
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) L553–L562 PII: S0305-4470(01)28134-7

LETTER TO THE EDITOR

On the integrability of a new discrete nonlinear
Schrödinger equation

D Levi1 and R Yamilov2

1 Dipartimento di Fisica ‘E. Amaldi’, Universitá degli Studi Roma Tre and Sezione INFN Roma
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Abstract

We consider the nonlinear Schrödinger equation on the lattice introduced

by Leon and Manna two years ago to describe the slowly varying envelope

approximation of some nonlinear differential difference equations. We show

that this equation does not admit local generalized symmetries of order greater

than three. In such a way we prove that the Leon and Manna discrete nonlinear

Schrödinger equation does not have the same integrability properties as the

Toda lattice equation, from which it has been derived. At the end we provide

some reasoning to justify the result obtained.

PACS number: 02.30.Ik, 02.30.Ks, 05.45.Yv

1. Introduction

Recently, the reductive perturbation technique [1] has been applied by Leon and Manna [2] to

the multiscale analysis of discrete nonlinear evolution equations.

The main results obtained by the reductive perturbation technique in the case of partial

differential equations have been the derivation from a given system of simplified equations,

while preserving its main properties. The reduced nonlinear equations are fundamentally

simpler than the original ones and they generically represent the long-time coherent behaviour

of the initial system. Among other results, this procedure has been essential to show the

universality character of the nonlinear Schrödinger equation [3].

The situation is quite different in the case of equations on the lattice, when some of

variables evolve on a discrete space. The necessity of carrying out the reduction procedure

by introducing asymptotic continuous variables, implies that in most of the cases one will

get a limiting nonlinear partial differential equation of the kind of the nonlinear Schrödinger

equation.
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Leon and Manna propose in [2] a set of tools for the multiscale analysis of discrete models

which allow one to obtain, under appropriate boundary conditions, a reduced discrete nonlinear

equation. These tools rely mainly on the definition of a rescaled large grid and the requirement

of a corresponding rescaling of the difference operator. In this way, through the reductive

perturbation analysis of the Toda lattice equation

d2xm

dτ 2
= exm+1−xm − exm−xm−1 (1)

they obtain the following discrete nonlinear Schrödinger equation:

αψn,tt = iβ(ψn+1 − ψn−1) + 2|ψn|
2ψn (2)

with α and β nonzero constant real coefficients. The function ψn(t) is the lowest-order term

in the Fourier expansion of the amplitude of the function xm(τ ) written in terms of the slowly

varying variables t and n.

As ψn(t) is a complex function, equation (2) can be written as a system in terms of

un = ψn, vn = ψ̄n:

un,tt = i
β

α
(un+1 − un−1) +

2

α
u2
nvn

vn,tt = −i
β

α
(vn+1 − vn−1) +

2

α
v2
nun

where ψ̄n is the complex conjugate of the function ψn.

From the viewpoint of the problem of the existence of generalized symmetries, the time

t can be considered to be complex and thus, for any α and β different from zero, rescaling un,

vn and t by complex numbers, we can pass to an equivalent and simpler equation:

un,tt = un+1 − un−1 + u2
nvn

vn,tt = −(vn+1 − vn−1) + v2
nun.

(3)

This system will be the object of our investigation.

In the following, we are going to show that equation (3) cannot have local generalized

symmetries of a high enough order at difference from all well known integrable lattice equations

like the Toda, Volterra or discrete nonlinear Schrödinger lattice equations (see e.g. [4] and the

review article [5]).

Let us consider the class of equations

un,tt = un+1 + ϕ(un, vn) + ϕ̂(un−1, vn−1)

vn,tt = −vn+1 + ψ(un, vn) + ψ̂(un−1, vn−1)
(4)

depending on four arbitrary functions of two variables which, to contain equation (3), must

satisfy the following requirements:

∂ϕ

∂un
�= const

∂ϕ

∂vn
�= const (5)

∂ψ

∂un
�= const

∂ψ

∂vn
�= const. (6)

The results which will be presented in section 3 are valid for all equations of the class (4) and,

moreover, only require that condition (5) is satisfied.

Section 2 is devoted to the formulation of the problem while in section 3 a theorem showing

that equation (2) has no sufficiently high-order symmetries is presented and proven. In section

4, we analyse the procedure introduced in [2] and make some concluding remarks.
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2. The generalized symmetry method for equation (4)

Defining

Un =

(
un

vn

)
(7)

equation (4) can be expressed as a vector equation of the form

Un,tt = �(Un+1, Un, Un−1) � =

(
f

g

)
(8)

where

f = f (un+1, un, vn, un−1, vn−1) = un+1 + ϕ(un, vn) + ϕ̂(un−1, vn−1)

g = g(vn+1, un, vn, un−1, vn−1) = −vn+1 + ψ(un, vn) + ψ̂(un−1, vn−1).

