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Abstract
The generalized symmetry method is applied to a class of completely discrete
equations including the Adler–Bobenko–Suris list. Assuming the existence of
a generalized symmetry, we derive a few integrability conditions suitable for
testing and classifying the equations of this class. Those conditions are used at
the end to test for integrability discretizations of some well-known hyperbolic
equations.

PACS numbers: 02.00.00, 02.20.-a, 02.30.Ks
Mathematics Subject Classification: 39, 37K10, 70S10

1. Introduction

The discovery of new two-dimensional integrable partial difference equations (or Z
2-lattice

equations) is always a very challenging problem as, by proper continuous limits, many other
results on integrable differential–difference and partial differential equations may be obtained.

The basic theory and results in nonlinear integrable differential equations can be found,
for example, in the Encyclopedia of Mathematical Physics [18] or in the Encyclopedia of
Nonlinear Science [19].

The classification of integrable nonlinear partial differential equations has been widely
discussed in many relevant papers. Let us just mention here the classification scheme
introduced by Shabat, where the formal symmetry approach has been introduced (see
[37, 38] for a review). This approach has been successfully extended to the differential–
difference case by Yamilov [8, 35, 57, 58]. In the completely discrete case, the situation turns
out to be quite different, and, up to now, the formal symmetry technique has not been able to
provide any result.
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In the case of difference–difference equations, many important results on integrable
models are contained in [3, 16, 24, 33, 43, 45]. The first classification results have been
obtained by Adler [5] and by Adler et al for linear–affine equations [6, 7]. The so obtained
equations have been thoroughly studied by many researchers, and it has been shown that
they have Lax pairs and possess generalized symmetries [32, 40, 47, 52, 53]. Moreover,
these partial difference equations can be seen as Bäcklund transformations of the well-known
integrable nonlinear differential–difference equations of the Volterra type [11, 28, 29, 32,
42, 43].

We study, in this paper, the following class of autonomous discrete equations on the
lattice Z

2:

ui+1,j+1 = F(ui+1,j , ui,j , ui,j+1), (1)

where i and j are the arbitrary integers. Many integrable examples of the equations of this form
are known [6, 30, 31, 53, 54]. There are a number of papers which discuss various schemes
for testing [2, 12, 15, 20, 22, 23, 46] and classifying [6, 9, 21, 49] integrable equations of the
form (1). In [9, 21] the classification of linearizable equations is considered; in [2, 12, 15, 20,
22, 23, 46] extensions of the Painlevé test are carried over to the discrete case, while in [6, 49]
equations which have a Lax pair and thus can be integrated by the inverse scattering method
are discussed. Requiring additional geometrical symmetry properties, a classification result
has been obtained in [6] together with a list of integrable equations. However, the symmetries
for those discrete equations obtained in [47, 53] show that the obtained class of equations
contained in [6] is somehow restricted [32]. From [32] it follows that one should expect a
larger number of integrable discrete equations of the kind of equation (1) than those up to now
known.

Equations (1) are possible discrete analogs of the hyperbolic equations

ux,y = F(ux, u, uy). (2)

Equations (2) are very important in many fields of physics, and, as such, they have been studied
using the generalized symmetry method, however without much success. Only the following
two particular cases:

ux,y = F(u), (3)

ux = F(u, v), vy = G(u, v), (4)

which are essentially easier, have been solved [60, 61]. The study of the class of equations (1)
may be important to characterize the integrable subcases of equation (2).

In section 2, we introduce and discuss some necessary notions, such as generalized
symmetries and conservation laws for discrete systems of the form (1), and in section 3, as a
motivation for the use of this approach, we show that one can construct a partial difference
equation closely related to the modified Volterra equation, which does not belong to the ABS
class of equations as it is not 3D consistent around the cube in the strict sense of [6] and does
not have the D4 symmetry. In section 4, following the standard scheme of the generalized
symmetry method, we derive a few integrability conditions for the class (1). These conditions
are not sufficient to carry out a classification of the discrete equations (1). So in section 5,
we consider just five-point generalized symmetries. This provides further integrability
conditions. With these extra conditions, the set of obtained conditions will be suitable for
testing and classifying simple classes of the difference equations of the form (1). As an
example, in section 6, we apply these conditions to the class of equations

ui+1,j+1 = ui+1,j + ui,j+1 + ϕ(ui,j ), (5)
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a trivial approximation to the class (3). This calculation is an example of the classification
problem for a class depending on one unknown function of one variable. This class contains
trivial approximations of some well-known integrable equations included in the class (3),
namely, the sine-Gordon, Tzitzèika and Liouville equations. Section 7 contains some
conclusive remarks.

2. Preliminary definitions

As equation (1) has no explicit dependence on the point (i, j) of the lattice, we thus assume
that the same will be true for the generalized symmetries and conservation laws we will be
considering in the following. For this reason, without loss of generality, we write down
symmetries and conservation laws at the point (0, 0). Thus equation (1) can be written as

u1,1 = f0,0 = F(u1,0, u0,0, u0,1). (6)

Whenever convenient we will express our formulas in terms of the two shift operators, T1

and T2:

T1ui,j = ui+1,j , T2ui,j = ui,j+1. (7)

To get a scheme which is invertible and to provide propagation in both discrete directions, we
have to suppose that the function F depends on all its variables, i.e.

∂u1,0F · ∂u0,0F · ∂u0,1F �= 0. (8)

The functions ui,j are related among themselves by equation (6) and its shifted values

ui+1,j+1 = T i
1 T

j

2 f0,0 = fi,j = F(ui+1,j , ui,j , ui,j+1),

and it is easy to see that all of them can be expressed in terms of the functions

ui,0, u0,j , (9)

where i, j are arbitrary integers. This is not the only possible choice of independent variables
[10], but, being the simplest, is the one we will use in the following. The functions (9) play
the role of boundary initial conditions for equation (6).

