]. The equation (5.1) possessing a formal symmetry of
order 5 is reduced by the invertible transformations (4.1), (4.2) to one of
the equations of the following list:

(5.3) ut=uz+q(x)u,

(5.4) ut = i

(5.5) ut

(5.6) ur-

Proof. We shall make use of the following assertion.
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Lemma 5.1. The equation (5.1) possesses a formal symmetry of order 3 if
and only if it can be written up to invertible transformations in the form

(5.7) ut — ui+h(x, u, u,),

(5.8) u t = £(!*-%, + £(* , u)).

The proof of the lemma will be given after completing the classification
of the equations (5.7), (5.8). Let us consider equations of the form (5.7).
In this case (see Example 3.1) p_j = 1 and the following canonical densities
are reduced by the transformations (3.23) to the form

(5.9) Po = fcu,, Ρι = |

We note first that equations of the form (5.7) have no local conservation
laws of the first order. For if ρ = p(x, u, Uj) and p,,lU, Φ 0 is the density,
then p t ~ Φδρ/δω ( PJ and Φδρ/δα are equivalent modulo Im D). Therefore
the right-hand side Φ of the equation under consideration has the form

Cut+D '

where A, B, C, D are functions of the variables x, u, uu and C = pu,u, Φ 0,
which contradicts (5.7).

Since dpjdt 6 Im D and p0 = hUl, we have

a(x, u).

This means that the equation (5.7) has the form

(5.10) ui=u2 + Aut

i + Bui + C,

where A, B, C are functions of χ and u. It is easy to check that by a
substitution of the form χ = χ, ΰ = φ(χ, u) the equation (5.10) is reduced
to one of the following:

(5.11) ut = u2 + b(x, «),

(5.12) ut = u2 + a(x, u)M l + b(x, u), au ψ 0.

For the equation (5.11) the condition pO i t ζ Im D holds automatically and
Pi = bu (see (5.9)). We have bUit ~ — buiiuu\ + φ(χ, u) and consequently
we have buuu = 0, b = p(x)u2 + q(x)u + r(x). It can be established in a
similar way that buu = 2p = 0. The substitution χ = χ, ΰ — u + y(x),
y" + qy = r leads to the equation (5.3) from the list given in Theorem 5.1.

For the equation (5.2) p0 = —a (the next condition is not needed). We
have auu = 0, that is, a = /31(X:)M + 0 2 (X), βι Φ 0. The substitution χ = χ,
ΰ = al(x)u + a2(x), 2a t = β1} 2α2

 = βι~ 2D log c^ reduces the equation to
the form ut = u2+ 2uu! + b(x, u). Since now p 0 = - 2 M , the right-hand side
of the equation under consideration is a total derivative. This means that
bu = 0 and that the equation coincides with (5.4).

It remains to consider equations of the form (5.8), for the complete
description of which the condition p 0 > t ζ Im D, p 0 ~ ug — u2gu is sufficient.
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If p = p(x, u) is the density, then p t ~ — 9uuu~iu\ + ψ(*. «)· Therefore
ρ ~ b(x)u, and

(5.13) u-lb'(x) + b'(x)g(x, u)£lmD.

The canonical density p0 is equivalent modulo Im D to the function
ug-u2gu. Hence ug~u2gu = b(x)u + c(x) and g(x, u) = a(x)u + b(x) +
+ c(x)/2u. The substitution χ = y(x), ΰ = u/y'(x), 2y" + cy' = 0 leads to
the equation (5.8) with g - A(x)u + B(x). The condition (5.13) in conformity
with the density ug~u2gu = B(x)u means that B" = AB' = 0. In the case
Β' Φ 0 {Β" = A = 0) we have g = cxx + c2, cx, c2 G C. The resulting
equation reduces to (5.6) by a dilatation of t, u. In the case Β — 0 we have
g(x, u) = A{x)u and px ~ -Λ'(Λ:)Μ. The condition (5.13) yields A"{x) = 0.
The resulting equation coincides with (5.5). •

Proof of the lemma stated at the beginning of the section. It follows from
(1.32) (see Chapter I) that the equation (5.1) has no conservation laws of
order greater than or equal to 2. This imposes the following restriction on
the form of the density p_j — Φύ, 1 / 2:

(5.14) p_j = D[f(x, u, ;/,)] + a(x, u, u,).

It follows from (4.7) that the densities p_j and p_! of the canonical
conservation laws, related to each other by the invertible transformation
(4.1), (4.2), satisfy the relation

A

(5.15) ρ_ι(φ, ψ, ψι, ^ ) = ~D^) P-I ( χ ' "» ui« "2)·

The substitution that reduces (5.1) to the form (5.7) or (5.8) is constructed
from the functions / and a on the right-hand side of (5.14). In the case
a — 0, which corresponds to the triviality of the conservation law under
consideration, the desired substitution has the form (4.1), (4.2) with ψ = f
and leads to an equation of the form (5.7). In the case aUl = 0 , au Φ 0
corresponding to the conservation law of zero order we have OU j U, = 0, that
is, /Ui = 0 (see (5.14)). We consider the point substitution χ — ψ(χ, u),
~ΰ = ψ(χ, u) such that ψχ •-= (fx + α)ψ-\ q>u = / 1 1 ^ 1 . Since Ό(ψ) = ψ^ρ-ι,
it follows from (5.15) and the condition (p_j)f 6 Im Ο that the resulting
equation has the form ut = u2u^ -j- G(x, u, Uj). Now taking p_x = u into
account, we obtain (5.8).

It remains to consider the case when the canonical density p_x defines a
conservation law of the second order, that is, when aUlUl Φ 0. Let us show
that there is a contact transformation (4.3), (4.4) that reduces the density
a{x, u, ux) to the density u. Clearly, the equality for the variational
derivatives has to be valid:
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where 6/6u = dldu —Ddldux + D2d/dut -f . . ., as well as the equality
(see (4.44))

It is easy to check that it follows from (5.17) that

(5.18)

This formula implies in turn that (5.16) is equivalent to the pair of equations

Adding (5.17) to these equations, we reduce the system (5.16), (5.17) to the
following system equivalent to it:

The solubility of this overdetermined system for the functions φ, ψ can be
proved by the standard method of characteristics. The resulting contact
transformation reduces the density a(x, u, u^) to the density ΰ, that is, it
leads to an equation for which p_x = u (to check this one can use the
formulae p^ ••= D(F) -|- ι|:Ζ>(φ) and (5.15)). Therefore the contact
transformation reduces the case oU l U l Φ 0 (a is the function on the right-
hand side of (5.14)) to the case aUl — 0, au Φ 0 considered above. •

The equations (5.1) have symmetries of higher order only in exceptional
cases. The classification theorem shows that not all equations possessing
formal symmetries reduce to linear ones by invertible transformations. It
will be shown that the question of their integration can be solved by a slight
enlargement of the module of invertible transformations.

Actually it is the question of adding one (strictly speaking, non-invertible)
transformation, which is often called the operation of introducing a
potential. This transformation is possible if the initial equation has the form
of a conservation law

(5.20) u, = D(F(x, u, M l)).

In this case one can define a new collection of dynamical variables

(5.21) x — x, Ui = u, u 2 = u,, . . .

and pass to the equation

(5.22) ut = F(x, ut, Hi).

The connection between (5.20) and (5.22) is obvious.



The symmetry approach to the classification of non-linear equations 31

As an example we consider the Burgers equation (5.4). It has the form
(5.20) and as a result of the potentiation (5.21) is brought to the form
(5.22) (ut = u2+u\ + q(x)). The point transformation y = χ, ν = exp ΰ
reduces the last equation to the linear one (5.3). The composition of these
two transformations coincides with the well-known Cole-Hopf substitution
[38], [39]:

(5.23) χ = y, u = vjv.

Another example of a substitution of this type is related to the equation
(5.6). The potentiation and then the point substitution y = ΰ, ν = χ reduce
it to the Burgers equation with q{x) = 0. The composition of the two
substitutions has the form

(5.24) χ = v, u — ί/ντ.

We note that the same substitution reduces the equation (5.8) to the linear
equation

(5.25) vt = v2 — αν — β

with constant coefficients α, β. Therefore this insignificant enlargement of
the module of invertible transformations allows us to relate all the equations
listed in Theorem 5.1 to linear ones.

In the general case the potentiation operation is possible if the equation
possesses a conservation law of order zero or two. Let ρ = ρ(χ, y) be a
density of order zero; then a new collection of dynamical variables can be
defined from the relations χ = χ, ΰι — pipe, u). If ρ = a(x, u, Mj) is a
density of order two, then the potentiation operation is given by
χ = φ(χ, u, Ui), ux — ψ(χ, u, Mj), where φ and ψ are functionally independent
solutions of (5.9). Under potentiation of an equation the corresponding
conservation law 'goes over' to a symmetry (uT —I). It is easy to show that
the equation (5.1), which has a symmetry of zero or first order, is reduced
to the form (5.22) by a point or contact transformation. Here the
substitution χ = χ, u = ΰι, ux = ΰ2, which reduces (5.22) to (5.20), is
admissible and will be called differentiation of the equation (5.22). It is the
inverse to potentiation.

