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Abstract. We present a new class of non-point groups of transformations for scalar evolution
chain equations. Then we construct the class of differential equations on the lattice which admits
such group transformations.

1. Introduction

In the case of a continuous scalar evolution equation, the most general symmetry for which
one can think of constructing the corresponding group transformation is given by a contact
transformation. Equations of the form

ut = f (t, x, u, ux, uxx, . . .)

may admit a one-parametric group (1PG) of point and contact transformations of the form

t̃ = θ(τ, t) x̃ = ϕ(τ, t, x, u, ux) ũ = ψ(τ, t, x, u, ux).

The corresponding point and contact symmetries are of the form

uτ = g(t)ut + h(t, x, u, ux)

such that

uτt = utτ .

From the knowledge of such a symmetry, we can always reconstruct the group transformation
by solving a system of coupled differential equations with boundary conditions.

In the case of differential equations on the lattice

un,t = fn(t, un, un±1, un±2, . . .) (1)

the only class of symmetries which are known to be integrable, i.e. for which one can easily
obtain the class of a 1PG of transformations, are the intrinsic point symmetries [3]

un,τ = g(t)un,t + hn(t, un) (2)

whose corresponding group transformations read

t̃ = θ(τ, t) ũn = ϕn(τ, t, un). (3)
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Our aim is to show that equations (1) may admit a 1PG of transformations which is more
general than those given by equation (3). In particular, in section 2 we show how any system of
coupled evolution equations on the lattice can always be written as a scalar evolution equation
on the lattice, possibly with n-dependent coefficients. Using this connection, we are able to
present some nice examples of non-point transformations for scalar evolution equations on the
lattice.

Starting from the general theory of 1PG transformations depending on few neighbouring
points on the lattice, we are able to construct the simplest classes of integrable non-point
symmetries.

In section 3 we present a few theorems which provide a class of evolution equations on
the lattice depending on un+2, un+1, . . . , un−2. Among those equations, there is the discrete
Burgers equation

u̇n = unun+1(un+2 − un) (4)

and in section 4 we show how we can extend the class of solutions of this equation by the use
of the so obtained non-point group transformations. Section 5 is devoted to a few concluding
remarks.

2. Integrable non-point Lie symmetries

2.1. Existence of non-point non-trivial transformations

Let us introduce the transformation TM which allows us to rewrite a scalar chain as a system of
M equations and a system of M chain equations as an n-dependent scalar chain. TM is given
by

TM : un → Uk = (u1
k, u

2
k, . . . , u

M
k ) with uik = uMk+i . (5)

This transformation is obviously invertible. Such a transformation is well known, but it is used
very seldom. Using the transformation (5), we can rewrite equation (1) as the system

Uk,t = Fk(t, Uk, Uk±1, . . .). (6)

To clarify this assertion let us consider a few examples. For instance, in the case of the
Volterra equation

un,t = un(un+1 − un−1) (7)

we can have M = 2, as the equation involves three points on the lattice. The transformation
(5) with M = 2 corresponds to splitting the points on the lattice into even and odd. Then
equation (7) can be rewritten as the system

u1
k,t = u1

k(u
2
k − u2

k−1) u2
k,t = u2

k(u
1
k+1 − u1

k).

On the other hand, the polynomial Toda chain

ak,t = ak(bk − bk−1) bk,t = ak+1 − ak
which is equivalent to equation (6) withM = 2, is expressed as an n-dependent scalar equation
by interpreting bk and ak as the even and odd part of a function un

un,t = (pnun + pn+1)(un+1 − un−1) (8)

where

pn = 1 for odd n and pn = 0 for even n. (9)
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Thus, in the field of discrete evolution equations, any system can be substituted by a scalar
equation, i.e. one can think that there are no systems of equations and only scalar difference
equations do exist. Moreover, by considering scalar lattice equations, one also obtains results
on the theory for systems (6).

