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Abstract. We discuss the role of dilation symmetries for differential difference equations
depending on nearest-neighbour interactions. In particular, we show that for a simple class of
differential difference equations of this kind, symmetries which depend linearly on time are only
compatible with linearizable equations.

1. Introduction

The concept of similarity transformations has proved very useful in many scientific and
technological applications [1-5] involving differential equations. They are associated with
a dilation symmetry of the equation and appear in many differential equations of physical
interest.

The situation is different when we consider the case of equations on the lattice. In this
case there is an extensive literature concerning symmetries of linear difference equations [6, 7]
(and also, by carrying out the continuous limit in one of the discrete variables, differential
difference equations) and of integrable nonlinear differential difference equations [8]. In the
firstinstance we can almost always construct a finite-dimensional algebra of symmetries which,
in the continuous limit, corresponds to the Lie point symmetry algebra of the corresponding
differential equation, while in the second case we are able to construct a denumerable number
of generalized symmetries starting from the trivial ones and using the recurrence operator
associated with the integrable hierarchy. In allthese cases the symmetries are obtained using the
properties of the equation under study, be it linearity or integrability. In the case of differential
equations the existence of Lie point symmetries allow us to construct group transformations
by integration of the infinitesimal generator and to obtain particular solutions by symmetry
reduction. This is not the case for differential difference equations as whenever we have a
shifted variable in the symmetry we are no longer, in general, able to integrate it to obtain
group transformations. We are, in principle, always able to carry out a symmetry reduction.
However, this may be very complicated in the case of generalized symmetries for nonlinear
differential difference equations.

If we start from a generic equation on the lattice, we can easily obtain intrinsic point
symmetries [9-12], i.e. symmetries which depend only on the dependent variables in the
generic poink of the lattice. When we try to extend the procedure to the case of neighbouring
points we get into trouble as the machinery becomes too complicated to be able to extract
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a reasonable result in most cases [13]. Moreover, while intrinsic symmetries always form a
finite Lie algebra, this is not the case in general for the non-intrinsic ones [8].

In this paper we extend the results presented in [14] by considering symmetries with some
explicitt dependence. We do not consider, however, the general problem but we consider just
the case of symmetries defined on a finite range in all of its variables, be they continuous or
discrete, which in the continuous limit go over to dilation symmetries,

Upr = tun,t + hn (un+lv Uy, I/tn,]_) (1)

i.e. we consider the simplest extension from the intrinsic symmetries. Here and in the following
the functionu,, depends on a continuous variableon the discrete variable and on the
symmetry variabler. As in [14], for the sake of simplicity we limit ourselves to equations
which depend on nearest-neighbour interactions,

Upt = fn (”n+1a Up, Mn—l) (2)
ofn ofn
I #0 / #0 Vn ®3)
Ol p+1 Up-1

as these are the more interesting from the physical point of view. Moreover, in the case
of integrable equations belonging to the class (2) and (3), one has constructed symmetries
linear inr which, however, turn out to be generalized symmetries [8], more specifically master
symmetries.

The main content of this paper is a theorem in which we show that any equation of class (2)
and (3) which has a symmetry of the form (1), up to point transformations, can be reduced to a
linearizable equation. The presentation of this theorem and its proof is contained in section 2.
Section 3 is devoted to some conclusions.

2. Dilation symmetries for differential difference equations

We show here that if an equation of the form (2) and (3) has a symmetry of the form (1)
then it is linearizable. Before presenting the corresponding theorem we can show that we can
simplify the class of symmetries under study by taking into account equations (2) and (3). Let
us consider the commutator

Uptt — Upt = ,ﬁl,l’ —@tfu+hy): = Z

i

3
aunﬂ

(tfn+i +hn+i) - fn - tfn.r - hn,t'

Then the compatibility condition,, ;; — u,, ., = 0 implies

Up,ty — Up,yr = fn.,y - hn,t = fn (4)

where the variable is introduced through the equatian, = &,. Condition (4) means that
the equation, , = h, is a trivial master symmetry of (2). In our calculation, we will use
relation (4) extensively.