In contrast with invertible transformations, the potentiation and
differentiation operations do not allow us in general to rewrite symmetries
of equations. For example, the equation ut -- D^r-i^ — 2x — it) obtained

from ut — "M^UJ — «ι — 2ΐ by differentiation has no symmetries of the
form uT = g(x, u, uv ..., un) for η > 3, while the initial equation has
symmetries of arbitrarily large order and is related to the Burgers equation
vt = V2+ 2«ΐΊ+ 1 by the point transformation χ = ν, ΰ = y. In this example
the cause of the loss of symmetries is the fact that the variable t is not
included in the collection of dynamical variables. It can be checked that the
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equation under consideration possesses an infinite set of symmetries of the
form ux = J92(u-1D -f- χ — t)h(x — i), since it reduces to (5.6) by the Galileo
transformation.

Differentiation (potentiation) does not destroy symmetries if they do not
depend on u (are total derivatives, respectively). This simple observation and
the above substitutions allow us to construct symmetries of the equations
(5.3)-(5.6) of arbitrarily large order. For example, the symmetries of (5.5)

Ν

ux=^D[u Σ Ckiu-Wfiur^ + CoUX + cu], ch, c£C,

are obtained from the symmetries
Ν

vx = c + Σ chvk
ft=0

of the linear equation (5.25) by the substitution (5.24).

CHAPTER III

ENLARGEMENT OF THE MODULE OF INVERTIBLE SUBSTITUTIONS

In the case of systems of partial differential equations there is no
complete analogue of contact transformations. But here the module of
invertible substitutions is not exhausted by the point substitutions. The
transformation χ = χ, ΰ = u, ~v = v+ux and the transformation χ = φ(χ, u, w,),
ΰ = φ(χ, u, Mt), U = χ(χ, u, v), where φ, ψ satisfy (4.3), (4.4), and χν Φ Ο,
are examples of non-point invertible substitutions. In applications a
situation often occurs when the system possesses a continuous point group
of symmetries and it is sufficient to restrict oneself to a reduced collection
of dynamical variables consisting of invariants of the group. For such
systems the module of invertible transformations can essentially be enlarged
by renouncing the requirement of the local property of a transformation of
variables not belonging to the reduced collection of dynamical variables.

In §6 we consider systems of equations (1.17) with right-hand side
independent of x. A complete description of invertible transformations that
are local in the variables u, uit u2, ... is given in the scalar case by Theorem 6.1.
Some of these transformations generalize to the case of systems of equations
and allow us, in particular, to reduce systems of the form (0.8) possessing a
formal symmetry of order 3 to a simpler form (compare Lemma 5.1):

"< = "** + /(«, v, ux, vx), —vt = vxx + g(u, v, ux, vx).

In §§7, 8 systems of two equations of the above form are considered that
are invariant under the infinitesimal transformations ΰ = u + rp(u),
~v = v+rq(v). Substitutions in the corresponding reduced collection of
dynamical variables are essentially used in Chapter IV for the classification
of non-linear systems of Schrodinger type.
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We note that the substitutions considered in this chapter are constructed
by starting from classical symmetries and conservation laws. Substitutions of
this sort are not bound by the framework of the theory of integrable
systems and can be used for a broad class of partial differential equations.

§6. Generalized contact transformations

For equations invariant under space translations 3c = χ + r we can restrict
ourselves to a collection of dynamical variables u, u,, u«, . . . not containing x.
In this reduced collection of variables we define the substitution

(tt.l) ϋ* = ψ(" «η), ^ = · Ψ Α ( " , · · · , "*„), . . .
( ί = 1 , . . . , Μ; * = 1,2,3, . . . ) .

We replace the requirement of the local property of transformations of the
variable χ (compare (4.1)) by a weaker condition of the existence of a
function α = a(u, Ui, . . ., um) such that

(6.2) rfi = a(u, Uj, ...,um)dx.

The condition of invariance of the dynamical system (1.3) under the
substitution (6.1), (6.2) leads to the relations

(6.3) ψ^+1 = _ ^ * 1 (ft = 0t 1, . . . ; i=\, . · . , M),

which are equivalent to the formula

(6.4) ~D = a-lD,

X Jf

where Z>= TJ

The requirement of invertibility of the substitution (6.1)-(6.3) imposes
certain restrictions on the functions oc, φ1, ..., \]JM. In the case Μ = 1 the
following theorem is an analogue of Theorem 4.1.

Theorem 6.1. In the scalar case (M = 1) the substitution (6.1)-(6.3) is
invertible in the variables u, ult u2, ... if and only if a does not belong to
Im D and one of the following cases holds:

(6.5) 1) α = α(κ, uj, ψ=·ψ(ΐί);

(6.6) 2) a = D(a(u, u,)

(6.7) 3) a = Z?(a(u, uu u2)) + b(u, u,, u2), ψ = ψ(α, uu u2),

αη,φΟ, fcu.u.^O, 11)4 = 1)54(1/, ut, u2), ypu, = βΜ,Ψι,

Ψϋ, = (««, + bu,) ψ|, ψ« = (au + u-tb—«r'&u.

Abbreviated proof. We consider the substitution

(6.8) χ = ψ ( α , uu . . . ) , u = ^t(u, uu . . . ) , uh
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where D = [Z?^)]-1/?, which is the composition of (6.1)-(6.3) with the
transformation χ = ΰ, u = M1; ... . It can be checked that the proof of the
theorem reduces to the proof of the following assertion.

Lemma 6.1. The substitution (6.8) is an invertible transformation from the
collection of variables u, uv u2, ••• to the collection of variables x, u, ult ...
if and only if one of the two following cases occurs:

A A

or

X=t|)(U, UU U2). « = ψ 1 ( " , «1,

The proofs of Lemma 6.1 and Theorem 4.1 are almost the same. •

We note in addition to Theorem 6.1 that transformations of the form

(6.9) dx = a ( x , u , . . . ) d x , u = ^ ( x , u , . . . ) , « 1 = ψ 1 ( ζ , u , . . . ) , · · ·

being inverse to the transformations (6.8), are described by formulae similar
to (6.5)-(6.7). For example, in the case similar to (6.5) we have

(6.10) dx = a{x, u)dx, a u = ^ 0 , w=i|;(u),

The transformation given by (6.5)

dx — a(u, Ui)dx, U = TJJ(U), U1 = I|),(U, ut), . . . ,

generalizes to the case of systems of equations. For the substitution

(6.11) dx—a(u, ut)dx, u* = u\ u\ = a " ' u i , . . .

with α Φ ^ "ί da/dui is invertible, since the Jacobi matrix

d(u{, ...Γη?) _ 1 u\ da

has an inverse with entries

u) da/dui( u.da/dui

The infinite-dimensional system (1.17) admits transformations (6.1)—(6.3)
invertible in the collection u, ux, u 2, . . . if one can add to the set of
dynamical variables ufe = ufe(i, x) (k = 0, 1, ...) a new variable χ = X(t, x)
such that

(6.12) -g- = a(u, U l, . . . ) , ^ = P(u, U l, . . . ) .
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The condition of compatibility of the relations (6.12)

(6.13) ^

means that the function α in (6.2) is the density of a conservation law of
the initial dynamical system (1.17). The following substitution corresponds
to the invertible semilocal transformation (6.1)-(6.3):

(6.14) i = f, x = X(t, χ), ΰι = γ{η, u l t ...) ( i = l , . . . . M).

The right-hand side of the transformed system

(6.15) άύί/ά1=Φί{ΰ, ϊ , , . . .) ( ί = 1 , . . . , Μ)

is evaluated by

(6.16) Φ1 = Σ Σ * > * ( Φ ό - 4 - D (•*)·

In contrast with the semilocal transformation (6.1)-(6.3), invertible
transformations of the form (6.8), whose complete description is given by
Lemma 6.2, can be applied to arbitrary equations and reduce the dynamical
system ut = Φ(χ, u, uu ...) to a system of the form

(6.17) ut = a>(u,uif ...

It is easy to check that the transformation (6.17) has a local conservation
law with density a = /}(>//)/(//!.

The transformations under consideration affecting the variable χ essentially
change the character of non-linearity of the initial equation. For example, it
follows from (6.17) that the resulting equation is always quasilinear. To
illustrate an application with the above theory of transformations we
consider scalar equations of the second order ut — Φ(μ, uu u2) satisfying the
first integrability condition (Φΰ,1/2)ί 6 I"' D (compare Lemma 5.1). One can
check, starting from (6.16), that for α = Φ,7,1/ζ f l m f l the transformations
indicated in Theorem 6.1 lead to an equation of the form ut = U2+f(u, «i).
For example, the equation ut — u2u2 is reduced to the linear one ut = u2 by
the substitution t = t, dx = u~ldx-uldt, u = u (compare [40]).

We illustrate the general scheme of using the invertible transformations
(6.1)-(6.3) for the classification of integrable equations by one more
example. For the quasilinear system of two second-order equations

(6.18) ut = ^(u, Ul)u2 + F(u, «,), det Λ ^ 0,

the first necessary conditions for the existence of conservation laws and
symmetries (see Example 3.1) are written in the form

(6.19) trace J = 0, -^- (det A)~u* ζ Im D.
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In the case A = A(u) the substitution (6.11) in composition with a point
transformation allows us to reduce the system (6.18), (6.19) to the diagonal
form [9]

(6.20) ut = u2 + /(u, v, « l f vt), —vt = i>2 + g(uu ν, ι^, vj.