The same transformation also applies to the symmetries, local conservation laws (see, e.g.,
[4]) and 1PG of transformations. In particular, using the transformations TM , we can obtain
transformations for scalar equations (1) which are not point ones. LetM = 2, and the 1PG of
point transformations be given by

ũ1
k = u1

k + τu2
k ũ2

k = u2
k.

Using equation (5), we obtain the explicit formula

ũ2k+1 = ũ1
k = u1

k + τu2
k = u2k+1 + τu2k+2

ũ2k+2 = ũ2
k = u2

k = u2k+2.

Introducing pn according to equation (9), we have for all n

ũn = un + τpnun+1 (10)

i.e. a scalar non-point 1PG of transformations.
As is well known, systems may admit non-point transformations when written down in

triangular form (see, e.g., [1, 5, 6]). 1PGs of triangular transformations are well known, but are
not very well investigated. A transformation for a system of equations is said to be triangular
when, if one writes it down in matrix form, it is represented by a triangular matrix. In such a
case the off-diagonal terms can depend on higher derivatives and one can still obtain the 1PG
of transformations from the symmetries. As an example, in the case of systems of continuous
equations, the following formulae:

ũ = u ṽ = v + τux

define a 1PG of triangular transformations which are non-point ones. In the case of system (6)
withM = 2, we define a triangular 1PG as

ũ1
k = u1

k ũ2
k = u2

k + τϕ(u1
k+1, u

1
k)

where ϕ is an arbitrary function of two variables. For the corresponding n-dependent scalar
transformation we obtain

ũn = un + τpn+1ϕ(un+1, un−1) (11)

where pn is defined in equation (9).
We can consider generalizations of equations (10) and (11) when no periodic function is

involved. Consider, for example, a 1PG of transformations given by

ũn = un + τλnϕn(t, un+1, un−1) (12)

where ϕn is an arbitrary n-dependent function of three variables, and λn is an n-dependent
constant satisfying the condition

λn+1λn = 0 ∀ n. (13)

The condition only means that if λi �= 0 for some n = i, then λi+1 = λi−1 = 0, while if λi = 0
than λi+1 and λi−1 may be different from zero. The corresponding symmetry has the form

un,τ = λnϕn(t, un+1, un−1). (14)

If for a given equation, one has a symmetry of the form (14), the corresponding group
transformation is given by equation (12).
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2.2. Construction of transformations depending on just one shifted variable

In this subsection we consider a class of Lie group transformations of the form

ũn = Hn(τ, t, un, un+1) Hn(0, t, un, un+1) = un (15)

∂Hn

∂un+1
�= 0 for at least some n (16)

withHn an analytic function of all its arguments (not only of τ ). By imposing the group closure
condition, it can be shown that such group transformations can be written in the form

ũn = λnRn(τ, t, un, un+1) + (1 − λn)Qn(τ, t, un) (17)

∂Rn

∂un+1
�= 0 ∀ n (18)

λ2
n = λn and λnλn+1 = 0 ∀n λn �= 0 for some n. (19)

Here Rn and Qn are such that

Rn(0, t, un, un+1) = Qn(0, t, un) = un (20)

with

Qn(τ + η, t, un) = Qn(η, t,Qn(τ, t, un)) (21)

Rn(τ + η, t, un, un+1) = Rn(η, t,Rn(τ, t, un, un+1),Qn+1(τ, t, un+1)). (22)

As equation (15) represents a 1PG of Lie transformations, which, by definition, depend
analytically on the group parameter τ , Rn and Qn can be represented by a Taylor expansion
in τ :

Rn(τ, t, un, un+1) = un + τrn(t, un, un+1) + τ 2r1
n(t, un, un+1) + · · · (23)

Qn(τ, t, un) = un + τqn(t, un) + τ 2q1
n(t, un) + · · · . (24)