The number of variables appearingipncan be easily reduced. In fact, differentiating (4)
with respect tar,_», we obtain

afn 3hn—l _ ahn afn—l
814,,,1 8”;172 B 8”;171 8Man

which is equivalent to

(D_1)<ﬂ/i> =0
aMnfl 314”,]_
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where D is the shift operator. It is not difficult to see that only constants can belong to the
kernel of the operatob — 1. Then

oh,  of,

aun—l aun—l

wherec is a constant. Consequenthy, can be written as
hy =cfy + R (Up+1, Up).

The addition ofcf,, to h,, corresponds to the addition ofto 7 in the symmetry (1). Then
we can set = 0 and consider instead of (1), symmetries of the form

®)

Uy = tun,l + hn (un+lv Mn)- (6)
The case wheh,, depends only on, corresponds to the point symmetry. So we require
that
h,
8Mn+1

#£0 for somen. (7

Then we are able to present our main theorem.

Theorem 1. If a nonlinear equation of the form (2) and (3) has a symmetry of the form (6)
and (7), then it is equivalent, up to point transformations

f=wt  dy=¢,)  0#0 ¢ #£0 Vn 8)
to an equation of the form
Un; = Ap + B,
A, = ay1€"t — aq, € — 1 B, =a,e" —a,_1€" 1 -1 9)
a?=n*+an+B#0 Vn
wherea and 8 are arbitrary constants. The symmetry of equation (9) is
Unr =ty + Ay (10)

and equation (9) is linearizable.

Proof. Let us show that equation (10) is linearizable. In fact, introducing the new dependent
variablew,

Wp+1

u, = log (12)
wy,
we are led to the linear equation
Wyt = ApWp+1 +ta, 1w, 1+ (C - 2n)wn (12)

wherec = ¢(t) is an arbitrary integration function.
In the same way as we derived (5), we easily can obtain the following formula:

dhn 0fn
_ &—-

8l'tn+1 aun+l

Due to (7)e # 0. Therefore, using the transformation= t/e, we can make = 1.
Consequently, we can reduggto the form

oh, gy

aMn+2|. aun—l

fn = hn +8n 8n = gn(um M,,,l) 7é 0 Vn. (13)
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Rewriting (4) in terms ofy,,, g,:
8hn

fn,y - hn,t = (hn + gn)y - lZ aun+i (h,1+[ +gn+f)
we obtain
gy oh,
< 8 hn+i - gn+i> = hn + gn- (14)
i 8un+i aMn+i

Applying the operatob?/du?,,du?_;, we are led to an equation

82g,, 8/1;1 _ 82hn agn
U OUy_1 OUps1  OUps10ity Otln_1
i.e.
d oh, 0 0gn
log = —Iog = Pn
aun 8l"n+1 aun al/t”,]_

wherep, is a function which can depend only op. Integrating and exponentiating, we obtain
98n

Oh =A..C =C,B
gy w,g ot

whereA,, B, andC, are some functions depending onlymn Consequently, we have
hy = Ap1Cy + R, gn=CyBy1+ S, (15)
where alsaR, andsS,, are functions depending only @) and, according to (13),
A'B'C,#0 v n. (16)
Taking into account the point transformations (8), we can set
C,=1 v n. 17)

Let us now find the functiond,,, B,, R, andS,. To do so we can rewrite equation (14)
in the following way:

A"Br/zfl — R’;Bn,;[ + Rﬂler/Lfl — BnA;,+]_ + S;Anﬂ_ — S,,+1A:1+l + R,,S/ — SnR,

n n

=Am*+B,_1+R, +S,. (18)
Differentiating equation (18) with respect#g_; and then dividing byB; _,, we obtain
A,(l0ogB,_) —R,+R,_,+R,_1(logB,_;) =1 (19)
and by differentiating it again with respectip we have
Ay (logB; 1) = R;. (20)

From equation (20) we see thidg B;)” = 0 for anyn, i.e. B, has to satisfy the following
differential equation:

B = B,B, (22)
whereg, is ann-dependent constant. Then from equation (20) we obtain

R;, = ,Bn—lAn + Pn (22)
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wherep, is anothern-dependent constant and thus the relation (19) can be rewritten as
:Bn Rn + ,anlAn = Pp+1— Pu T 1 (23)