We will look for local generalized symmetries for equation (8) of the form

Un,λ = �(Un+k, Un+k,t , Un+k−1, Un+k−1,t , . . . , Un+k′ , Un+k′,t ) (k > k′) (9)

as flows commuting with (8) (higher t-derivatives in the rhs of equation (9) are not necessary

as they can be expressed via Un+i , Un+i,t , using (8)). We assume that � depends essentially

on Un+k or Un+k,t and on Un+k′ or Un+k′,t . Differentiating (8) wrt λ, we can write down the

compatibility condition: D2
t � = Dλ� (here and in the following Dt and Dλ are the total

derivatives wrt t and λ).

To be able to implement the generalized symmetry method (see e.g. [6, 7] and review

articles [5,8–10]), we rewrite (8) in evolutionary form, introducing the new dependent variable

Vn: Un,t = Vn. Then, defining

Wn =

(
Un

Vn

)
=




un

vn

ũn

ṽn


 ũn = un,t ṽn = vn,t (10)

equation (8) reads

Wn,t = F(Wn+1,Wn,Wn−1) (11)

where

F =

(
Vn

�

)
=




ũn

ṽn

un+1 + ϕ(un, vn) + ϕ̂(un−1, vn−1)

−vn+1 + ψ(un, vn) + ψ̂(un−1, vn−1)


 (12)

i.e. this is now an evolutionary system of four equations for the four dependent variables un,

vn, ũn, ṽn.

The symmetry is rewritten, consequently, as

Wn,λ = G(Wn+m,Wn+m−1, . . . ,Wn+m′) G =

(
�

�̃

)
(13)

where �̃ = Dt�. In equation (13), m = k if � does not depend on Un+k,t and m = k + 1

in the opposite case. Indeed, if � depends on Un+k,t , then �̃ contains Un+k,tt which, due to

equation (8), introduces terms containing Wn+k+1. For m′, there are also two possibilities: in

this case we have either m′ = k′ or m′ = k′ − 1. If we consider the compatibility condition

between (11) and (13), i.e. DλWn,t −DtWn,λ = DλF −DtG = 0, we obtain Dλ� = D2
t �.
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Consequently, generalized symmetries for equation (11) and for equation (8) are completely

equivalent.

Below we will consider only the situation when a symmetry (9) of order k � 4 exists (the

case with right order k′ � −4 is completely equivalent; in this case one has only to consider

formal series expressed in terms of positive powers of the shift operator T instead of negative

ones, cf. (18)). We consider the evolutionary form (11) of the symmetries so as to be able to

consider the so-called formal symmetries, i.e. approximate solutions L of the Lax equation

L,t = [F∗, L]. (14)

Here F∗ is the Frechet derivative of F :

F∗ = F (1)n T + F (0)n + F (−1)
n T −1, (15)

where F (i)n are rank-4 matrices obtained as partial derivatives of F, given by F (i)n = ∂F/∂Wn+i .

For convenience, it is simpler to write them as 2 × 2 blocks,

F (±1)
n =

(
0 0

�(±1)
n 0

)
F (0)n =

(
0 E

�(0)
n 0

)
(16)

where E is the unit matrix, and the matrices �(i)
n (i = −1, 0, 1) are defined as the partial

derivatives of �:

�(i)
n =

∂�

∂Un+i

=

(
f,un+i

f,vn+i

g,un+i
g,vn+i

)

i.e.

�(−1)
n =

(
ϕ̂,un−1

ϕ̂,vn−1

ψ̂,un−1
ψ̂,vn−1

)
�(0)
n =

(
ϕ,un ϕ,vn
ψ,un ψ,vn

)

�(1)
n = # =

(
1 0

0 −1

)
.

(17)

The solution L of (14) can be written as a formal series in decreasing powers of T whose

coefficients are matrices of rank 4:

L = L(m)n T m + L(m−1)
n T m−1 + . . . L(m)n �= 0 (18)

where m defines the order of the solution.

If we introduce

$(L) = L,t − [F∗, L] (19)

we can see that, for L of order m, the series $(L) is in general of order m + 1:

$(L) = $(m+1)
n T m+1 +$(m)

n T m + . . . .