Introducing equations (23), (24) into (22), (21), we obtain two equations polynomial in τ and
ηwhich must be satisfied identically for any τ and η and define in a unique way the coefficients
of (23) and (24). We obtain, for example,

q1
n = 1

2
qn
∂qn

∂un
q2
n = 1

3
qn
∂q1
n

∂un
. . . (25)

r1
n = 1

2

(
rn
∂rn

∂un
+ qn+1

∂rn

∂un+1

)
r2
n = 1

3

(
rn
∂r1
n

∂un
+ qn+1

∂r1
n

∂un+1

)
. . . . (26)

It is easy to show that by introducing the infinitesimal generator

X̂ = [λnrn(t, un, un+1) + (1 − λn)qn(t, un)]∂un (27)

and its prolongation

prX̂ = X̂ + [λn+1rn+1(t, un+1, un+2) + (1 − λn+1)qn+1(t, un+1)]∂un+1 (28)

we obtain

λnRn(τ, t, un, un+1) = eτprX̂λnun (29)

(1 − λn)Qn(τ, t, un) = eτX̂(1 − λn)un. (30)
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The symmetries corresponding to equation (15) are given by

un,τ = λnrn(t, un, un+1) + (1 − λn)qn(t, un) = Sn (31)

∂rn

∂un+1
�= 0 ∀ n (32)

where λn is given by (19). Equations (31) and (32) are a straightforward consequence of the
group transformation (17)–(19), and given (31) and (32), (17)–(19) are reobtained by taking
into account (29) and (30). This form of the symmetries will be used to solve the classification
problem and obtain the class of differential difference equations which possess this class of
symmetries.

3. Equations with non-point integrable symmetries

Let us consider the following class of equations:

un,t = fn(t, un+M, un+M−1, . . . , un+N) (33)

N � M M � 1
∂fn

∂un+M
�= 0 ∀n (34)

and symmetries given by equations (31) and (32).
The compatibility condition for (31) and (33) takes the form

∂Sn

∂t
+
∂Sn

∂un
fn +

∂Sn

∂un+1
fn+1 =

M∑
k=N

∂fn

∂un+k
Sn+k. (35)

Differentiating (35) with respect to un+M+1, we obtain

λn
∂rn

∂un+1

∂fn+1

∂un+M+1
= λn+M

∂fn

∂un+M

∂rn+M

∂un+M+1
. (36)

No function can vanish here, but λn (see (32) and (34)), and the values of λn belong to the set
{0, 1}. Hence

λn+M = λn ∀ n. (37)

Thus λn must be M-periodic. In such a case, the symmetry (31) can be rewritten as a system
of point symmetries for a system of M equations. In the case M = 1, the condition (37)
means that λn is a constant. However, this is impossible (see equation (19)). So, if M = 1,
equation (33) cannot possess symmetries of the form (31). This is the case of the Toda and
Volterra lattices (7) and (8) and many other integrable lattice equations which are of the form
(33) and (34) withM = 1 and N = −1. The Burgers-type equation

un,t = un(un+1 − un) (38)

belongs to the class (33) and (34) withM = 1 andN = 0; so it also does not have symmetries
of the form (31).

We will consider here the caseM = 2, restricting ourselves to the case of n-independent
equations for the sake of simplicity. This class contains, for instance, the simplest higher
equations of the Volterra and Burgers hierarchies, (7) and (38). More precisely, we will
consider the class of equations

un,t = f (t, un+2, un+1, . . . , un+N) (39)

N � 0
∂f

∂un+2
�= 0. (40)
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Condition (37), forM = 2, means that λn is nothing but the two periodic projector pn defined
as in equation (9). So we will be considering symmetries of the form

un,τ = pnrn(t, un, un+1) + qn(t, un) = Sn (41)

∂rn

∂un+1
�= 0 ∀ n. (42)

Under such general assumptions, we provide below two results (expressed as propositions)
in which the form of symmetries is almost completely defined (up to functions depending only
on n and t). After that the classification for any given N will be just technical work which is
carried out by using a symbolic manipulation program.