The evolutionary form of a generalized symmetry of equation (6) is given by the following
equation:

d

dt
u0,0 = g0,0 = G(un,0, un−1,0, . . . , un′,0, u0,k, u0,k−1, . . . , u0,k′), (10)

where n � n′, k � k′. This form of this equation at the various points of the lattice is obtained
by applying the shift operators T1 and T2:

d

dt
ui,j = T i

1 T
j

2 g0,0 = gi,j = G(ui+n,j , . . . , ui+n′,j , ui,j+k, . . . , ui,j+k′).

Equation (10) is a generalized symmetry of equation (6) if the two equations (6) and (10) are
compatible for all independent variables (9), i.e.

du1,1

dt
− df0,0

dt

∣∣∣∣
u1,1=f0,0

= 0. (11)

In practice, equation (11) reads

g1,1 = (
g1,0∂u1,0 + g0,0∂u0,0 + g0,1∂u0,1

)
f0,0. (12)

The condition that generalized symmetries do not depend explicitly on the lattice point (i, j)

is natural, as integrable autonomous equations possess infinite hierarchies of autonomous
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symmetries. On the other hand, if we introduce a (i, j) dependence in the generalized
symmetries and in the class of equations (1), the problem becomes more complicated, as the
study of differential–difference equations has shown (cf [58] for the autonomous case and
[35, 59] for the non-autonomous one).

Equation (12) must be identically satisfied when all the variables ui,j contained in the
functions gi,j and in the derivatives of f0,0 are expressed in terms of the independent variables
(9). This result provides strict conditions, given by a set of equations for the functions F and
G, often overdetermined.

Let us consider some autonomous functions p0,0, q0,0 which depend on a finite number of
functions ui,j and have no explicit dependence on the point (i, j) of the lattice. The relation

(T1 − 1)p0,0 = (T2 − 1)q0,0 (13)

is called a (local i, j -independent) conservation law of equation (6) if it is satisfied on the
solutions of this equation. To check it, we need to express all variables in terms of the
independent variables (9) and require that it is identically satisfied.

Starting from the choice of the independent variables (9) and the class of autonomous
difference equations (6), we can prove a few useful statements which will be used for studying
the compatibility condition (12). Let us consider the functions ui,1, u1,j appearing in equation
(12). We can prove the following theorem.

Theorem 1. The transformation T : (ui,0, u0,j ) → (ũi,0, ũ0,j ), given by the shift operator T2

ũ0,j = u0,j+1, ũi,0 = ui,1, i �= 0, (14)

is invertible whenever equation (6) is satisfied. Moreover, if a function φ is nonzero, then
T2φ �= 0 too.

Proof. The invertibility of the transformation ũ0,j = u0,j+1 is obvious. Let us show by
induction that for any i � 1:

ũi,0 = ũi,0(ui,0, ui−1,0, . . . , u1,0, u0,0, u0,1), ∂ui,0 ũi,0 �= 0, ∂u0,1 ũi,0 �= 0. (15)

It follows from equation (6) and condition (8) that the proposition is true for ũ1,0 = u1,1. For
i � 1, from equation (6), we get

ũi+1,0 = ui+1,1 = F(ui+1,0, ui,0, ũi,0), (16)

with ũi,0 given by equation (15). So ũi+1,0 has the same structure as ũi,0, and thus equation
(15) is true. As ũi,0 depends on u0,1, then the functions ui+1,0, ui,0, ũi,0 are functionally
independent, i.e. ∂ui+1,0 ũi+1,0 �= 0 and ∂u0,1 ũi+1,0 �= 0. A similar analysis can be carried out in
the case of the functions ũi,0 when i � −1. In this case, we have

ũi,0 = ũi,0(ui,0, ui+1,0, . . . , u−1,0, u0,0, u0,1), ∂ui,0 ũi,0 �= 0, ∂u0,1 ũi,0 �= 0. (17)

From equations (15) and (17) it follows that the transformation (14) is invertible.
To prove the second part of this theorem , let us consider a non-constant function φ �= 0.

Taking into account equation (6) and its shifted values, φ can always be expressed in terms of
the independent variables as

φ = �(uN,0, uN−1,0, . . . , uN ′,0, u0,K, u0,K−1, . . . , u0,K ′), (18)

for some integer numbers N,N ′,K and K ′ such that N � N ′,K � K ′. Then we will have

T2φ = �(ũN,0, . . . , ũN ′,0, ũ0,K, . . . , ũ0,K ′). (19)

If φ depends essentially on the variables ui,0 with i �= 0, then there must exist two numbers N
and N ′ such that ∂uN,0φ �= 0 and ∂uN ′,0φ �= 0. When N > 0, from equation (15) it follows that
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only the function ũN,0 appearing in equation (19) depends on uN,0. Hence ∂uN,0T2φ �= 0, i.e.
T2φ �= 0. The case, when N ′ < 0, is analogous. If φ depends only on u0,j , then ∂u0,K

φ �= 0
and ∂u0,K′ φ �= 0, and the proof is obvious. �

The operators T1, T
−1

1 , T −1
2 act on the variables (9) in an analogous way. Consequently,

they also define invertible transformations. As a result, we can state the following proposition.

Proposition 1. For any nonzero function φ, T l
1T m

2 φ �= 0 for any l, m ∈ Z.

From equations (14), (15) and (17) we can derive the structure of some of the partial
derivatives of the functions ui,1. For convenience, from now on, we will define

fui,j
= ∂ui,j

f0,0, gui,j
= ∂ui,j

g0,0 (20)

for the derivatives of the functions f0,0 and g0,0 appearing in equations (6) and (10). Then,
for example, from equation (6) we get ∂u1,0u1,1 = fu1,0 . For i > 0, from equations (15)
and (16) it follows that ∂ui+1,0ui+1,1 = T i

1 ∂u1,0u1,1. From equation (6), we can also get
u−1,1 = F̂ (u−1,0, u0,0, u0,1) and then by differentiation

∂u−1,0u−1,1 = −T −1
1

fu0,0

fu0,1

. (21)

Then, applying the operator T i+1
1 , with i < 0, to equation (21) it follows that ∂ui,0ui,1 =

−T i
1

fu0,0

fu0,1
. For the functions of the form u1,j we get similar results. So we can state the

following proposition.