In the general case A = A(n, u,) the equations (6.18) are reduced to a
system with constant eigenvalues equal to +1 and — 1. The function a in
(6.11) is chosen in both cases to be equal to (det A)'1'*. For example, the
system of equations considered in [41]

ut = i V3 ζ?2 ± («„)«/», -.Vt=tV5D*± {uvy*

is reduced by the transformation

— 3 ΰ = exp (—2m73) log u + exp (2.ni/3) log v,

—$v-= exp (2a//3) log u + exp (—2πΐ73) log ν

to the well-known (see [42], [43]) system of the form

For the classification of the systems of equations (0.8) possessing an
infinite series of conservation laws we shall use the easily verified assertion
stated below, which shows that the local property of conservation laws is
preserved under the invertible transformations (6.1)-(6.3).

Lemma 6.2. Suppose that the two dynamical systems of the form (1.17)

U j = O ( U , U,, . . . ) , U, = O ( U , Uj, . . . )

are related to each other by the substitution

(6.21) t = t, d£ = a(u, n,, . . . ) < * * + β (u, u,, . ..)<«, ΰ = ψ(υ, U j , . . . )

and that the conservation law

(6.22) -^P = D(a)

is given in the dynamical variables u, u,, u2, . . . Then the formulae

(6.23) p = ap, σ = σ + βρ

define the conservation law

(6-24) £ ρ = *>(σ)

in the variables u, u b u 2, ... .

We emphasize that the general formula (6.23) also allows us to construct
conservation laws (6.24) in the case of irreversible transformations of the
form (6.21). The conservation law da/dt = D(j3), which generates the
substitution 3c = X(t, x) corresponding to (6.21) (see (6.12)), corresponds by
(6.23) to the trivial conservation law (6.22) with ρ = 1.
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The special cases of (6.21)

a = c + D(a(u)), οφθ\ ψ = ψ(«), x=cx + a(u),

a = c + D(a(u, u,)), οφΟ; ψ = ·ψ(ω, Ui), x = cx + a(u, ut),

which satisfy the assumptions of Theorem 6.1, correspond to point and
contact transformations admissible by the class of equations whose right-
hand side does not depend on x.

To conclude this section we consider one more interesting example of the
application of transformations of the form (6.1)-(6.3) connected with
hyperbolic equations of the form

(6.25) auxx + buxy + cuyy + d = 0.

Here a, b, c, d are functions of u, ux, uy. In this case the following
substitution is a natural generalization of the transformation (6.11):

(6.26) dx=adx + pdy, dy = ydx + bdy, u = u,

where α, β, γ, δ are functions of u, ux, uy satisfying

(6.27) au = β,, yy = δ,, αδ — βγ φ 0.

If the local conservation laws in (6.27) are non-trivial, then the substitution
(6.26) is invertible and the equation obtained by the substitution has the
same form (6.25).

We apply the transformation (6.26)-(6.27) to the Klein-Gordon equation

(6.28) uxy = dh(u)/du,

taking for α, β, y, δ the components of the energy-impulse tensor:

a = y ^ , β=Λ(«), Ϊ=Λ(»), δ = \ «·.

It can be checked (see [44]) that the equation obtained by the substitution
(6.25) is Lagrangian with Lagrangian density

X = h-i (1 + V l—2hw-xu-).

A formula for rewriting local conservation laws similar to (6.23) allows us
to prove that the equations obtained by the above substitution from the
equations of the list (0.1) possess an infinite series of local conservation laws.

§7. Partial differentiations and potentiations

The module of invertible substitutions that preserve the form of the
system (6.20) is very meagre. It consists of compositions of elementary
substitutions χ — ax + bt + c, t = oc2t + d, conformal transformations
ΰ = U(u), U = V{v), and the involution

(7.1) 1 = — t , x——x, u==v, v = u.

In this section we shall enlarge this module by adding substitutions analogous
to differentiation and potentiation of scalar equations.
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A system of the form (6.20) invariant under a continuous group of point
transformations can be reduced with the help of conformal transformations
and the involution (7.1) to the form

(7.2) ut = u2+ / (eu + v, uu i\), —vt = vt -f g(eu + v, u
l t

with e = 0 or 1. The substitution is chosen so that the symmetry
ux = <p(u), ντ = ψ(ι>) of the initial equation in the new variables has the form
ux = 1, ντ = — ε. For example, the well-known Schrodinger equation
(0.14) is reduced by an obvious substitution to the form (7.2) with ε = 1:

(7.3) ut-=u2 +

In what follows a maximal collection of dynamical variables invariant
under a one-parameter point group will be called a reduced collection of
dynamical variables. In the previous chapter we have already dealt with
reductions of collections of dynamical variables: for example, the equation
(5.22) is invariant under the point group ΰ -*• ΰ+ λ (λ = const) and the
corresponding collection x, ult U2, ... does not contain the variable u. Other
examples are connected with equations invariant under space translations; in
this case the reduced collection of dynamical variables does not contain the
variable x. In the case of systems of equations of the form (7.2) the
reduced collection of dynamical variables has the form zu + v, ux, vu . . .;
it is generated by the action of the operator D on generators for which one
can take &u + v, ut.

As an analogue of differentiation in the case of systems (7.2) we can take
the substitution defined on the generators of collections of dynamical
variables by

(7.4) w = u l t V = EU-\-V.

However, this substitution in general does not leave invariant the class of
equations (6.20). The condition

(7-5) / , Λ = 0

guarantees the independence of the coefficient of ~v2 on uu Uj in the new
system. It is easy to check that there is a simple point transformation
reducing it to the form (6.20). The composition of these transformations
can be represented as

S = «p(eu + », u,), 2<p0 = /Tl<j>Ui,

The substitution (7.6) is not defined uniquely, up to two functions of one
variable. This non-uniqueness corresponds to an arbitrary conformal
transformation in the new system. A composition of a point transformation
and the substitution (7.4) will be called a partial differentiation. A partial
differentiation is an invertible substitution on the reduced collection of
dynamical variables of the initial system.
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If the system (6.20) is invariant under an Abelian two-parameter group of
conformal transformations, then it can be reduced to the form

(7.7) u, - u2 + /(u l5 vj), —v, = v2 + gfa, Vl).

The system (7.7) admits the substitution

(7.8) ΰ"-»ι, v=*vu

which leads to the system

(7.9) ut = D (5, + / (u, v)), —vt = # & + g(u, v)).

The transformation (7.8), in contrast with (7.2), will be called total
differentiation. Total differentiation is also an analogue of differentiation of
scalar equations; it is invertible on the reduced collection of dynamical
variables of the initial system (uu vlt u2, v2, ...).

The system of equations obtained as the result of the partial differentiation
(7.4) possesses, as in the scalar case, a local zero-order conservation law with
density ρ — u. The total differentiation (7.8) leads to the system (7.9), which
has the form of local conservation laws with densities ΰ and ~v.

We proceed now to the discussion of substitutions analogous to the
potentiation operation (5.21) defined in the scalar case. Suppose that the
system (6.20) possesses a local conservation law with density ρ = p(u, v),
pu Φ 0. We define a new collection of dynamical variables by the rule

(7.10) uj = p(u, v) v = v.

The substitution (7.10) in (6.10) defines a time evolution of the reduced
collection of dynamical variables. The fact that ρ is the density of the local
conservation law pt = D(a) allows us to extend the time evolution to the
total collection by adding the equation ut = a. The transformation (7.10)
may fail to leave invariant the class of equations (6.20) under consideration.
If the right-hand side of the initial equation satisfies

(7.H) gvlut=gulv1 = (guJPu)u = 0,

then the system obtained by the substitution (7.10) can be reduced by a
point transformation to the form (6.20). The composition of these
transformations can be represented as follows:

u1 = p(u, ν), ειι + ν = χ(ν),

(7.12) e = 0, χ(ν) = ν for gUl=0,

ε = 1, χ' (ν) = — guJPu for gUl φ 0.

The substitutions (7.12) transform equations of the form (6.20) possessing
local conservation laws to equations of the form (7.2), while the substitutions
(7.6) act in the opposite direction. The composition of the substitution
(7.10) with a point transformation will be called a partial potentiation.
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The total potentiation is possible under the existence of two conservation
laws of order zero with functionally independent densities(1). As a result a
system is obtained that is invariant under an Abelian two-parameter group
of point symmetries.

We illustrate the substitutions under consideration by the example of the
following systems of equations:

(7.13) ut = u2 + uh\ —vt = v2 + v2u,

(7.14) u ^ i ^ + iu + iOuj, — vt=-v2—(u + v)vt,

(7.15) ut = u2+D(u2+v), —Vt = v2—2D(uv),

(7.16) ut=

With the help of the operations of differentiation and potentiation these
systems of equations can be constructed starting from any of them. We take
for a base the non-linear Schrodinger equation (7.13). In it one can perform
the partial differentiation (compare (7.3)):

(7.17) u = uju, v — uv,

which leads to the well-known equation (7.15).
We shall represent substitutions on diagrams as follows: vertices

correspond to systems of equations, arrows correspond to transformations.
Transformations in (against) the direction of a solid arrow denote a partial
differentiation (potentiation). Dotted arrows oriented in a similar way
correspond to total differentiations and potentiations. For example, the
substitution (7.17) is shown in the diagram of Figure 1 by the arrow joining
the lower vertices.