The series representation (18) ofL is a formal symmetry of orderm and length l if the l highest

coefficients $(i)
n (i = m + 1,m, . . . , m − l + 2) of $(L) vanish, i.e. the series representation

(18) is an approximate solution of (14) with l correct coefficients. One can see immediately,

using equation (19), that formal symmetries (unlike generalized symmetries) can be multiplied

by each other

$(LL̂) = $(L)L̂ + L$(L̂).

Using this result, the length of the product can be easily found. For example, if detL(m)n �= 0,

then the formal symmetry (L)2 has order 2m and length l (the same as L).

One can also easily show that the existence of a generalized symmetry (13) implies the

existence of a formal symmetry. Indeed, considering the Frechet derivatives of G, given by

G∗ =
m∑

i=m′

∂G

∂Wn+i

T i
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and using the relations

(G,t )∗ = (G∗),t +G∗F∗ (F,λ)∗ = (F∗),λ + F∗G∗

one can calculate the Frechet derivative of the compatibility conditionG,t = F,λ. We have the

following result:

$(G∗) = (G∗),t − [F∗,G∗] = (F∗),λ.

This shows that G∗ is a formal symmetry of order m and length m (i.e. in this case l = m).

Thus, starting from a symmetry of equation (8) of order k � 4, we can pass to a symmetry

of equation (11) of orderm � 4, and are led to a formal symmetryL of orderm � 4 and length

l � 4. In section 3 we will see that we are not able to calculate the first four coefficients of L

for systems of the form (4), (5). This implies that those systems cannot have local generalized

symmetries of order greater or equal to 4.

We restrict ourselves to symmetries (9), (13) with no explicit dependence on the discrete

variable n and on the continuous time t . Under such conditions, the rhs of (13) only depends

on functions Wn+i (i = m,m − 1, . . . , m′). This is a very strong assumption, true for most

local generalized symmetries of integrable equations on the lattice. As no explicit dependence

on t and n is allowed, first-order linear difference equations have only constant solutions.

Moreover, we will assume, as is usually done in the generalized symmetry method, that the

functions Wn+i , as well as their components un+i , vn+i , ũn+i , ṽn+i (see (10)), for any i are

independent variables.

Let us end this section by enumerating some important properties of solutions of first

order scalar difference equations for functions h, depending just on Wn+i . There are only two

possibilities for h: either h = 0 or h = const identically for any n (this would not be true in the

case of n-dependent functions, see [7]). The following two statements can be easily proved,

using the dependence of h on the independent variables Wn+i :

if h ∈ Ker (T − 1) ⇒ h = const(a) (A)

if h ∈ Ker (T + 1) ⇒ h = 0. (B)

If the function h depends only on Wn, then

if h(Wn) ∈ Im (T − 1) ⇒ h = 0 (C)

if h(Wn) ∈ Im (T + 1) ⇒ h = const. (D)

Moreover one can prove that if Dt (h) = 0, then h = const.

3. Main theorem

It is easier to calculate the matrix coefficients of the formal symmetryL (18), considering them

as 2 × 2 matrix blocks which will be denoted as

L(i)n =

(
A(i)n B(i)n
C(i)n D(i)

n

)
.

Collecting in equation (14) the coefficients of T m+1 (i.e. requiring that$(m+1)
n = 0), one obtains

F (1)n L
(m)
n+1 = L(m)n F (1)n+m.

As det�(1)
n �= 0, the equation for L(m)n is equivalent to two 2 × 2 matrix equations:

B(m)n = 0 (20)

�(1)
n A

(m)
n+1 = D(m)

n �(1)
n+m. (21)
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Now, taking into account equation (20), let us write down the equations obtained by requiring

that length l be l � 3, i.e. by requiring that the coefficients of T m, T m−1 in$(L) be also zero.

The coefficients of the power T m, written in block form, satisfy the following equations:

D(m)
n = A(m)n (22)

A
(m)
n,t = C(m)n − B(m−1)

n �
(1)
n+m−1 (23)

D
(m)
n,t = −C(m)n +�(1)

n B
(m−1)
n+1 (24)

C
(m)
n,t = �(0)

n A
(m)
n −D(m)

n �(0)
n+m +�(1)

n A
(m−1)
n+1 −D(m−1)

n �
(1)
n+m−1. (25)

Considering the coefficients of the power T m−1, one obtains

B
(m−1)
n,t = D(m−1)

n − A(m−1)
n (26)

A
(m−1)
n,t = C(m−1)

n − B(m−2)
n �

(1)
n+m−2 − B(m−1)

n �
(0)
n+m−1 (27)

D
(m−1)
n,t = −C(m−1)

n +�(1)
n B

(m−2)
n+1 +�(0)

n B
(m−1)
n . (28)

Using equations (20)–(28), we can now prove the following theorem:

Theorem. Systems of the form (4), (5) cannot have local generalized symmetries (9) with

k � 4.