Proposition 2. The functions ui,1, u1,j are such that

i > 0: ui,1 = ui,1(ui,0, ui−1,0, . . . , u1,0, u0,0, u0,1), ∂ui,0ui,1 = T i−1
1 fu1,0;

i < 0: ui,1 = ui,1(ui,0, ui+1,0, . . . , u−1,0, u0,0, u0,1), ∂ui,0ui,1 = −T i
1

fu0,0

fu0,1

;

j > 0: u1,j = u1,j (u1,0, u0,0, u0,1, . . . , u0,j−1, u0,j ), ∂u0,j
u1,j = T

j−1
2 fu0,1;

j < 0: u1,j = u1,j (u1,0, u0,0, u0,−1, . . . , u0,j+1, u0,j ), ∂u0,j
u1,j = −T

j

2

fu0,0

fu1,0

.

(22)

3. Integrable example

In this section we show, using a simple example, that effectively there are integrable
equations which possess hierarchies of the generalized symmetries of the form postulated in
equation (10) and are not included in the ABS lists.

As is well known [55], the modified Volterra equation

ui,t = (
u2

i − 1
)
(ui+1 − ui−1) (23)

is transformed into the Volterra equation vi,t = vi(vi+1 − vi−1) by two discrete Miura
transformations:

v±
i = (ui+1 ± 1)(ui ∓ 1). (24)

For any solution ui of equation (23), one obtains by the transformations (24) two solutions
v+

i and v−
i of the Volterra equation. From a solution of the Volterra equation vi, one obtains

two solutions ui and ũi of the modified Volterra equation. The composition of the Miura
transformations (24)

vi = (ui+1 + 1)(ui − 1) = (ũi+1 − 1)(ũi + 1) (25)
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provides a Bäcklund transformation for equation (23). Equation (25) allows one to construct,
starting with a solution ui of the modified Volterra equation (23), a new solution ũi .

Introducing for any index i, ui = ui,j and ũi = ui,j+1, where j is a new index, we can
rewrite the Bäcklund transformation (25) as an equation of the form (1). At the point (0, 0),

it reads

(u1,0 + 1)(u0,0 − 1) = (u1,1 − 1)(u0,1 + 1). (26)

Equation (26) does not belong to the ABS classification, as it is not invariant under the
exchange of i and j and does not satisfy the 3D consistency property in the sense of [6].
It may be 3D consistent around the cube in accordance with the extended definition of [7]
(cf [44]), but we leave this problem for a future work. To our knowledge, equation (26) has
been introduced in [41] in a slightly different form together with a Lax pair, and nothing more
has been known. A different Lax pair for this equation has been constructed in the recent
paper [36]. One more Lax pair for a more general form of equation (26) is presented below.
This equation is just an illustrative example for the present paper. That is why we are mainly
interested here in its symmetry structure. Study of different properties, as e.g. relationships to
the other known integrable equations, is also left for a future work.

The modified Volterra equation (23) can be interpreted as a three-point generalized
symmetry of equation (26) involving only shifts in the i direction:

u0,0,t = (
u2

0,0 − 1
)
(u1,0 − u−1,0). (27)

There also exists a generalized symmetry involving only shifts in the j direction, given by

u0,0,τ = (
u2

0,0 − 1
) (

1

u0,1 + u0,0
− 1

u0,0 + u0,−1

)
, (28)

which belongs, together with equation (27), to the complete list of the integrable Volterra-type
equations presented in [57, 58]. Both equations have a hierarchy of generalized symmetries
which, by construction, must be compatible with equation (26). Symmetries of equation
(27) can be obtained in many ways, see e.g. [58]. Symmetries of equation (28) can be
constructed using the master symmetry presented in [14]. The simplest generalized symmetries
of equations (27) and (28) are given by the following equations:

u0,0,t ′ = (
u2

0,0 − 1
)((

u2
1,0 − 1

)
(u2,0 + u0,0) − (

u2
−1,0 − 1

)
(u0,0 + u−2,0)

)
,

u0,0,τ ′ = u2
0,0 − 1

(u0,1 + u0,0)2

(
u2

0,1 − 1

u0,2 + u0,1
+

u2
0,0 − 1

u0,0 + u0,−1

)

− u2
0,0 − 1

(u0,0 + u0,−1)2

(
u2

0,0 − 1

u0,1 + u0,0
+

u2
0,−1 − 1

u0,−1 + u0,−2

)
.

As can be checked by direct calculation, these equations are five-point symmetries of
equation (26).

Moreover, equation (26) possesses two conservation laws (13) characterized by the
following functions p0,0, q0,0:

p+
0,0 = log

u0,0 + u0,1

u0,0 + 1
, q+

0,0 = − log(u0,0 + 1), (29)

p−
0,0 = log

u0,0 + u0,1

u0,1 − 1
, q−

0,0 = log(u0,0 − 1). (30)

It is easy to check that equation (13) is identically satisfied on the solutions of
equation (26) when we introduce into it the functions (29) or (30). Equation (26) possess
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also non-autonomous conservation laws; however, conservation laws of this kind will not be
discussed here.