(z rs)0- >-o (7.14)

(7.13)

Fig. 1

The Schrodinger equation has a conservation law with density uv.
Therefore one can perform the partial differentiation

(7.18) u = l o g u , vf = uv,

giving the system (7.16). It can also be obtained from the system (7.17) by
the operation of total differentiation ux = u,Hl — υ, which is the composition
of the substitutions (7.17), (7.18) (compare Figure 1). The last of the four
systems, the system (7.14), is obtained by the partial differentiation

(7.19) u = 2ui + v, v=—v

the case of systems (6.20) any two linearly independent densities are functionally
independent and there are at most three linearly independent densities [9].
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from (7.16) or by the partial potentiation

(7.20)

from (7.15). All our substitutions are shown in the diagram of Figure 1.
We note that this diagram is commutative. The composition of the
substitutions (7.17), (7.20) is an almost invertible transformation

(7.21) Ui — uv, u + v = 2uju

and reduces the non-linear Schrodinger equation (7.13) to (7.14). We note
finally that the system (7.14) is related to the well-known Kaup system [45]

by the almost invertible substitution

u -f- ν = — 2 φ ΐ 7 v1 — Uj = 2π — 1.

In contrast to substitutions invertible on total collections of dynamical
variables discussed in the previous chapter, the differentiation operation
destroys the structure of conservation laws in general. For example, the
integrable system

(7.22) ut = u2 + 2vvu —vt = v2 — ux,

simply related to the Boussinesq equation by the partial differentiation

u— u,—v2/2, v = v

is reduced to the system

ut = u2-\-v\-\-v(u —vz/2), —v t = v2 — u-f v*/2,

without local conservation laws: it does not satisfy the integrability
conditions (see Chapters I, IV). Local conservation laws do not disappear
under potentiations. This follows from Lemma 6.2.

§8. Transformations of symmetric systems

Among systems of the form (7.2) a special place is occupied by the
systems invariant under the involution (7.1)

(S.I) ut = u.2 + /(u + i;, Hj, v,), ~vt--=v2 \-g(u + v, »,, y,), g = f*

(where /* denotes the result of the action of the involution on / ) . This
system will be called symmetric in what follows. We shall show that for the
system (8.1) not only potentiation but also partial differentiation does not
destroy the local structure of conservation laws. Moreover, in this section
we define substitutions invertible on reduced collections of dynamical
variables and acting in the class of symmetric systems. Such substitutions
will not destroy the local conservation laws either.
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In spite of the fact that the form of (8.1) is not invariant under conformal
transformations, conformally equivalent symmetric systems exist. They
occur in those cases when the system possesses a continuous non-Abelian
group of conformal symmetries. For example, the well-known Heisenberg
model

(8.2)

can be written in the symmetric form in two ways:

(8.3) ut = u2-2-?L·, -vt = v2—2-$—,

(8.4) ut = u2 — 2th (u + v)u\, —vt = vz—2th (u + v)vl.

The equation (8.3) is obtained from (8.2) by the point transformation

(8.5) Si + iS^-1-, St — iSt^-^-, S, = •£=£ , t^it,

and the equation (8.4) is obtained from (8.3) by the conformal substitution

u = -y log u, ν = — -y log v.

We shall rely on the lemma on invariant densities. A function h will be
called invariant if hu = hv, h* — h.

Lemma 8.1. // the density ρ of the local conservation law

(8.6) $ = ί(σ)

is an invariant function, then the function a is also invariant.

Proof Obviously, for any function g

(8.7)

and also for symmetric systems (gt)* = ~(g*)t. Applying the involution to
(8.6) we obtain D(a~ σ*) = 0, whence it follows that σ is invariant under
the involution, that is, σ* = σ. Applying the operator d/du-d/dv to (8.6),
we obtain D(au - αυ) = 0. It follows from the invariance of σ under the
involution that au = συ. •

We consider the substitution

(8.8)

for systems of the form (8.1). Obviously, it is invertible on reduced
collections of dynamical variables. A dynamical system on the total
collection of new variables can be defined if and only if φ(μ + υ, wt) is the
density of a local conservation law of the initial system. If φ is a density,
then ip(u + v, ux) = R(u + v)u1+ Q(u + v) (see Example 3.3 of §3). It is easy
to check that the substitution (8.8) preserves the form (6.20) if and only if
R(u + v) = p'(u + v).
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Therefore a substitution (8.8) that preserves the form (6.20) necessarily
has the form

(8.9)

where p'ux + q is the density of a local conservation law of the initial system
(8.1). Such substitutions will be called symmetric. The reason for this is
the fact that symmetric substitutions preserve the class of symmetric
systems. For since the function ρ'ιΐχ + q is a density, it follows that
[p'(ul— vl)+ 2q]t = D(a), and by the lemma on invariant densities σ is an
invariant function. The evolution of the total collection of new variables is
defined from the relations

(8.10)

With the help of these formulae it is easy to check that the new system is
symmetric.

We note that the function σ is defined up to an additive constant. This
means that each symmetric substitution (including the 'identical' substitution
u+U = u + υ, ux = Mj) leads to a family of symmetric systems which reduce
to each other by transformations of the form u = u + ct, ~ϋ — v~ct, c G C.

Proposition 8.1. The symmetric substitution (8.9) defines an equivalence
relation on the set of symmetric systems (8.1).

The fact that the equivalence relation defined by (8.9) is reflexive and
symmetric is obvious, and the fact that it is transitive is easily verified. We
note that symmetrically equivalent systems are not conformally equivalent,
and conversely in those cases when symmetric systems are conformally
equivalent they are not symmetrically equivalent (see (8.3), (8.4)).

The equivalence relation defined above splits the set of symmetric systems
into classes. Systems belonging to the same class will be called symmetrically
equivalent. To construct an equivalence class from the system (8.1) one has
to find all densities of the form p'(u + v)ux + q(u + v) of local conservation
laws of this system. If there are no non-trivial densities, then the equivalence
class is defined by the substitution ΰ+~ϋ = u + υ, ΰγ = ux + \, where λ is an
arbitrary constant.

Example 8.1. We consider two examples. The system of the form (6.20)
with

(8.11) / = 2auvUl + f>u2

Vi + i - β (α - β) u ¥ + yu*v, g = f*

is reduced by the conformal substitution u = log u, ~ϋ — log υ to the form
(8.1) with

(8.12) / = "* + 1
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Using the conservation law of the system (8.12) with density aux + b exp(« + v),
where a, b E. C, one can easily check that for β = 2α, 7 = 0 this system is
symmetrically equivalent to a linear system, for β = 2a, y φ 0 it is equivalent
to the non-linear Schrodinger equation (7.3), and for β Φ 2α it is equivalent
to the non-linear Schrodinger equation with a derivative (that is, to the
system (8.1), (8.12) with a = β = 1, γ = 0). Some special cases of the
system (6.20), (8.11) have been investigated by many authors from the point
of view of the method of the inverse scattering problem. Here gauge
transformations were discovered which led to symmetric substitutions.
Under our approach the substitutions are constructed directly from the
system of equations and are not connected with the method of the inverse
problem.

As the second example we indicate links between the familiar systems
(8.3) and

(8.13) u,~-.u2 — M* + 2W,I',, — vt-=v2 — vl + 2uivi.

The system (8.13) has been investigated with the help of the inverse problem
by many authors. The symmetric substitution u+"v — log(u + i>),
ul = (u + v)~lu1 reduces the system (8.3) to (8.13).

These examples show that systems of equations not related to each other
at first sight can be symmetrically equivalent. The following obvious
assertion gives a criterion for equivalence.

Proposition 8.2. Two symmetric systems of equations (on u, υ and u, U) are
related to each other by the substitution (8.9) if and only if after the partial
differentiation (7.4) with ε = 1 (U — «1( V = u + υ, U = uv V = u+~v) they
are related to each other by the point transformation

Let us refine this proposition in reference to the important class of
symmetric systems satisfying / Ρ ι Γ ΐ = 0 (obviously, this condition is
symmetrically invariant).

Corollary. Two systems of equations of the form (8.1) with /ClC, = 0 are
symmetrically equivalent if and only if they become conformally equivalent
after the partial differentiation (7.6).

In other words, a symmetric substitution for this class of equations can be
regarded as the composition of a partial differentiation, a conformal
substitution, and potentiation.

It follows from Lemma 8.1 that symmetric transformations and partial
differentiations (7.6) with ε = 1 allow us to rewrite local conservation
laws with an invariant density, the local property being preserved. The
following theorem shows that conservation laws of higher order can
essentially be assumed to be invariant.
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Theorem 8.1. Suppose that a symmetric system has at least two local
conservation laws of higher order and that ρ is the density of a conservation
law of order Ν > 2. Then p + p* = A 4- B, where A and Β are densities of
local conservation laws of order Ν and m < 1 respectively, and A is
invariant.

Corollary. If a symmetric system has local conservation laws of higher
order, then the system obtained by the partial differentiation (7.6) with
e = 1 or by the symmetric substitution (8.9) also possesses this property.