Proof. If such a symmetry exists, then there should also exist a formal symmetry (18) of the

system (11) of order m � 4 and length l � 4. Defining

A(i)n =

(
a(i)n b(i)n
c(i)n d(i)n

)
B(i)n =

(
α(i)n β(i)n
γ (i)n δ(i)n

)
(29)

where a(i)n , b(i)n , c(i)n , d(i)n , α(i)n , β(i)n , γ (i)n and δ(i)n are scalar quantities, equations (21), (22) imply

#A
(m)
n+1 = A(m)n # (see (17)), and give that a(m)n , d(m)n ∈ Ker (T −1) and b(m)n , c(m)n ∈ Ker (T +1).

Taking into account the results (A) and (B), we get that the matrix A(m)n is constant and

diagonal:

A(m)n = A = diag(a, d). (30)

Equations (23), (24) and (30) give

C(m)n = #B
(m−1)
n+1 = B(m−1)

n #. (31)

Hence matrices B(m−1)
n , C(m)n are also constant and diagonal:

B(m−1)
n = B = diag(α, δ) C(m)n = C = diag(α,−δ). (32)

Let us now prove that

d = (−1)ma. (33)

From, equation (26) we get D(m−1)
n = A(m−1)

n , and consequently equation (25) takes the form

�(0)
n A− A�(0)

n+m +#A
(m−1)
n+1 − A(m−1)

n # = 0. (34)

The elements of the right upper corner of equation (34) provide us with the equation

dϕ,vn − aT m(ϕ,vn) + b
(m−1)
n+1 + b(m−1)

n = 0

i.e.

(d − aT m)(ϕ,vn) ∈ Im (T + 1). (35)

As

(T + 1)
m−1∑

i=0

(−1)iT i = 1 − (−1)mT m
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we can write

T m = (−1)m − (T + 1)
m−1∑

i=0

(−1)i+mT i

and consequently condition (35) can be rewritten as

(d − (−1)ma)ϕ,vn ∈ Im (T + 1).

The function in the lhs of this condition depends only on Wn, and therefore, due to condition

(D), must be a constant. But ϕ,vn �= const and consequently equation (33) must be true.

To get further constraints let us take into account that if a formal symmetry exists, then

its powers give new formal symmetries. Let us consider

(L)2 = L̃(2m)n T 2m + L̃(2m−1)
n T 2m−1 + . . . .

As we have proven before,

L(m)n =

(
A 0

C A

)
(36)

and consequently

L̃(2m)n = L(m)n L(m)n+m =

(
A2 0

2AC A2

)
. (37)

If A = 0, then:

L(m−1)
n =

(
A(m−1)
n B

C(m−1)
n A(m−1)

n

)

L̃(2m−1)
n = L(m)n L(m−1)

n+m + L(m−1)
n L

(m)
n+m−1 =

(
BC 0

Hn BC

) (38)

whereHn is a well defined matrix of rank 2. L(m)n �= 0 and consequently, asA = 0, C �= 0 . In

this case L̃(2m)n = 0, but L̃(2m−1)
n �= 0 because BC = diag(α2,−δ2) �= 0 (see equation (32)).

The order of the formal symmetry (L)2 in this case is 2m − 1, and the length is l − 1. So if

A = 0, there must exist a formal symmetry L̃ such that Ã �= 0, so that the formal symmetry

has order m̃ � 4 and length l̃ � 3.

Consider a formal symmetry L with A �= 0 of order m � 4 and length l � 3. It follows

from equations (30), (33) that if A �= 0, then A = a diag(1, (−1)m) with a �= 0. Passing

to (L)2, we see from equation (37) that the diagonal blocks have the form A2 = a2E. The

order of such formal symmetry (L)2 becomes 2m and the length remains the same. Formal

symmetries may be multiplied by nonzero constants with no change of order and length. So

we can assert that, if a formal symmetry with k � 4 exists, there must exist a formal symmetry

L such that A = E, m � 4, l � 3. As l � 3, all conditions (20)–(28) must be satisfied. Then,

if we take the left upper corner elements in equation (34) with A = E, we obtain

(1 − T m)(ϕ,un) + (T − 1)(a(m−1)
n ) = 0.