A more general form of both equations (25) and (26) is given by

vi,j = (ui+1,j + αj )(ui,j − αj ) = (ui+1,j+1 − αj+1)(ui,j+1 + αj+1), (31)

where αj is a j -dependent function. For any j , the function ui,j satisfies the modified Volterra
equation

ui,j,t = (
u2

i,j − α2
j

)
(ui+1,j − ui−1,j )

depending on the function αj . Function vi,j , for any j , is a solution of the Volterra equation.
Using equation (31) and starting from an initial solution vi,0, we can construct new solutions
of the Volterra equation:

vi,0 → ui,1 → vi,1 → ui,2 → vi,2 → · · · .
The Lax pair for equation (31) is given by

Li,j =
(

λ − λ−1 −vi,j

1 0

)
,

which corresponds to the standard scalar spectral problem of the Volterra equation written in
the matrix form, and by

Ai,j = 1

ui,j+1 − αj+1

(
(λ − λ−1)(ui,j+1 − αj+1) 2αj+1

(
u2

i,j+1 − α2
j+1

)
−2αj+1 (λ − λ−1)(ui,j+1 + αj+1)

)
.

This Lax pair satisfies the Lax equation Ai+1,jLi,j = Li,j+1Ai,j .
Equation (31) is a direct analog of the well-known dressing chain

uj+1,x + uj,x = u2
j+1 − u2

j + αj+1 − αj , (32)

which provides a way of constructing potentials vj = uj,x − u2
j − αj for the Schrödinger

spectral problem [50, 51]. The Lax pair given above is analogous to that of equation (32)
presented in [51].

4. Derivation of the integrability conditions

In this section, following the standard scheme of the generalized symmetry method, we
derive from the compatibility condition (12) four conditions necessary for the integrability of
equation (6).

For a generalized symmetry (10), we suppose that if g0,0 depends on at least one variable
of the form ui,0, then gun,0 �= 0 and gun′,0 �= 0, and the numbers n and n′ are called the orders of
the symmetry. The same can be said about the variables u0,j and the corresponding numbers
k, k′ if gu0,k

�= 0 and gu0,k′ �= 0.

Theorem 2. Let equation (6) possess a generalized symmetry (10) of orders n, n′, k and k′.
Then the following relations must take place:

If n > 0 �⇒ (
T n

1 − 1
)

log fu1,0 = (1 − T2)T1 log gun,0; (33)

If n′ < 0 �⇒ (
T n′

1 − 1
)

log
fu0,0

fu0,1

= (1 − T2) log gun′,0; (34)

If k > 0 �⇒ (
T k

2 − 1
)

log fu0,1 = (1 − T1)T2 log gu0,k
; (35)
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If k′ < 0 �⇒ (
T k′

2 − 1
)

log
fu0,0

fu1,0

= (1 − T1) log gu0,k′ . (36)

Before going over to the proof of this theorem, let us clarify its meaning by noting that in the
case of a three-point symmetry with g0,0 = G(u1,0, u0,0, u−1,0), for which n > 0 and n′ < 0,
one can use both relations (33) and (34).

Proof. Let us consider the compatibility condition (12) expressed in terms of the independent
variables (9). As g0,0 depends on ui,0 and u0,j , the functions (g1,1, g1,0, g0,1) depend on
(ui,1, u1,j ), whose form is given by proposition 2. Moreover, equation (12) will contain ui,0

with n + 1 � i � n′ and u0,j with k + 1 � j � k′.
If n > 0, applying to equation (12) the operator ∂un+1,0 and using the results (22) contained

in proposition 2, we get

T1T2(gun,0)T
n

1 fu1,0 = fu1,0T1gun,0 .

Applying the logarithm to both sides of the previous equation, we obtain equation (33). The
other cases are obtained in a similar way by differentiating equation (12) with respect to
un′,0, u0,k+1 and u0,k′ . �

Equations (33)–(36) can be expressed as a standard conservation law of the form (13),
using the obvious well-known formulas

T m
l − 1 = (Tl − 1)

(
1 + Tl + · · · + T m−1

l

)
, m > 0,

T m
l − 1 = (1 − Tl)

(
T −1

l + T −2
l + · · · + T m

l

)
, m < 0,

where l = 1, 2. This means that, from the existence of a generalized symmetry, one can
construct some conservation laws.

Theorem 2 provides integrability conditions, i.e. that for an integrable equation there must
exist a function g0,0 satisfying equations (33)–(36). The unknown function g0,0 must depend
on a finite number of independent variables. These integrability conditions turn out to be
difficult to use for testing and classifying difference equations.

In the case of the differential–difference equations of Volterra or Toda type [58], there are
integrability conditions equivalent to equations (33)–(36). In order to check these integrability
conditions, one can use the formal variational derivatives [17, 26, 56, 58], defined as

δ(1)φ

δu0,0
=

−N ′∑
i=−N

∂T i
1 φ

∂u0,0
,

δ(2)φ

δu0,0
=

−K ′∑
j=−K

∂T
j

2 φ

∂u0,0
,

for φ given by equation (18). Using such variational derivatives, for example, the integrability
conditions (33) and (35) are reduced to the following equations:

δ(2)

δu0,0

(
T n

1 − 1
)

log fu1,0 = 0,
δ(1)

δu0,0

(
T k

2 − 1
)

log fu0,1 = 0, (37)

which do not involve any unknown function. This result is due to the fact that in this case all
discrete variables are independent. In a completely discrete case, the situation is essentially
different. Some of the discrete variables are dependent and the variational derivatives must be
calculated modulo equation (1). So equations (37) will no longer be valid. If we apply here
the variational derivatives, we will get, at most, some partial results depending on the choice
of the independent variables introduced.

The conservation laws (33)–(36) depend on the order of the symmetry. These conservation
laws can be simplified under some assumptions on the structure of the Lie algebra of the
generalized symmetries. If we assume that for a given equation we are able to get generalized
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symmetries for any value of n and k, then we can derive order-independent conservation laws,
using a trick standard in the generalized symmetry method [58]. This assumption implies
that if, for example, we have a generalized symmetry of order n then there must also be one
of order n + 1. This is a very constraining assumption which is not always verified, as we
know from the continuous case [38]. Here it is used just as an example for the construction of
simplified formulas. In fact such simplified formulas can be obtained assuming any difference
between the orders of two generalized symmetries, and in the following section we consider
an example with difference 2.