For the proof of the theorem we make use of the following lemma.

Lemma 8.2. Suppose that the function f on the right-hand side of the
symmetric system (8.1) has the form

(8.14) f = v[ + P»i + q,

or

(8.15) / = Au\h\ + Bu\ + Cuii-t + ru, + pvt + q,

where A, B, C, r, p, q are functions of the variable u + v. Then for any
density ρ of a local conservation law of order 0 or 1 there is a density ~p of
order 0 or 1 respectively satisfying the condition

We have not found a brief proof of this lemma. Our proof reduces to
listing all densities of orders 0, 1 of the systems of equations mentioned and
directly verifying the assertion. For example, in the case of systems (8.1),
(8.14) there are no conservation laws of the first order, and the general form
of the density of order zero is the following:

(8.17) ρ = αexp (— u — υ) + β οχρ (— λω—λν) -f γ cxp (— %u—λν),

where α, β, γ are arbitrary constants, λ = βχρ(2π//3), λ = εχρ(-2πι/3).
A density p satisfying (8.16) exists and has the form

ρ — _ ' (exp (— λΐί — λν) — exp (— ku — λν)).
λ — λ

Proof of the theorem. Together with ρ the function p + p* is the density of
a local conservation law of a symmetric system. As indicated in Example 3.3,

t(&(u + v)unvn-\-R + lmD, N = 2n,
(8.18) Ρ = | φ ( ι 1 + ι ; ) ( ΐ 4 ΐ ι ΐ ; > ι _ ι _ ΐ ; | ΐ 1 ί | | _ ι ) + ρ + Ι ι Ι ι Ζ > ΐ N==2n+i,

where Q = Q(u, v, . . ., u n _ 1 ; νη.λ), R — R (u, v, . ; ., un, vn), R being a
linear function of un, vn. Therefore the density p + p* has the same order Λ7.
This density can be represented as p + p* = A+B, where A is an invariant
function and Β — B(u, v, uv vj is a function linear in ux, vv For it is
evident that the fucntion 'p = (d/du - d/dv)(p + p*) is also the density of a
local conservation law of a symmetric system, and 'p* = -'p. It follows from
(8.18) that any anti-involutory density has order at most 1, therefore there
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is a function B(u, v, ux, v{) satisfying p" = (d/9«- d/dv)B, B* = B. Also, the
function A = p + p*~Β is invariant. To complete the proof of the theorem
it remains to check that one may take for Β a density of a local conservation
law of our system. In the next chapter it will be shown that a symmetric
system satisfying the hypotheses of the theorem necessarily has the form
(8.1), (8.14). Therefore the existence of the necessary density Β follows
from Lemma 8.2. •

CHAPTER I V

INTEGRABLE SYSTEMS OF SCHRODINGER TYPE

In this chapter we present results on the classification of systems of
equations possessing local conservation laws of higher order. We consider
systems of two equations of the form (6.20), which contain the well-known
Schrodinger and Landau-Lifshits equations. The problem of composing a
complete list of this type has a rather long history. Here different approaches
are used, which are related mainly to the search for L~A pairs; however,
before [9], [24] even the general structure of non-linearity in integrable
cases had not been established.

The symmetry approach allows us to state an explicit (in a certain sense)
criterion for integrability of systems of Schrodinger type and to obtain an
exhaustive list of equations possessing local conservation laws of higher
order. The theory of transformations developed in Chapter HI essentially
simplifies the classification of integrable cases. We note that the equations
of the list satisfy a priori only a few necessary integrability conditions.
Nevertheless, we can prove that all systems except two for which the proof
is still lacking possess an infinite series of local conservation laws. The proof
is based on the construction of L - A pairs for the key equations of the list.

§9. The list of integrable equations

Considering the systems of equations ut = A(u)u2 + F(u, ut), det Α Φ 0,
u = (M1, U2), we can restrict ourselves as shown in §6 to systems of the
form (6.20) whose principal part is diagonal:

(9.1) u, = ut + f(u, v, ult vx), —vt = i>2 + g(u, y, u1 ( v}).

The main result of [9], [24], [25] is the lists of equations of the form
(9.1) given below. These lists are obtained as a result of thorough and
difficult work related to the refinement of the form of the functions / and g
in (9.1) with the help of the necessary conditions for the existence of local
conservation laws and the integrability conditions stated in §3. Starting
with these conditions, we prove that / and g are polynomials in uu vx and
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have the following form:

f Au\oi + Buu\ + Cvuivi + rui + F(u, v, vt),

' g= —Avl^ + B^l + C^iVi — rvt + Giu, v, uj,
where A, B, C, r depend only on u and υ, while F and G are quadratic
polynomials in ux and vx respectively.

The classification problem is simplified if we restrict ourselves to systems
(9.1) that are reduced by conformal transformations u = tp(u), ~ϋ = ψ(υ) to
the symmetric form

(9.3) ut = u2 + f(u + v, Ui, Vj), —vt = vz + f(u + v, —u^, —vj.

The theory of transformations developed in § 8 is used essentially in the
proof of Theorem 10.1 on the completeness of the list of symmetric systems
(9.3) (List I). The classification in the remaining cases is carried out modulo
the conformal substitutions

(9.4) ΰ = φ («),» = ψ (w)

and the scale transformations

(9.5) l=t, ~x = x + at,

(9.6) t--=aH, x^ax,

(9.7) t=— t, u = v, w = u.

If the system (9.1) does not reduce to the symmetric system (9.6) by a
conformal substitution, then it is related by a composition of transformations
(9.4)-(9.7) to one of the systems of Lists II, III or to a splitting system
(/ = /(" . "i))> o r to a linear system. A criterion for the composition of
Lists I, II, III consists in conditions that are necessary and sufficient for the
existence of a formal symmetry and a formal conservation law of order 6
(see § 10). We note that List III consists of equations that satisfy these
conditions and have the form

(9.8) ut = u2 + /(«!, Vj), —vt = v2 + £(αΐ7 Vl),

(9.9) ut = u2 + D(p(u, v)), —vt = v2 + D(q(u, v)).

List I

(a)

(b)

(c)

(d)

ϊί,Γ-,?/. - I M J - ! ( 2 i / 1 - f r 1 ) ( x p ( i / + y),

— vt - i\ ! · i'2, - (2fj -I- u,) ox].) (u -\- v);
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(f) W| = u2-!-(wM-a)i/, — vt

(where y^y(u + v), 2j/'= ι/2-4β, α, βζ{0, 1});

(g) »i = w24-i>*4 ?, — vt = v2 + l

(-2H-2i;), α, β, ζ{0, 1});

«ι = u2 -1- R (y) u\Vi + R' (y) u\ - \ \R" (y) - 2γ] Η, + χ Λ"
3 3(1ι)

- vt = y2 - /? (y) v\u, + i?' (y) ν* + -|- [ R" (y) - 2γ] ι;, + i - Λ' (y)

(where y = y(u + v), y' = R(y), R(y)=

List II

(i) ut = u2 + D(u- + v-1), —vt = v2

(j) «t = «2-i-t>i, —ν, = ν2 — υ,\—(

U | = «2 _ i- (κ + v)~» («; + 2K,»,) + a (u +1;),

- »i = »2 - τ (" + »)"* (vl + 2 « Λ ) + β (« + »);

Ο) %

«ι = « 2 - 2 (" + y)~* " i - 4 t p («· ") «i + ^ (u)(m)
- » , = i;2—2 (u + r) " 1 v\ + 4[P(«, ι?)», + Λ (—»)u f ] (u + y)

(in the equations (1), (m) 7? (z) = <

= 2au V 4- β (uv2 — vuz) — 2yuv + 6(u — v)-r 2ε);

(η) ut=^uz + e x P (Φ) ("ι + !) y i + 9U («ί 4-1),
— vt = i72—exp (φ) (wj + 1 ) ut + φΒ (fj4-1);

(p) " < = "z + e x P (Φ) («Ϊ 4- 1) ΐΊ + Φα"ϊ + 2ru t,
— i;t = y2 - exp (φ) (v\

Όν\

(in the equations (n), (p) exp (φ) = y (u + v) — y (u — v), r = y (u + v) — y (u—v),
in the case (n) (y')2 = — y* -± ay3 + $y2 + yy + δ, in the case (p)

(where χ = α exp ( — u — v) + exp (—Ku—λν) + exp ( — Ku—λν));

(r) «4 = 1̂  + 1^4-a,,, — vt = y2 + uj + ztt

(where ζ = α exp (u 4- y) 4- exp (Xu+Jv) + exp (λκ
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(s) ut = u2 + v\ + zB,— vt = v2 + ul + zu

(where z = a exp (— 2u—2v) + exp ( — 2Xu — 2λν) + exp (—2lu — 2λν));

(t) « l = " 2 + i ' ! + Xui'i + zD. — vt = v2 + ul — xOUl + zu

(where χ = α exp (—υ—ν)-fexp (—λα—λ~ρ) + exp (— λη — λι>).
j _

2 == —g- [exp (κ + y) + α exp (λκ + λ») + α exp (λ?ί + λι?)] -+-

+ j£ [ α 2 exp (— 2u — 2y) + exp ( - 2λΐί — 2λί;) + oxp (— 2λ« — 2λι^)]).

