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Abstract. We discuss the role of dilation symmetries for differential difference equations
depending on nearest-neighbour interactions. In particular, we show that for a simple class of
differential difference equations of this kind, symmetries which depend linearly on time are only
compatible with linearizable equations.

1. Introduction

The concept of similarity transformations has proved very useful in many scientific and
technological applications [1–5] involving differential equations. They are associated with
a dilation symmetry of the equation and appear in many differential equations of physical
interest.

The situation is different when we consider the case of equations on the lattice. In this
case there is an extensive literature concerning symmetries of linear difference equations [6, 7]
(and also, by carrying out the continuous limit in one of the discrete variables, differential
difference equations) and of integrable nonlinear differential difference equations [8]. In the
first instance we can almost always construct a finite-dimensional algebra of symmetries which,
in the continuous limit, corresponds to the Lie point symmetry algebra of the corresponding
differential equation, while in the second case we are able to construct a denumerable number
of generalized symmetries starting from the trivial ones and using the recurrence operator
associated with the integrable hierarchy. In all these cases the symmetries are obtained using the
properties of the equation under study, be it linearity or integrability. In the case of differential
equations the existence of Lie point symmetries allow us to construct group transformations
by integration of the infinitesimal generator and to obtain particular solutions by symmetry
reduction. This is not the case for differential difference equations as whenever we have a
shifted variable in the symmetry we are no longer, in general, able to integrate it to obtain
group transformations. We are, in principle, always able to carry out a symmetry reduction.
However, this may be very complicated in the case of generalized symmetries for nonlinear
differential difference equations.

If we start from a generic equation on the lattice, we can easily obtain intrinsic point
symmetries [9–12], i.e. symmetries which depend only on the dependent variables in the
generic pointn of the lattice. When we try to extend the procedure to the case of neighbouring
points we get into trouble as the machinery becomes too complicated to be able to extract
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a reasonable result in most cases [13]. Moreover, while intrinsic symmetries always form a
finite Lie algebra, this is not the case in general for the non-intrinsic ones [8].

In this paper we extend the results presented in [14] by considering symmetries with some
explicit t dependence. We do not consider, however, the general problem but we consider just
the case of symmetries defined on a finite range in all of its variables, be they continuous or
discrete, which in the continuous limit go over to dilation symmetries,

un,τ = tun,t + hn(un+1, un, un−1) (1)

i.e. we consider the simplest extension from the intrinsic symmetries. Here and in the following
the functionun depends on a continuous variablet , on the discrete variablen and on the
symmetry variableτ . As in [14], for the sake of simplicity we limit ourselves to equations
which depend on nearest-neighbour interactions,

un,t = fn(un+1, un, un−1) (2)

∂fn

∂un+1
6= 0

∂fn

∂un−1
6= 0 ∀ n (3)

as these are the more interesting from the physical point of view. Moreover, in the case
of integrable equations belonging to the class (2) and (3), one has constructed symmetries
linear int which, however, turn out to be generalized symmetries [8], more specifically master
symmetries.

The main content of this paper is a theorem in which we show that any equation of class (2)
and (3) which has a symmetry of the form (1), up to point transformations, can be reduced to a
linearizable equation. The presentation of this theorem and its proof is contained in section 2.
Section 3 is devoted to some conclusions.

2. Dilation symmetries for differential difference equations

We show here that if an equation of the form (2) and (3) has a symmetry of the form (1)
then it is linearizable. Before presenting the corresponding theorem we can show that we can
simplify the class of symmetries under study by taking into account equations (2) and (3). Let
us consider the commutator

un,tτ − un,τ t = fn,τ − (tfn + hn)t =
∑
i

∂fn

∂un+i
(tfn+i + hn+i )− fn − tfn,t − hn,t .

Then the compatibility conditionun,tτ − un,τ t = 0 implies

un,ty − un,yt = fn,y − hn,t = fn (4)

where the variabley is introduced through the equationun,y = hn. Condition (4) means that
the equationun,y = hn is a trivial master symmetry of (2). In our calculation, we will use
relation (4) extensively.

The number of variables appearing inhn can be easily reduced. In fact, differentiating (4)
with respect toun−2, we obtain

∂fn

∂un−1

∂hn−1

∂un−2
= ∂hn

∂un−1

∂fn−1

∂un−2

which is equivalent to

(D − 1)

(
∂hn

∂un−1

/
∂fn

∂un−1

)
= 0
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whereD is the shift operator. It is not difficult to see that only constants can belong to the
kernel of the operatorD − 1. Then

∂hn

∂un−1
= c ∂fn

∂un−1
(5)

wherec is a constant. Consequently,hn can be written as

hn = cfn + h̃n(un+1, un).