So, in the following theorem, we will assume that in addition to (10) a second generalized
symmetry

u0,0,t̃ = g̃0,0 = G̃(uñ,0, uñ−1,0, . . . , uñ′,0, u0,k̃ , u0,k̃−1, . . . , u0,k̃′) (38)

of orders ñ, ñ′, k̃, k̃′ will exist. With this assumption we shall obtain four conservation laws

(T1 − 1)p
(m)
0,0 = (T2 − 1)q

(m)
0,0 , m = 1, 2, 3, 4, (39)

with p
(m)
0,0 or q

(m)
0,0 expressed in terms of equation (6).

Theorem 3. Let equation (6) possess two generalized symmetries (38) and (10). Then
equation (6) admits the conservation laws (39):

n > 0, ñ = n + 1 �⇒ m = 1, p
(1)
0,0 = log fu1,0; (40)

n′ < 0, ñ′ = n′ − 1 �⇒ m = 2, p
(2)
0,0 = log

fu0,0

fu0,1

; (41)

k > 0, k̃ = k + 1 �⇒ m = 3, q
(3)
0,0 = log fu0,1; (42)

k′ < 0, k̃′ = k′ − 1 �⇒ m = 4, q
(4)
0,0 = log

fu0,0

fu1,0

. (43)

Proof. Let us consider in detail just the case when n > 0, ñ = n + 1. Due to theorem 2
equation (33) must be satisfied and consequently(

T n+1
1 − 1

)
p

(1)
0,0 = (1 − T2)T1 log g̃un+1,0, (44)

where p
(1)
0,0 is given by (40). Applying the operator −T1 to equation (33) and adding the result

to equation (44), we get the conservation law (39) with m = 1, where q
(1)
0,0 is given by

q
(1)
0,0 = T 2

1 log gun,0 − T1 log g̃un+1,0 .

The other cases are proved in an analogous way. �

So for equation (6) we have four necessary conditions of integrability: there must exist
some functions of a finite range q

(1)
0,0, q

(2)
0,0, p

(3)
0,0, p

(4)
0,0 of the form (18) satisfying the conservation

laws (39) with p
(1)
0,0, p

(2)
0,0, q

(3)
0,0, q

(4)
0,0 defined by equations (40)–(43).

The following theorem will precise the structure of the unknown functions q
(1)
0,0, q

(2)
0,0, p

(3)
0,0,

and p
(4)
0,0.

Theorem 4. If the functions q
(1)
0,0, q

(2)
0,0, p

(3)
0,0 and p

(4)
0,0 satisfy equation (39), with p

(1)
0,0, p

(2)
0,0, q

(3)
0,0

and q
(4)
0,0 given by equations (40)–(43), and are written in the form (18) then q

(1)
0,0 and q

(2)
0,0 may

depend only on the variables ui,0 and p
(3)
0,0 and p

(4)
0,0 on u0,j .

9
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Proof. Let us consider equation (39) with m = 1. The functions therein involved have the
following form:

p
(1)
0,0 = P (1)(u1,0, u0,0, u0,1), p

(1)
1,0 = P (1)(u2,0, u1,0, u1,1),

q
(1)
0,0 = Q(1)(uN,0, . . . , uN ′,0, u0,K, . . . , u0,K ′),

q
(1)
0,1 = Q(1)(uN,1, . . . , uN ′,1, u0,K+1, . . . , u0,K ′+1).

Let us consider the function q
(1)
0,0 and let us study its dependence on the variables u0,j with

j �= 0. Using proposition 2, we see that the functions ui,1 in p
(1)
1,0, q

(1)
0,1 may depend only on

u0,1. If K > 0, we differentiate equation (39) with m = 1 with respect to u0,K+1 and get
∂u0,K+1q

(1)
0,1 = T2∂u0,K

q
(1)
0,0 = 0. Then, from proposition 1, it follows that q

(1)
0,0 does not depend

on u0,K . If K ′ < 0, let us differentiate with respect to u0,K ′ and we get ∂u0,K′ q
(1)
0,0 = 0. This

shows that the function q
(1)
0,0 cannot depend on u0,j with j �= 0.

The proof for the other cases is quite similar. �

As we cannot use the formal variational derivative, we have to work directly with functions
q

(1)
0,0, q

(2)
0,0, p

(3)
0,0, p

(4)
0,0 which have the following structure:

q
(m)
0,0 = Q(m)

(
uNm,0, . . . , uN ′

m,0
)
, m = 1, 2;

p
(l)
0,0 = P (l)

(
u0,Kl

, . . . , u0,K ′
l

)
, l = 3, 4.

In section 5, we are going to limit ourselves to just five-point symmetries. This will make
the problem more definite in the sense that the numbers Nm,N ′

m,Kl,K
′
l will be specified and

small.

5. Integrability conditions for five-point symmetries

From the definition of the Lie symmetry, we can construct a new symmetry by adding the right-
hand sides of two symmetries u0,0,t = g0,0 and u0,0,t̃ = g̃0,0: u0,0,t̂ = ĝ0,0 = c1g0,0 + c2g̃0,0,
where c1 and c2 are arbitrary constants. For example, equation (26) of section 3 has two
three-point symmetries (27) and (28); therefore, it has a five-point generalized symmetry:

u0,0,t = g0,0 = G(u1,0, u−1,0, u0,0, u0,1, u0,−1), gu1,0gu−1,0gu0,1gu0,−1 �= 0. (45)

The other known integrable examples of the form (6) have also five points generalized
symmetries. We are going to use the existence of a five-point generalized symmetry of
the form (45) as an integrability criterion. This may be a severe restriction, as there might be
integrable equations with symmetries depending on more lattice points.

In the ABS classification, all three-point generalized symmetries turn out to be Miura
transformations of the Volterra equation or of the Yamilov discretization of the Krichever–
Novikov equation [32]. If we expect to find a new type of integrable discrete equations of the
form (6), these should have as generalized symmetries some new type of integrable equations.
One example of such an equation is given by the Narita–Itoh–Bogoyavlensky [13, 27, 39]
equation

u0,0,t = g0,0 = u0,0(u2,0 + u1,0 − u−1,0 − u−2,0). (46)

We will prove in the appendix that no equation of the form (6) can have equation (46) as a
symmetry.