In the equations (q) — (t) α ζ {0, 1}, and λ, λ denote the cube roots of
1: λ = exp(2n//3), I = exp(—2JW/3).

List III

(w,) ut = u2 + v1 + a, —vt = v2—u\ + ^ui + y·
(w2) Mt = u2 + i;i + ai;1 + P, — vt = i>2-r u? + y«i+ δ;
(w3) ut = u2 + eujy, + auj — 201/^ + γΐΊ + λ,

— vt = v2—tv\ui-\-ftv\—2amlvi + 6u, + μ;

(ζ,) ut=*u2 + D(v), —vt = v2—D(u2);

(z2) u, = I I 2 + /)(»*), - w f = i ; 2 + /)(««);

ut = u2 + D («A; + au2—2βΐί ν + yv),

^ — vt = v2-\-D(—ei^u + βΐ^—2aw + 6u).

As we showed in § § 7 , 8, the partial differentiation (7.6) and the
integration (7.12) allow us to establish hidden connections between integrable
equations. First of all we note that the system (i) is obtained by partial
differentiation from the splitting system

(i) -t-ut-iiz + v-1, —vt = v2,

while the system (k) is reduced by partial differentiation to the linear system

(k) -> ut = u2 + vx + (a — β)α/2, — vt = v2 — 2 β ω ι + (α —

The remaining equations of the lists can be split into three groups. The
systems close to the Schrodinger equation (0.14)

(9.10) (b), (d), <e), (f), (h), (z3), (w8),

the systems of the type of the Boussinesq equation (0.15)

(9.11) (a), (c), (g), (j), (q) - (t), (zx), (z2), K ) , (wt)

and the systems of the type of the Landau-Lifshits equation (0.16), whose
integration is related to the spectral problem with a parameter on an elliptic

e ( 1 ) :

(9-12) (1), (m), (n), (p).

curve ( 1 ):

the two last systems of (9.12) this is a conjecture.
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We note also that each of the systems of List I is a representative of the
class of equations related to each other by symmetric substitutions (compare
Theorem 10.1).

In § § 7, 8 a number of examples of transformations of integrable systems
have been considered in detail. In particular, the interconnection between
the systems (d), (b) and the special cases of (z3), (w3) corresponding to
ε = β = δ = 0, α = γ = 1, is shown in Figure 1. In the general case the
system (z3) is reduced by the substitutions (9.4)-(9.7) to one of the
equations of the following list:

(z4) ut = u2+D(u2 + v), — vt — v2 — 2D(uv);
(z5) ut = uz + D(2uv—u2), —vt = vz + D(2uv — v
(ze) ut = u2 + D(u?v), —vt = v2 — D(vzu);
(z7) Uf^Uz + Diuh;), — vt=--v2 — D(v2u-\-u)\
(z8) ut = U2 + D(u2v + v), —vt = v2 — D(v2u+u).

Point substitutions and partial differentiations allow us to indicate the
links between the equations (9.10) shown in Figure 2.

fZg)— (f2) ^- (h3) = (bj -

(

Fig. 2

In Figure 2 two bars join conformally equivalent systems of equations; as
in Chapter III (Figure 1), arrows denote partial differentiations (7.6) with
ε = 1; (f1)-(f4) denote systems of the type (f) with coefficients (α, β) equal
to (0, 0), (1, 1), (0, 1), and (1, 0) respectively; (hi)-(h 4) are special cases
of a system of the type (h) with y = u + v, y = exp(« + v), y = {u + v)'1, and
y = th(w + i>) respectively: (m t) and (m2) are degenerations of the system of
the type (m) with R(z) = ζ and R(z) = \-z2.

Additional relations between the above equations can be obtained by
introducing transformations of Miura type (compare [14]). Transformations
of this sort allow us to connect the three components of the graph shown in
Figure 2. To this end one has to pass from the systems (f2), (f4) to the
systems, which are equivalent to them up to symmetric substitutions (8.9),
of the form

ut = uz + ^ Μ ϊ 4* Bufii 4- exp (w 4- ν),

— v, = v2 + Avl + Bufa 4- exp (u + ιή,
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where

V3·1^/ Λ - E-2exp(u-fi>) ' e -

and ε = 0 for (f4), ε Φ 0 for (f2). The substitution

u e[(e
ΐ = > [(ε - 2 exp (u-h ^ ' 2 1 - , + 1]

connects the Schrodinger equation (7.13) written in the dynamical variables
u, T>, uu Hu ... with the system (9.13), (9.14).

The above connections between equations of Schrodinger type allow us to
rewrite (see §8 and Lemma 6.2) infinite collections of local conservation
laws, which are obtained by the method of the inverse scattering problem as
a result of asymptotic expansion of the diagonal entries of the scattering
matrix [ 16]. Taking as supporting equations the systems (d), (fj), and (f2),
that is, the non-linear Schrodinger equation [2], the Heisenberg model (8.2),
and the uniaxial Landau-Lifshits model (0.16) with Ιλ = Ι2Φ I3 [47], one
can easily check that the connections shown in Figure 2 allow us to cover
the systems (z4)-(z8) from the above list.

We also mention the following connections between the equations (9.11).
The systems (a) and (w2) are related to each other by a transformation of
Miura type [42], and the systems (z t) and (j) are obtained from (a) and (c)
by partial differentiation. One can construct a transformation of Miura type
from the system (c) to (a).

§10. A description of symmetric systems. Tests for integrability

The main advantage of the symmetry approach to the classification of
systems of equations (9.1) is the possibility of formulating explicit (in a
certain sense) necessary conditions for the existence of local conservation
laws of higher order. It is surprising that in the final analysis the first few
conditions turn out to be sufficient for the existence of local conservation
laws of arbitrarily large order. This collection of necessary conditions can
serve as a criterion for the verification of whether a given concrete system of
equations of the form (9.1) reduces to one of the systems of Lists I-III
considered in the previous section.

1. The algorithm for obtaining integrability conditions stated in §3 is
associated with cumbersome calculations, which we omit. The result of
these calculations is the table (10.3)-(10.8) of canonical densities pk, p°
(k = 1, 2, 3, 4) (see Example 3.3 and formulae (3.39)-(3.41)) which define
the canonical conservation laws

(10.1) -gWoK) (ft=l,2, 3, 4)
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and the divergency conditions

(10.2) 9% = D(a%) ( A = l , 2, 3, 4).

(10.3) pj = \ (/„, + gVi), p, = 4" (/«. - ft.)·

(10.4) ρ! = σϊ,,-ρ·ρί+ / „ - * „ ,

(10.5) pj = σ?,, + 2P;/rigUl - 2 (/rigu + ft,»/,),

(10.6) Ρ, = σ,—i-[(p;)2 + P;i-/«^«, + /u + ft. Ρ3 = σ2,

(10.7) p; = a»)t + pJp2 + p1[p«-ai°,(] + (/u -f-*„), + 0 (pj)0 (pi) +

+ Pj [£> ί/r.) ft, - Ο (A,)W + SvD (gVl) - fuD (/Ul) + 2/0Z) (ft,,) - 2̂ UZ) (/ri),

(10.8) p4 = σ3 + ± [(pj)* + P ; j - p · fp»-al,t] + -i-((Z)p·)* + (Dp,)*] +

.,) ~ UP (gu,)] + /., (fo,)/ - Λ, (/,.)»-

) - Λ̂ > (ft.) + VvD (gu,) + 2guD (/„,) -

- fUk + 2/r.ft, (/« + ft,) + (fa - ft) ί - 2Z3 (/„) Ζ) (ft,,) - 4/rft,.

The solubility of the system of equations (10.1)-(10.2) for the functions
Ok, °k (k < 4) of the variables u, v, uu vu ... is by Theorems 3.1, 3.2 of §3
a criterion for the existence of a non-singular formal symmetry and a non-
singular conservation law of order 6. We recall that the existence of a pair
of conservation laws of higher order guarantees the existence of both a
formal symmetry and a formal conservation law satisfying the non-singularity
condition (see §1 and Theorem 1.1). Therefore the solubility conditions

(10.9) | ^ , pJflmZ) (A = l, 2, 3,4)

of the system (10.1), (10.2) are necessary conditions for the existence of
conservation laws.

For k — 1 the conditions (10.9) are explicit. For k = k0 > 1 we suppose
that the conditions (10.9) are satisfied for smaller values of k and that local
functions ak, a% (k < k0) have been found that are a solution to the
truncated system (10.1), (10.2) with k = 1, ..., k0- 1.

Lemma 10.1. Suppose that the system of equations (9.1) satisfies (10.9)
with k = 1,2. Then there are functions ψ, φ, r of the variables u, υ and a
constant ε G C such that

(10.10) 2

g= — \ ) \
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Proof. The condition (10.9) with k = 1 means (see Example 3.3) that there
are functions φ, a, b, r of the variables u, υ such that

•γ (/«· - ir.) = 2P«*W,V, + aw, — 6i', + r.