The addition ofcfn to hn corresponds to the addition ofc to t in the symmetry (1). Then
we can setc = 0 and consider instead of (1), symmetries of the form

un,τ = tun,t + hn(un+1, un). (6)

The case whenhn depends only onun corresponds to the point symmetry. So we require
that

∂hn

∂un+1
6= 0 for somen. (7)

Then we are able to present our main theorem.

Theorem 1. If a nonlinear equation of the form (2) and (3) has a symmetry of the form (6)
and (7), then it is equivalent, up to point transformations

t̃ = ωt ũn = ϕn(un) ω 6= 0 ϕ′n 6= 0 ∀ n (8)

to an equation of the form

un,t = An +Bn

An = an+1e
un+1 − aneun − 1 Bn = ane−un − an−1e−un−1 − 1 (9)

a2
n = n2 + αn + β 6= 0 ∀ n

whereα andβ are arbitrary constants. The symmetry of equation (9) is

un,τ = tun,t +An (10)

and equation (9) is linearizable.

Proof. Let us show that equation (10) is linearizable. In fact, introducing the new dependent
variablewn

un = log
wn+1

wn
(11)

we are led to the linear equation

wn,t = anwn+1 + an−1wn−1 + (c − 2n)wn (12)

wherec = c(t) is an arbitrary integration function.
In the same way as we derived (5), we easily can obtain the following formula:

∂hn

∂un+1
= ε ∂fn

∂un+1
.

Due to (7)ε 6= 0. Therefore, using the transformationt̃ = t/ε, we can makeε = 1.
Consequently, we can reducefn to the form

fn = hn + gn gn = gn(un, un−1)
∂hn

∂un+1

∂gn

∂un−1
6= 0 ∀ n. (13)
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Rewriting (4) in terms ofhn, gn:

fn,y − hn,t = (hn + gn)y −
∑
i

∂hn

∂un+i
(hn+i + gn+i )

we obtain ∑
i

(
∂gn

∂un+i
hn+i − ∂hn

∂un+i
gn+i

)
= hn + gn. (14)

Applying the operator∂2/∂u2
n+1∂u

2
n−1, we are led to an equation

∂2gn

∂un∂un−1

∂hn

∂un+1
= ∂2hn

∂un+1∂un

∂gn

∂un−1

i.e.

∂

∂un
log

∂hn

∂un+1
= ∂

∂un
log

∂gn

∂un−1
= pn

wherepn is a function which can depend only onun. Integrating and exponentiating, we obtain

∂hn

∂un+1
= A′n+1Cn

∂gn

∂un−1
= CnB ′n−1

whereAn, Bn andCn are some functions depending only onun. Consequently, we have

hn = An+1Cn +Rn gn = CnBn−1 + Sn (15)

where alsoRn andSn are functions depending only onun and, according to (13),

A′nB
′
nCn 6= 0 ∀ n. (16)

Taking into account the point transformations (8), we can set

Cn = 1 ∀ n. (17)

Let us now find the functionsAn, Bn, Rn andSn. To do so we can rewrite equation (14)
in the following way:

AnB
′
n−1− R′nBn−1 +Rn−1B

′
n−1− BnA′n+1 + S ′nAn+1− Sn+1A

′
n+1 +RnS

′
n − SnR′n

= An+1 +Bn−1 +Rn + Sn. (18)

Differentiating equation (18) with respect toun−1 and then dividing byB ′n−1, we obtain

An(logB ′n−1)
′ − R′n +R′n−1 +Rn−1(logB ′n−1)

′ = 1 (19)

and by differentiating it again with respect toun we have

A′n(logB ′n−1)
′ = R′′n. (20)

From equation (20) we see that(logB ′n)
′′ = 0 for anyn, i.e.Bn has to satisfy the following

differential equation:

B ′′n = βnB ′n (21)

whereβn is ann-dependent constant. Then from equation (20) we obtain

R′n = βn−1An + ρn (22)
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whereρn is anothern-dependent constant and thus the relation (19) can be rewritten as

βnRn + βn−1An = ρn+1− ρn + 1. (23)

In a similar way (by differentiating (18) with respect toun+1), we are led to three more
differential equations:

A′′n = αnA′n (24)

S ′n = αn+1Bn + σn (25)

αnSn + αn+1Bn = σn−1− σn − 1 (26)

whereαn andσn aren-dependent integration constants. We can solve the ordinary differential
equations (21) and (24) and obtain

A′n = aneαnun B ′n = bneβnun anbn 6= 0 ∀ n.
To integrate them once more, it is convenient to representαn, βn in the following way:

αn = µnα∗n α∗n 6= 0 µ2
n = µn ∀ n (27)