We can then state the following theorem.

10
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Theorem 5. If equations (6) and (8) possess a generalized symmetry of the form (45), then
the functions

q
(m)
0,0 = Q(m)(u2,0, u1,0, u0,0), m = 1, 2;

p
(m)
0,0 = P (m)(u0,2, u0,1, u0,0), m = 3, 4,

(47)

satisfy conditions (39), (40)–(43).

Proof. From relations (33)–(36), as n = k = 1 and n′ = k′ = −1, we are able to construct
the functions

q
(1)
0,0 = −T1 log gu1,0, q

(2)
0,0 = T1 log gu−1,0 ,

p
(3)
0,0 = −T2 log gu0,1, p

(4)
0,0 = T2 log gu0,−1,

(48)

satisfying conditions (39), (40)–(43). It follows from equations (22) and (45) that the function
q

(1)
0,0 has the structure

q
(1)
0,0 = Q̂(1)(u2,0, u1,0, u0,0, u1,1, u1,−1) = Q(1)(u2,0, u1,0, u0,0, u0,1, u0,−1).

In analogy to theorem 4 we get that Q(1) cannot depend on u0,1, u0,−1. The proof for the other
functions contained in equations (48) is obtained in the same way. �

So, for a given equation (6), we check the integrability conditions (39), (40)–(43) with the
unknown functions q

(m)
0,0 and p

(m)
0,0 given in the form (47). If the integrability conditions are

satisfied, we can construct the most general unknown functions q
(m)
0,0 and p

(m)
0,0 of the form (47)

and then, from equations (48), build the partial derivatives of g0,0. The partial derivatives
of g0,0 must be consistent. The consistency of equations (48) implies that the additional
integrability conditions

gu1,0,u−1,0 = gu−1,0,u1,0 , gu0,1,u0,−1 = gu0,−1,u0,1 (49)

must be satisfied. If equations (49) are satisfied, we obtain the right-hand side of the symmetry
(45) up to an arbitrary unknown function of u0,0 of the form φ(u0,0). The function φ is derived
by using compatibility condition (12), the final integrability condition.

The function g0,0, so obtained, will thus be of the form

g0,0 = �(u1,0, u0,0, u−1,0) + 
(u0,1, u0,0, u0,−1), (50)

i.e. the right-hand side of any five-point symmetry (45) must have the form (50). The same
result has been obtained by Rasin and Hydon in [47].

All the known integrable autonomous equations (6) have symmetries of the following two
types:


 = 0 and �u1,0�u−1,0 �= 0; (51)

� = 0 and 
u0,1
u0,−1 �= 0. (52)

Thus any symmetry of the form (45) and (50) is the linear combination of a symmetry (51)
and (52). However, we cannot prove this property theoretically.

Obviously, the scheme described in this section and in the previous sections can also be
applied to the simpler symmetries (51) and (52). For example, in the case of a symmetry given
by equations (50) and (51), the integrability conditions (39)–(41) must be satisfied. The first
two equations of equation (48) allow us to construct the partial derivatives of g0,0 = �. Then
we check the first of conditions (49). If it is satisfied, we can find � up to an arbitrary function
φ(u0,0), which can be specified by using the compatibility condition (12).

11
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In the case of the example considered in equation (26) in section 3, it is easy to check that
conditions (39), (40)–(43) are satisfied. Moreover, using the generalized symmetries (27), (28)
and equations (48), we easily construct four conservation laws which are linear combinations
with shift-dependent parameters of the conservation laws (29) and (30).

It should be remarked that the integrability conditions analogous to equations (39) and
(40)–(43) have been derived for the hyperbolic systems of the form (4) by Zhiber and Shabat
in [61].

6. A simple classification problem

Here we apply the formulas introduced before to study the class of equations:

u1,1 = f0,0 = u1,0 + u0,1 + ϕ(u0,0). (53)

This will be just an example of how to use the integrability conditions. More interesting
classification problems, as well as the possible discovery of new integrable discrete equations,
are left for the future. The class of equations (53) depends on an unknown function ϕ, and
we require that equation (53) possesses a generalized symmetry of the form (45). To do so it
must satisfy the integrability conditions (39), (40)–(43) and (47). If ϕ′′ = 0, equation (53) is
linear, and all the integrability conditions are satisfied trivially. So we require that ϕ′′ �= 0.

The proof that equations (39), (40)–(43) and (47) are conservation laws is carried out by
differentiating them in such a way to reduce them to simple differential equations, a scheme
introduced in 1823 by Abel [1] (see [4] for a review) for solving functional equations. The
applications of this scheme for the difference equation can be found in [25, 34, 48]. In [48]
the scheme was used for finding conservation laws for known equations, i.e. when the
dependence of the functions p0,0 and q0,0 on the symmetries and on equation (6) was unknown
while the difference equation (6) was given. In [49] the existence of a simple conservation
law is used as an integrability condition.

Here we consider the case when either p0,0 or q0,0 is expressed in terms of the unknown
right-hand side of equation (6). The conservation laws are allowed to depend on the arbitrary
functions of the variables u1,0, u0,0, u0,1. Moreover, as will be shown at the end of this section,
the existence of simple conservation laws is not sufficient to prove integrability. One can
have the nonlinear equations of this class (53) with two local conservation laws but with no
generalized symmetry.

Let us study the class of difference equations (53). For later use, we can rewrite equation
(53) in three equivalent forms, applying to it the operators T −1

1 , T −1
2 :

u−1,1 = u0,1 − u0,0 − ϕ(u−1,0),

u1,−1 = u1,0 − u0,0 − ϕ(u0,−1),

u−1,−1 = ϕ−1(u0,0 − u−1,0 − u0,−1).