For any m � 1,

1 − T m = −(T − 1)
m−1∑

i=0

T i . (39)

Hence (T − 1)(a(m−1)
n −

∑m−1
i=0 T

i(ϕ,un)) = 0 and, due to the property (A), we get

a(m−1)
n = const +

m−1∑

i=0

T i(ϕ,un). (40)
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As D(m−1)
n = A(m−1)

n and B(m−1)
n = B, the sum of equations (27) and (28) gives

2A
(m−1)
n,t = #B

(m−2)
n+1 − B(m−2)

n # +�(0)
n B − B�

(0)
n+m−1. (41)

Considering the left upper corner elements of equation (41), we obtain the condition 2a
(m−1)
n,t =

(T − 1)(α(m−2)
n ) + (1 − T m−1)(αϕ,un). This condition can be written, taking into account

equations (39), (40), in the following way:

a
(m−1)
n,t =

m−1∑

i=0

T i(ϕ,un),t ∈ Im (T − 1). (42)

For any m � 1, we have (see (39))

T m = 1 + (T − 1)
m−1∑

i=0

T i .

Hence a
(m−1)
n,t can be expressed in the form a

(m−1)
n,t = m(ϕ,un),t + (T − 1)(h). This allows us

to rewrite equation (42) as the following condition:

(ϕ,un),t = ϕ,ununun,t + ϕ,unvnvn,t ∈ Im (T − 1). (43)

Now the function in the lhs of equation (43) depends only on the variableWn; and therefore, due

to condition (C), is equal to zero. The components of Wn are independent, and consequently

ϕ,unun = ϕ,unvn = 0, i.e. ϕ,un = const. This is in contradiction with the assumption (5), and

thus this implies that no generalized symmetry of the form (13) with m � 4 or (9) with k � 4

can exist. �

4. Conclusions

We have proven in section 3 that equation (2) has no local generalized symmetry of a high

enough order.

The result obtained was in a certain way to be expected. Up to now no integrable equation

of the form of equation (2) has been found even if equation (2) has been obtained by reducing

the Toda lattice (1). In principle the reduction technique should preserve the integrability

property; at least, that is what happens in the continuous case [3]. The fact that this does not

happen in the discrete case seems to imply that some of the hypotheses considered by Leon and

Manna [2] are not correct. Apart from a few summation identities, the main ansatz considered

in [2] rely on the definition of a rescaled large gridN and the requirement of a rescaling of the

difference operator by 1/N .

The introduction of a large rescaled lattice characterized by a lattice spacing N times the

original one, whereN is a very large number, is a natural renormalization procedure. The form

of rescaling of the difference operator considered by [2] is not at all obvious. In fact, it seems

to us that it contains some hypothesis which can provide completely unreliable consequences.

Let us fix, following Leon and Manna [2], a small parameter ε by

ε2 = 1/N. (44)

Then for any given m, we can consider the set of points {· · · , m − N, m, m + N, · · ·} of a

large grid indexed by a slow variable n, such that

· · · , (m−N) → (n− 1) , m → n , (m +N) → (n + 1) , · · · . (45)
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We have to relate the discrete derivatives in the two different grids described by the two different

indexes n and m. To that end we define the derivatives in the original variable m as

∇φm = φm+1 − φm−1

∇kφm =
k∑

4=0

(−1)4
k!

4!(k − 4)!
φm+k−24

(46)

and the derivatives in the new variable n defined in (45) as

5Nφm = φm+N − φm−N = φn+1 − φn−1. (47)

Then we have the following identity:

5Nφm =

q∑

4=0

(2q + 1)(q + 4)!

(q − 4)!(24 + 1)!
∇24+1φm N = 2q + 1. (48)

Leon and Manna introduce in [2] the hypothesis of slow variation of a generic function

φn through the condition

|∇k+1φm| = ε2|∇kφm| + O(ε4). (49)

Equation(49) is a necessary condition to rewrite ∇φm in terms of 5Nφm via equation (48).

One can show very easily that equation (49) gives undetermined results as soon as N > 3. In

fact, from (49) one has

|∇2φm| = ε2|∇φm| + O(ε4) (50)

|∇3φm| = ε2|∇2φm| + O(ε4). (51)

Substituting (50) into (51), we get

|∇3φm| = ε2(ε2|∇φm| + O(ε4)) + O(ε4) = O(ε4) (52)

which is an undetermined equation.

Thus a new slow variation hypothesis is necessary to provide reasonable results. Work

on this is in progress.

This work has been carried out with the financial support of INTAS and the Russian Foundation

for Fundamental Research. RY thanks the University of Roma Tre for hospitality.
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