Adding and subtracting these equalities, we see that the functions have the
form

g=

where Λ = α -f yJ2, Β — b + φ,,/2, C = φυ — b, D = <pu — o.
A solution of the first of the equations (10.2) is σ\ = φ, and we can proceed
to the condition p° = φ, — pjpj + /„ - ?D 6 Im Ο (see (10.4)).
Differentiating with respect to /, we obtain

(10.11) ρ; = β(φ««ι —TBPj) + «Prr«i —φΒ Β«ϊ + ΦΜ/— <Pr£ — PjPi + /u — gB-

The vanishing of the coefficient of u ^ in (10.11) yields av = bu, as is easy
to check. Therefore there is a function \p(u, v) such that \jju = α, φυ = b.
These relations and the above expressions for/and g yield (10.10). •

The expressions for/and g given in Lemma 10.1 guarantee the validity of
the condition p? G Im D and make explicit the condition p° G Im D (see
(10.11)). The following list of identities simplifies the investigation of the
equations (10.1) and allows us to refine the form of ak:

(10.12)

•+cuiii—ccvl] = (bu — ac) (vj + uig)-~ulviD(bu — av) + cuf—cvg + cOvvl — cuuu\,

(10.13) [H(u, v, «, v^U = HVlVlvl-ffUlUtul + flHu-D0(HUl)) +

-Yg[-HO + D0 (HV1)) + u2 \Hvmg - Huiuif + Hu - De (HUl)] +

+ v21 - HU1TJ + ffvlVlg -Hr + D0 (ffoi)] + Im D,

(10.14) [ef(ViU2 — ulv2)]t = 2ef((fuvl — gUl)ul + 2ev(<priii — fvi)v] +

+ 2e* [(uj + uig) <pu—D0 (g)) u2 -f 2e<P [(*,/ + uig) φ Γ - D o (/)J v2 +

+ e<f l(Dcp)2 + UiDtpu -f yjDcpJ (i;,u2 + Uji;2 -f vj + utg) + Im D,

(10.15) (e»«ii;,)t - D (Θ) = ^ [w.^O (r) -

dP(u, v, v^ldvi = e^F, dQ(u: v, u^ldu^^e^G,

(10.16) 9 = e»[i;1u2 —

ji;, + vtF - u fi) - Ρ + Q.
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The identities (10.12) and (10.13) are valid for any system of the form
(9.1), while (10.14) and (10.15) are valid for any system of the form (9.1),

(10.10), where Do^ uxdldu + v^/dv.

Lemma 10.2. Under the hypotheses of Lemma 10.1 the following equalities
hold:

[FVt + (φ + ψ)Γ Ui + ίΛι}] G U l U l U l + [3 (φ - ·ψ)ρ + θεβΟα,] G U l U l = 0,

Proof. By (10.10) we have

(10.18) pl =

Applying formulae (10.12) and (10.16) we see from the equations £>(c*i) — |»i,i

that

(10.19) at = 2εθ + ψΒ/ + %g-4ψοι>"ι«>ι-ψηΧ—'|V^! f #(r)+D-(M?) + χ.

The form of the function χ = χ(«, ν) in (10.19) is defined only after
satisfying the condition p l i t ζ Im D. Substituting (10.19) in (10.6), we find
that

(10.20) p 2 = 2ee<p(i>1u2-u1v2) + //(u, v, »„ ι;)) + /?2(Ψ)·

The condition p 2 > t G Im D yields by (10.13), (10.14)

(10.21) # „ ! „ ! = 4 ee*((pui>,-gUl), Hvm = At^(<f>oul — fv^.

The equivalence of (10.17) and (10.21) can be verified by a straightforward
calculation. •

The proof of the general classification theorem, that is, the theorem of
the completeness of the Lists I-III of §9, consists in the examination of all
variants of the validity of (10.9). Besides a great number of a priori possible
cases, the complexity of the problem is connected with the necessity of
successive refinement of the form of the canonical conservation laws (10.1)
with k = 2, 3, 4. This refinement is based on the identities (10.10)-(10.16)
and the divergency conditions (10.2). It becomes clear that the validity of
the canonical conservation law with density pk equivalent to a function of
the form

(10.22) e îfjUj — utv^ + E(u, v, ut, vj

completely defines the form of the system under consideration. For
example, for the system (10.10) with ε Φ 0 the canonical density p 2 has the
form (10.21), by (10.20). Thus in the classification of systems with ε Φ 0
we can restrict ourselves to the first two canonical conservation laws (10.1).
For systems of the form

(10.23) ut = u2 + p(u, v), —vt = v2 + q(u, v)



The symmetry approach to the classification of non-linear equations 55

the densities px = pj = 0, p\ — pu — qv, p2 = pu + gv. The condition
p\ e Im D yields pu = qv. Introducing the potential ρ = zv, q = zu, we
obtain, using (10.12),

P2 = 2z u c , p 3=-2(z u o uu 1—z u o,,i>i), Ρ4 = σ3 + ζ5,,—4zu uz r r.

For zuu = 0 (or ζνΌ = 0) the system (10.23) splits. For zuuztv Φ 0 we can
check by using the table of identities (10.12)-(10.16) that the conditions
(10.9) are equivalent to the equations

Z U D U U = = ZUVOV = ZUUUU = = ZVVVV ~ " 1 Z J?( Z UU Z Pp)u = = 2 u( Z UB Z Cr/C·

From this for zuvuv = Owe obtain the system (a), while for z u c u r ^ O w e
obtain the system equivalent to (d). Therefore for systems of the form
(10.23) canonical conservation laws of order at least 3 are not used at all in
the classification.

For the proof of the general classification theorem the systems of
equations (10.10) are split into classes according to their properties. Systems
possessing an Abelian two-parameter subgroup (the systems (wx), (w2), (w3)
of List HI) belong to the simplest of these classes. We shall present a proof
of the classification theorem for symmetric systems and dwell briefly on the
properties that single out the systems (n), (p) and (q)-(t) not occuring in
the literature. We note that both the systems of List I and the systems
reduced to them by symmetric transformations are integrable symmetric
systems. Therefore the class of systems reduced to the systems of List I is
bigger than the remaining classes of integrable systems contained in Lists II
and III.

Theorem 10.1. Any symmetric system (9.3) satisfying (10.9) is reduced by
a symmetric transformation (8.9) and scale transformations (9.5), (9.6)
either to one of the systems (a)-(h) of List 1 of §9 or to the systems

The equations under consideration split into two classes in accordance
with the following lemma.

Lemma 10.3. For the systems (9.3), (10.10) the following alternative holds:
either F = pi\ + q or F — sv\ -\- pi\ + q and s' = r' = 0, ε = φ' = ψ' = 0.

Proof of the lemma. Differentiating the second of the equalities (10.17), we
obtain GUjUlFViViVt — 0. Since G(u, v, ux) = F(u + v, ~u{), it follows that
F = sv\ + pvx + q. The case s Φ 0 requires a detailed analysis. The second
of the relations (10.17) yields ε = 0, φ' = ψ'. We consider the condition
plti ς Im D, where by (10.18) p1 = ^ ' ( i ^ - i ^ + r. The term with u\ in p l i 4

(see (10.12)) yields i//" = 0. Taking φ' = ψ' into account, we obtain
φ = φ' = const. We find from (10.19), (10.6) that the density p2 can be
represented as

p2 = - 4A»!»! - (s' + <p's) (u\ - vl) + A (u + v) (u, - vt) + Β (u + v).
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The condition p2 < ζ Im D now yields

s2 = conste"»), s'+ (p's = Q=>s' = φ' = 0.

It remains to show that r = 0.
We find from (10.11) that o\ = r + p. Collecting the terms with u\ in p%

(10.5), we find that p" + sp' + Asr' = 0. The vanishing of the coefficient of
u\ in p l i f yields the equation r" + sr' = 0. Now the condition pltt ζ Im D
holds and

r' -p' -2sp)(ui-vi)

The vanishing of the coefficient of u\ in p 2 i l yields the third condition on
the coefficients r, ρ : sp'+ (2r'- ρ'- 2sp)' = 0. Comparing the three
resulting equations, we find that r — 0 and

(10.24) p' + sp' = 0.

Proof of Theorem 10.1 for systems of the form

(10.25) ut

We find from (10.24) that ρ = a exp(-w- i>) + )3. The symmetric
substitution l ) u+~v = u + υ, ΰχ = « ^ ( α / 4 ) exp(-M - ν) - β/2 leads to a
system of the form (10.25) with ρ = 0. In this case

The condition p° Ε Im D is equivalent to the equation q'" + q" - 2q' = 0.
The resulting system coincides with the system (g) of List I.

Proof of Theorem 10.1 for systems of the form

(10 26) κι = «2 + λ»ϊ + ™ι + /»>ι + ?.
— vt = v2 + λν\ — rvi — put + q, λ = 0,1.

Systems of the form (10.26) admit the symmetric substitutions

u + v=u + v, w1 = u1 + p, ρ" = λρ'.

For the transformed system

(10.27) Γ = Γ-2λρ, ρ = ρ—2ρ', λ = λ.

For any system (10.26) the conditions ρ", ρ° ζ Im D are satisfied and

σ· = λ(u,-v t) + r + p + λ J /;(M + v) d(u + v).

The conditions p l i < 5 p° ζ Im Z) are equivalent to the equations

(10.28) 7-" = λΓ', ρ"==λρ.