βn = νnβ∗n β∗n 6= 0 ν2
n = νn ∀ n. (28)

So we obtain

An = µn an
α∗n

eα
∗
nun + (1− µn)anun + ãn (29)

Bn = νn bn
β∗n

eβ
∗
nun + (1− νn)bnun + b̃n (30)

and, taking into account (22) and (25),

Rn = βn−1

(
µn

an

(α∗n)2
eα
∗
nun + (1− µn)an

2
u2
n

)
+ ρ̃nun + ρ̂n (31)

Sn = αn+1

(
νn

bn

(β∗n)2
eβ
∗
nun + (1− νn)bn

2
u2
n

)
+ σ̃nun + σ̂n (32)

where

ρ̃n = βn−1ãn + ρn σ̃n = αn+1b̃n + σn.

Form equations (23) and (26), collecting coefficients at exponents and of powers ofun, we
obtain the following constraints:

βn−1(αn + βn) = 0 αn+1(αn + βn) = 0 (33)

βnρ̃n + an(1− µn)βn−1 = 0 αnσ̃n + bn(1− νn)αn+1 = 0 (34)

βnρ̂n + ρ̃n − ρ̃n+1 + βnãn+1− 1= 0 (35)

αnσ̂n + σ̃n − σ̃n−1 + αnb̃n−1 + 1= 0. (36)

Using equations (33)–(36) we can simplify the formulae forAn, Bn, Rn and Sn. From
equations (33) and (34), taking into account equations (27) and (28), we obtain

µn = νn = λ (37)

for all n, whereλ is a constant. Asλ2 = λ (see equations (27) and (28)), there are only two
possibilities. Ifλ = 0, we have a linear equation (see equations (29)–(32)). Thenλ = 1. The
constraints (33)–(36) imply

βn = −αn 6= 0 ρ̃n = σ̃n = 0



8322 D Levi and R Yamilov

for anyn, and

ρ̂n = −ãn+1− 1/αn σ̂n = −b̃n−1− 1/αn.

So we have obtained an equation (2) and its symmetry (1) with the following definitions
for fn andhn:

fn = an+1

αn+1
eαn+1un+1 − αn−1

an

α2
n

eαnun + αn+1
bn

α2
n

e−αnun − bn−1

αn−1
e−αn−1un−1 − 2

αn

hn = an+1

αn+1
eαn+1un+1 − αn−1

an

α2
n

eαnun − 1

αn
.

By performing the following point transformatioñun = αnun and redefiningan andbn, we
will have

fn = an+1e
un+1 − aneun + bne

−un − bn−1e−un−1 − 2

hn = an+1e
un+1 − aneun − 1.

A point transformation of the form̃un = un + cn allows one to makebn = an. Inserting the
results obtained so far into (4), we can check that it is satisfied iff

a2
n+1− 2a2

n + a2
n−1 = 2.

This last equation can be easily solved, and its general solution completes the proof of the
theorem. �

3. Conclusion

This paper has been a further step in the characterization of symmetries for nonlinear differential
difference equations. Here we have shown that among equations (2) and (3) only equation (9)
has a symmetry of the form (1). Moreover, equation (9) is linearizable. Thus it has been
proved that when we consider symmetries of the form (1) then the equation under study cannot
be integrable (see also [8]). However, not all linearizable equations of this class have this kind
of symmetry. In fact, we can construct an equation

un,t = (un+1− un)1/2(un − un−1)
1/2 (38)

which belongs to the class (2) and (3) and which is linearizable via the transformation

vn = (un+1− un)1/2 (39)

to the equation

vn,t = 1
2(vn+1− vn−1). (40)

Clearly, equation (38) is not transformable via a point transformation (8) to equation (9).
The symmetries (1) considered in this paper depend essentially on shifted variables as

otherwise this would not be a dilation symmetry in the continuous limit. In such a case we are
not able to integrate it and obtain a group transformation. Work is in progress for constructing
symmetries depending on shifted variables but which can be integrated to provide a group of
transformations.

The form of the symmetry (1) can be extended, by still keeping its compatibility with a
dilation symmetry. Work on this is in progress.
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[8] Levi D and Rodŕıguez M A 1999J. Phys. A: Math. Gen.328303–16
[9] Maeda S 1980Math. Japonica25405–20

[10] Maeda S 1987IMA J. Appl. Math.38129–34
[11] Levi D and Winternitz P 1991Phys. Lett.A 152335–8
[12] Levi D and Winternitz P 1993J. Math. Phys.343713–30
[13] Levi D, Vinet L and Winternitz P 1997J. Phys. A: Math. Gen.30633–49
[14] Levi D and Yamilov R 1997J. Math. Phys.386648–74