(54)

Let us consider condition (39) with m = 2. Applying the shift operators T −1
1 , T −1

2 , we rewrite
it in two equivalent forms

p
(2)
0,0 − p

(2)
−1,0 = q

(2)
−1,1 − q

(2)
−1,0, (55)

p
(2)
0,−1 − p

(2)
−1,−1 = q

(2)
−1,0 − q

(2)
−1,−1, (56)

where p
(2)
0,0 = log ϕ′(u0,0) and q

(2)
0,0 is given by equation (47). Taking into account

equations (53) and (54), equations (55) and (56) can be expressed in terms of the independent
variables (9).

12



J. Phys. A: Math. Theor. 42 (2009) 454012 D Levi and R I Yamilov

Equations (55) and (56) are two functional equations for q
(2)
0,0. By applying the following

operators

Â = ∂u0,0 + ∂u1,0 + ∂u−1,0 , B̂ = ∂u0,0 − ϕ′(u0,0)∂u1,0 − 1

ϕ′(u−1,0)
∂u−1,0,

we reduce them to the partial differential equations. Using equations (54), we can show that
Â annihilates any function �(u1,−1, u0,−1, u−1,−1). So, applying Â to equation (56), we get

Âq
(2)
−1,0 = 0. (57)

The operator B̂ annihilates q
(2)
−1,1. Thus, applying the operator B̂ to equation (55), we get

B̂q
(2)
−1,0 = −B̂

(
p

(2)
0,0 − p

(2)
−1,0

)
.

If we introduce the difference operator Ĉ = Â − B̂, we get

Ĉq
(2)
−1,0 = B̂

(
p

(2)
0,0 − p

(2)
−1,0

)
. (58)

From equations (57) and (58) we also get

[Â, Ĉ]q(2)
−1,0 = ÂB̂

(
p

(2)
0,0 − p

(2)
−1,0

)
, (59)

where [Â, Ĉ] is the standard commutator of two operators. So equations (57)–(59) can be
rewritten as a partial differential system for the function q = q

(2)
−1,0, where, as before, by the

indexes we denote the partial derivatives and by apices derivatives with respect to the argument

qu0,0 + qu1,0 + qu−1,0 = 0,

a(u0,0)qu1,0 + b(u−1,0)qu−1,0 = c(u0,0) − b′(u−1,0),

a′(u0,0)qu1,0 + b′(u−1,0)qu−1,0 = c′(u0,0) − b′′(u−1,0).

(60)

The functions a(z), b(z) and c(z) are given by

a(z) = ϕ′(z) + 1, b(z) = 1

ϕ′(z)
+ 1, c(z) = ϕ′′(z)

ϕ′(z)
,

where a′(z)b′(z)c(z) �= 0, as ϕ′′(z) �= 0.
The solvability of the system (60) depends on the following determinant:

� =
∣∣∣∣∣a(u0,0) b(u−1,0)

a′(u0,0) b′(u−1,0)

∣∣∣∣∣ .
We must have � �= 0. If we have � = 0, as u0,0 and u−1,0 are independent variables, we obtain
the relations a′(u0,0)

a(u0,0)
= b′(u−1,0)

b(u−1,0)
= ν, where ν is a constant. These relations are in contradiction

with the condition that ϕ′′ �= 0.
If we differentiate the system (60) with respect to u1,0, we easily deduce that qu1,0 = α,

where α is a constant. Then from equations (60) we obtain two different expressions for qu−1,0 :

qu−1,0 = d(u0,0) − b′(u−1,0)

b(u−1,0)
= d ′(u0,0) − b′′(u−1,0)

b′(u−1,0)
, d(z) = c(z) − αa(z). (61)

If d ′ �= 0, differentiating equation (61) with respect to u0,0, we get d ′′(u0,0)

d ′(u0,0)
= b′(u−1,0)

b(u−1,0)
= σ ,

where σ is a constant. This result is again in contradiction with the condition ϕ′′ �= 0. So,
d = β, a constant, and we get the following ODE for ϕ:

ϕ′′/ϕ′ = αϕ′ + α + β. (62)

If ϕ satisfies equation (62), the condition (61) is satisfied, and qu−1,0 = α + β.

13
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The system (60) provides us with another partial derivative of q:

qu0,0 = −2α − β,

from which we deduce that

q = q
(2)
−1,0 = αu1,0 − (2α + β)u0,0 + (α + β)u−1,0 + δ,

where δ is an arbitrary constant. The integration of equation (62) gives

log ϕ′(z) = αϕ(z) + (α + β)z + γ,

where γ is a further constant. If we introduce these last two equations into equation (55), we
get βu0,0 + βϕ(u−1,0) = 0, which implies β = 0.

Thus, we have proved that equation (53) satisfies the condition (39) with m = 2 if and
only if

log ϕ′(z) = α(ϕ(z) + z) + γ, (63)

with α �= 0, as ϕ′′ �= 0. Equation (63) can easily be solved, but its solution is not particularly
relevant to the economy of this paper. If equation (63) is satisfied,

p
(2)
0,0 = log ϕ′(u0,0), q

(2)
0,0 = α(u2,0 − 2u1,0 + u0,0) + δ (64)

and these functions define a nontrivial conservation law.
If equation (53), with ϕ given by equation (63), has a generalized symmetry of the form

(45), the other conditions (39), (40)–(43), (47) must be satisfied. From equation (40), we get
that the condition (39) with m = 1 becomes (T2 − 1)q

(1)
0,0 = 0. This equation has a trivial

solution, q(1)
0,0 a constant. We now look for a nontrivial solution. From equations (47) it follows

that the functions q
(1)
0,0 and q

(2)
0,0 depend on the same set of variables. Hence q̃ = q

(1)
−1,0 also

satisfies equations (60), but with zeros on the right-hand side. As qu1,0 is a constant, it follows

that also q
(1)
0,0 must be a constant, i.e. the constant solution is the most general one. From

equations (48), we get the partial derivatives of the right-hand side of the symmetry (45), gu1,0

and gu−1,0 . It is easy to verify that the first of the conditions (49) is not satisfied. Consequently,
equation (53), with ϕ given by equation (63), has no generalized symmetry of the form (45).