'''Under symmetric substitutions formal symmetries and conservation laws are rewritten
by formulae analogous to (3.49). The orders of formal symmetries and conservation laws
do not change. Therefore the transformed system also satisfies (10.9).
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Finding r and ρ from (10.28), we check with the help of (10.27) that the
transformations mentioned in the statement of the theorem allow us to
reduce the problem to the following two cases:

λ = 0, r = a(w + ν), ρ = β(Η + ν),

λ = 1, r = a exp(u + ν), ρ = β exp(—u — ν),

where α, β Ε. C, α = 0, 1. Next, we check that p° — p2< £ Im D if and only
if

λ = 0, αβ = 0 or λ = 1, β = 0.

The condition p2 ( £ Im D is equivalent to the relations

= 0 (λ = 0), ?"' = ?' (λ=1).

Simple transformations (both symmetric and point) reduce the resulting
systems either to the systems (a), (c) from List I or to the following three
cases:

(10.29) λ = β = Ο, α = 1 , q = y(u + v)\ r = (u + v), p = 0,

(10.30) λ = α = 1, β = 0, 9 = γεχρ( — u — ν), r = exp(u + v), /> = 0,

(10.31) λ = 1, α = β = 0, q = yexp{ — u — v) + 6exp(u + v), τ = ρ = 0.

In the cases (10.29), (10.30) the condition p s t ς Im D yields 7 = 0 . The
resulting systems coincide with (b) and the system

ut = u2 4-ul + iiiUxpiu + v), —vt = v2 + vl — vlexp(u + v),

which is symmetrically equivalent to the system (e) (see Example 8.1). In
the case (10.31) ρ3 ι ( ζ Im D, while the condition ρ4 ΐ ί ζ Im D is equivalent to
the equality γ = 0. The resulting system is conformally equivalent either to
a linear system or to (d).

Proof of Theorem 10.1 in the case

(10.32) F^pvi + q, |ε| + |ψ' | + | ( φ - ψ

Admissible symmetric substitutions have the form

u-\-v— \ a (u-\-v) d (u-\-v), ui =
(10.33) J

^ | ' b'+pa',

the coefficients of u]v1 and U1 in the transformed system being

(10.34) φ' — ψ' = [(φ - ψ)' a - 2α' — 2ee<P6] c"2,

(10.35) ~p = ρ — 2b'a'1 + [ee^b + 2a — (φ — ψ)' α] bar2.

The condition p° £ Im Z>(see (10.11)) is equivalent to the equation

(10.36) (φ-ψ)* = φ'(φ-ψ) ' ·



58 Α. V. Mikhailov, A.B. Shabat, and R.I. Yamilov

It is easy to check that if (10.36) is satisfied, the system consisting of the
equation (φ —ψ) 'α = 2α' + 2ze*b (compare (10.34)) and the equations
(10.33) is compatible. Therefore the functions a and b can be chosen so
that the coefficient of u^ in the transformed system is equal to zero. The
equation

(10.37) ρ' = ψ'Ρ

for e f - O follows from the condition pj,, ζ Im D and for ε — 0 from
ρ2 ι < ζ Im D (one has to equate to zero the coefficient of u\ in p l i t and p 2 i i ).
If φ- φ' = 0 and (10.37) is valid, then (10.33) follows from the fact that
the right-hand sides of (10.34) and (10.35) are equal to zero. Therefore the
functions a and b can be chosen so that in the new system ρ = 0.

Next, we consider systems with ρ = (φ— ψ)' = 0. Such systems are
completely described by the following equations:

(10.38) 2(p"r-2<p
(10.39) r"-<p'
(10.40) q' — φ Υ = 0 .

The equations (10.38) and (10.39) follow from p l i f £ Im D. The equation
(10.40) is obtained from p2,t £ Irn D for ε Φ 0 and from ps,« £ Im D (we
equate the coefficient of w? to zero) for ε = 0. If ε = 0, then φ" — exp(<p)
(see (10.38)) and r = λφ' + μ (see (10.39)). The symmetric substitution
i7+U = M + U, Mj = Μχ + λ/2 and the transformation (9.5) lead to a system
with r = 0. The system with ε = r = 0 is conformally equivalent to the
system (f) of List I. It remains to consider the case e Φ 0, φ - ψ' = ρ = 0.
In this case the system described by the equations (10.29)-(10.40) coincides
with the system (h) up to the transformation (9.5).

To complete the proof of Theorem 10.1 it remains to check that we have
considered all the cases listed in Lemma 10.3. If for F = ρνι + q the
condition (10.32) is broken, then ε = (φ —ψ') = ·ψ" = 0 and the system
has the form (10.26). In the second case F — sv\ + pvi + q the system is
reduced by Lemma 10.3 to the form (10.25) by scale transformations. •

We proceed to the examination of the systems (q)-(t) of List II. These
systems belong to the class of equations (9.1) satisfying the condition

(10.41)

As in the proof of Lemma 10.3, we can check that in the case (10.41) the
functions (10.10) satisfy

β = 0, (φ — ·ψ)«(φ — ψ)ο = 0, ^«,, = 0, r=const,
(1ϋ.4ώ} ~ ~ r*s

F = sv\ + pvi + q, G = su\-\- put + q.

An essential feature is the choice of an appropriate conformal system of
coordinates in which the analysis of the solubility conditions of the system
of equations (10.1), (10.2) is carried out. The conformal substitution
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u = U(u), ~ϋ = Viv) transforms the coefficient functions φ, ψ in (10.10) as
follows:

*("' ^ = φ ( u ' v) - l o g U ' { u ) ~ l o g V ' ( y ) '(10. Ao) — — _
•ψ (u, ι;) = ·ψ (u, r) - log Z7' (u) - log F' (υ).

It follows from (10.42) that cpuc = 0, and so we can choose a conformal
system of coordinates in which φ = 0. In these coordinates (compare the
proof of Lemma 10.3) not only r but also s and Ύ are constants, and the
systems under consideration are reduced by scale transformations to the
form

(10.44) wt = w2 + ^ + x,xi;14-zl,» —vt = v2 + u\ — %vui-]-zu.

If the system (10.44) is not symmetric (see (g) from List I) and does not
coincide with the system (w2) from List III, then the coefficient functions
χ, ζ in (10.44) have to satisfy the equations

(10.45) %uu + χν = χ Γ Γ + χΒ = 0, zuuu = zcot,
(10.46) 2%uzuu + zu%uu = 2 χ Γ ζ Γ Γ + ζΌχΌΏ,
(10.47) ζανβΏ + zuvu — 2ζνυ = z u c u u + zuvv — 2zuu = 0,
(10.48) zAtuXv + 2zuv)c = Ζ(Γ(χΜχΓ + 2zuc)u) u .

The equations (10.45)-(10.48) guarantee the validity of the conditions
p% S Im D (k < 4); pu,t G I" 1 D (h ~ 1» 2). The analysis of the resulting
equations leads to the cases (q)-(t) from List II.

In conclusion we give a description of the system (n) and (p) that is
invariant under conformal transformations. For ε = 1 the equations (9.1),
(10.10) are either reduced by conformal transformations to a symmetric
system or to the system (w3) of List HI, or φ = \jj and the system under
consideration has the form

— vt = v2 — efv\ui + ψνν* — rvt

where

(10.50) Ρυ = ΨνΡ, Pu = VuP, ΡΡΦ0,

(10.51)

(10.52) Γ

(10.53)

(10.54)

The conditions (10.50)-(10.54) guarantee that the system (10.49) is reduced
by a conformal transformation to the systems (n) and (p). The system of
coordinates in (n), (p) is chosen so that

(10.55) p = p = ef.
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In the general case we find from (10.50) that ρ = βφΒ(ν), ρ = Λ4(«).
Under the conformal transformation ΰ = U(u), V — V(y) the functions ρ and
ρ in (10.49) are transformed by the formulae

p(u, v)=p(u, V)-£T^, p(u, v) = p(u, V ) ^ ~ .

Taking (10.43) into account, we find that for U' = Λ"1'2, V = Β'1'2 the
functions ρ and ρ in the new coordinate system have the form (10.55).

§11. A brief bibliographical comment

Many of the systems of equations of Lists I-III are familiar in publications
on the method of the inverse problem. Without claiming completeness, we
give below the necessary references. For the following systems of Boussinesq
type (9.11) (a), (zx), (z2), (w2), and (s) commutation relations were found in
[48], [49], [43], [42], and [40]. Using the method of reduction groups
[43], [50], we have found commutation representations for the systems
(w2), (g), (s), (q), and (t); it turned out that they are related to the groups
Z 3, two representations of the dihedral group Z)3, the tetrahedral group, and
the octahedral group. For the system (r) a commutation representation was
found directly from the definition (0.17). We do not give these new
commutation representations here because of lack of space. Commutation
representations for systems close to the non-linear Schrodinger equation
(9.10) have been investigated best of all. For the systems (b), (d), (e) = (z6),
(fi) = (fa). (f

2)> (z4), (z5) they can be extracted from [45], [2], [51], [52],
[47], [53], [54] respectively. Finally, for the systems (1) and (m)
commutation representations were found in [55], [56], and [57]. Interesting
problems arise in the construction and classification of representations of
zero curvature [43], [45] and ^-matrices [58], [59] connected with the
equations of the lists.
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