In a similar way (by differentiating (18) with respectig.;), we are led to three more
differential equations:

A,/; = anA; (24)
S = ays1B, + o, (25)
Sy tay1B, =0,1—0, —1 (26)

wherea,, ando, aren-dependent integration constants. We can solve the ordinary differential
equations (21) and (24) and obtain

Al = a, e B! = b, ayb, #0 Vn.
To integrate them once more, it is convenient to represgnt, in the following way:
Uy = fhnl) a, #0 Moo=t Vn (27)
Bn = VB B #0 V2=v, Vn (28)
So we obtain
A, = l’l«n%ea;u“ + (1 — )ty + ay (29)
B, = vn%eﬂ:”" + (1 — v)buu, +b, (30)
and, taking into accounnt (22) and (25),
R, = ﬁn—1(un@jﬁ#e@”" +(1- un)a—z"u,3> + Buttn + P (31)
S0 = a1 55+ (L ) 2 ) 5 4 (32)
(B;)? 2
where
Pn = Bu—1Gn * pn Gy = Upe1by + 0.

Form equations (23) and (26), collecting coefficients at exponents and of powersweé
obtain the following constraints:

Bu-1(an +B,) =0 1y + By) =0 (33)
Bufn * an(1— 1) Br-1 =0 G + by (1= v,)atp41 =0 (34)
Bubn * Pn — Pp+1+ Bulner —1=0 (35)
06y + 6, — 6p1 +apyby,_1+1=0. (36)

Using equations (33)—(36) we can simplify the formulae fy, B,, R, and S,. From
equations (33) and (34), taking into account equations (27) and (28), we obtain

M = Vy = A (37)

for all n, wherex is a constant. A2 = A (see equations (27) and (28)), there are only two
possibilities. IfA = 0, we have a linear equation (see equations (29)—(32)). Thed. The
constraints (33)—(36) imply

lgnz_an7é0 ﬁnZ&nzo
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for anyn, and
Ian = _an+1 - 1/0[,1 &H = _l;”*l - 1/0[,,.

So we have obtained an equation (2) and its symmetry (1) with the following definitions
for f, andh,:

fo = an+1 @it _ an_la_';eanun + (x,ﬁlb—;e*“””" _ by—1 @ -ttt _ 3
Op+q oy oy (o oy
hn — An+1 e¢¥n+1un+1 _ an_la_’;ean”n _ i
Op+1 o, oy

By performing the following point transformatiah, = «,u, and redefiningz, andb,, we
will have

fr = ap+1€" — a,€" + b, — b,_,€7" 1t — 2
hn = a”+1elln+1 - anelln -1

A point transformation of the formi,, = u,, + ¢, allows one to maké, = a,. Inserting the
results obtained so far into (4), we can check that it is satisfied iff

asﬂ — 2a3 + affl =2
This last equation can be easily solved, and its general solution completes the proof of the
theorem. 0

3. Conclusion

This paper has been a further step in the characterization of symmetries for nonlinear differential
difference equations. Here we have shown that among equations (2) and (3) only equation (9)
has a symmetry of the form (1). Moreover, equation (9) is linearizable. Thus it has been
proved that when we consider symmetries of the form (1) then the equation under study cannot
be integrable (see also [8]). However, not all linearizable equations of this class have this kind
of symmetry. In fact, we can construct an equation

g = (par — )2ty — 1) (38)
which belongs to the class (2) and (3) and which is linearizable via the transformation

Up = (U1 — up)Y? (39)
to the equation

Uit = 3(Ups1 — Vno1). (40)

Clearly, equation (38) is not transformable via a point transformation (8) to equation (9).

The symmetries (1) considered in this paper depend essentially on shifted variables as
otherwise this would not be a dilation symmetry in the continuous limit. In such a case we are
not able to integrate it and obtain a group transformation. Work is in progress for constructing
symmetries depending on shifted variables but which can be integrated to provide a group of
transformations.

The form of the symmetry (1) can be extended, by still keeping its compatibility with a
dilation symmetry. Work on this is in progress.
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