In section 5, we have considered the simpler symmetries (51) and (52). Using the
previous reasoning, we can prove that there is no symmetry defined by equations (50) and (51).
Equation (53) is symmetric under the involution ui,j → uj,i . Also the conditions (39) with
m = 3, 4 are symmetric with respect to the conditions (39) with m = 1, 2. So these further
conditions will provide a conservation law symmetric to the one defined by equations (64) and
prove that there is no symmetry given by equations (50) and (52).

Let us collect the results obtained so far in the following theorem, where the conservation
laws will be written in a simplified form, omitting inessential constants.

Theorem 6. Equation (53) satisfies the integrability conditions (39), (40)–(43), (47) iff ϕ is a
solution of equation (63). Equation (53), when ϕ is given by equation (63), has two nontrivial
conservation laws:

(T1 − 1)(ϕ(u0,0) + u0,0) = (T2 − 1)(u2,0 − 2u1,0 + u0,0),

(T2 − 1)(ϕ(u0,0) + u0,0) = (T1 − 1)(u0,2 − 2u0,1 + u0,0).
(65)

However, in this case, equation (53) does not have a generalized symmetry of the form (45) or
of the form given by equations (50), (51) or (50), (52).

Let us note that equation (53) possesses the conservation laws (65) for any ϕ, not only
when ϕ satisfies equation (63). However, the integrability conditions are satisfied only if
ϕ satisfies equation (63), but no generalized symmetry of the form mentioned in theorem 6
exists.
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7. Conclusions

In this paper, we have considered the classification problem for difference equations by asking
for the existence of a generalized symmetry. In this way, we have obtained the lowest order
integrability conditions which turn out to be written as conservation laws. The verification of
the existence of finite-order conservation laws is in general a very complicated problem due to
the high number of unknown involved. So we limited ourselves to the case when we have just
a five-point symmetry. In this case, we easily can find some further integrability conditions
which make our problem solvable. At the end, we present an example of classification when
we have just an arbitrary function of one variable.

This research is far from complete. At the moment, we are working on

(i) obtaining further integrability conditions by adding extra structures;
(ii) applying the result contained in this work for testing the integrability of some discrete

equations of the class (1) as, for example, QV [54];
(iii) classifying equations (1) in the case of an arbitrary function of two variables.
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Appendix

Theorem 7. No equation of the forms (6) and (8) can have a generalized symmetry of the
form of equation (46).

Proof. We use conditions (33) and (34) with n = 2 and n′ = −2. Applying the operators T −1
1

and −T1, we rewrite them in the form

p
(1)
1,0 − p

(1)
−1,0 = log

u0,0

u0,1
, (A.1)

p
(2)
1,0 − p

(2)
−1,0 = log

u1,1

u1,0
, (A.2)

where p
(1)
0,0 and p

(2)
0,0 are given by equations (40) and (41). Studying conditions (A.1) and (A.2),

we will use in addition to equation (6) its equivalent form

u−1,1 = f̂ 0,0 = F̂ (u−1,0, u0,0, u0,1).

The functions p
(m)
0,0 have the structure p

(m)
0,0 = P (m)(u1,0, u0,0, u0,1). Therefore, p

(m)
−1,0 =

P (m)(u0,0, u−1,0, f̂ 0,0) and the right-hand sides of equations (A.1) and (A.2) do not depend
on u2,0. The functions p

(m)
1,0 = P (m)(u2,0, u1,0, f0,0) depend on u2,0, and from equations (A.1)

and (A.2) we get ∂u2,0p
(m)
1,0 = T1∂u1,0p

(m)
0,0 = 0. Moreover, according to proposition 1,

∂u1,0p
(m)
0,0 = 0, m = 1, 2. (A.3)

�
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From equation (A.3) with m = 1, we get fu1,0u1,0 = 0, i.e. f0,0 can be expressed as

f0,0 = a0,0u1,0 + b0,0 = A(u0,0, u0,1)u1,0 + B(u0,0, u0,1), (A.4)

where a0,0 �= 0 due to condition (8). Now p
(1)
0,0 = log a0,0 and equation (A.1) is rewritten as

a1,0

a−1,0
= u0,0

u0,1
. (A.5)

Here only the function a1,0 depends on u1,0, and we get

da1,0

du1,0
= ∂u1,0a1,0 + a0,0∂u1,1a1,0 = 0.

Applying to it the shift operator T −1
1 , we get the more convenient form

∂u0,0a0,0 + a−1,0∂u0,1a0,0 = 0. (A.6)

As a−1,0 �= 0, only two cases are possible. The first one is when ∂u0,0a0,0 = ∂u0,1a0,0 = 0,
i.e. a0,0 is a constant. This is in contradiction with equation (A.5). So, ∂u0,0a0,0 �= 0 and
∂u0,1a0,0 �= 0.

From equation (A.3) with m = 2 we get

fu0,0u1,0

fu0,0

− fu0,1u1,0

fu0,1

= 0.

Using this equation together with equations (A.4) and (A.6), we get

p
(2)
0,0 = log

fu0,0u1,0

fu0,1u1,0

= log
∂u0,0a0,0

∂u0,1a0,0
= log(−a−1,0).

Applying T1 we can rewrite equation (A.2) as
a1,0

a−1,0
= u2,1

u2,0
. (A.7)

Comparing equations (A.5) and (A.7) and using equation (A.4), we get u2,1 = u0,0

u0,1
u2,0 =

a1,0u2,0 + b1,0. As a1,0 and b1,0 do not depend on u2,0, we obtain from here a1,0 = u0,0

u0,1
. Then

from equation (A.5), we obtain a−1,0 = 1. These two last results are in contradiction, thus
proving the theorem.
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