We will carry out the classification up to point transformations of the form

t̃ = θ(t) ũn(t̃) = φ(t, un(t)) (43)

which preserve the form of equations (39) and (40).
Let us rewrite condition (36) in terms of

Rn(t, un, un+1) = ∂rn

∂un+1
F(t, un+2, . . . , un+N) = ∂f

∂un+2
. (44)

Then it takes the form

pnRn(DF) = pnFRn+2 (45)

where D is the shift operator such that

DF(t, un+2, . . . , un+N) = F(t, un+3, . . . , un+N+1). (46)

We can then state the following proposition.

Proposition 1. Condition (45) is satisfied if and only if an equation of the class (39) and (40),
and its symmetry of the class (41) and (42) can be expressed (up to point transformations (43))
in the form

un,t = ∂r

∂un+1
(Dr) + g(t, un+1, . . . , un+N) (47)

un,τ = pnr + qn(t, un) (48)

where r is an n-independent function

r = r(t, un, un+1)
∂r

∂un+1
�= 0. (49)

Proof. If

∂F

∂un+N
�= 0 N � −1

then equation (45) implies pn ∂F
∂un+N

Rn+2 = 0 for any n, i.e. F does not depend on un+N . This
contradiction shows that

F = F(t, un+2, un+1, un).

Now we are going to show that there exist functions R,Q such that

Rn = R(t, un, un+1) �= 0 ∀n F = QR(DR) Q = Q(t) �= 0. (50)
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Condition (45) is equivalent to

pn
(DF)

Rn+2
= pn

F

Rn
= pnKn+1 (51)

where the function Kn, defined by equation (51), depends only on t , un and un+1. We can
rewrite equation (45) as

pnF = pnRnKn+1 pn+1F = pn+1KnRn+1. (52)

Let us denote Rn at a fixed number n = i (where i is an odd number) by R:

R(t, x, y) = Ri(t, x, y) (53)

where x = ui and y = ui+1. Putting, at first, n = i in the first of equations (52), we obtain
(see equation (9))

F(t, z, y, x) = R(t, x, y)Ki+1(t, y, z) (54)

where z = ui+2, and then n = i − 1 in the second of equations (52) we obtain

F(t, z, y, x) = Ki−1(t, x, y)R(t, y, z) (55)

where now z = ui+1, y = ui and x = ui−1. This implies

Ki+1(t, y, z)

R(t, y, z)
= Ki−1(t, x, y)

R(t, x, y)
= Q(t, y)

i.e.

Ki−1(t, x, y) = R(t, x, y)Q(t, y) (56)

and thus for F (see equation (55)) we obtain

F(t, z, y, x) = Q(t, y)R(t, x, y)R(t, y, z). (57)

We see that we must haveQ �= 0 and R �= 0 as F �= 0.
Following the same procedure which we used to obtain equations (54) and (53), the first

of equations (52) for n = i − 2 gives (see also equation (56))

F(t, z, y, x) = Ri−2(t, x, y)Ki−1(t, y, z) = Ri−2(t, x, y)R(t, y, z)Q(t, z). (58)

Comparing equation (58) with (57), we obtain

Q(t, y)R(t, x, y) = Ri−2(t, x, y)Q(t, z).

This means Q = Q(t), as Rn does not vanish for any n. Taking into account equation (57),
we are led to the following representation:

F(t, un+2, un+1, un) = Q(t)R(t, un, un+1)R(t, un+1, un+2)

which proves the second part of equation (50).
If we return to equation (51) and use the definition of F given in the second part of

equation (50), we have

pn
Q(DR)(D2R)

Rn+2
= pn

QR(DR)

Rn
. (59)

Introducing the quantity

Gn = R(t, un, un+1)

Rn(t, un, un+1)
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equation (59) can be rewritten as

pnGn+2 = pnGn. (60)

This means that for n odd the functionsGn are all equal (see definition (9) ofpn) and, therefore,
are equal to Gi . It follows from equation (53) that Gi = 1, hence

Rn(t, un, un+1) = R(t, un, un+1) (61)

for all n odd. Only functions rn with n odd play a role in equation (41) for symmetries; so
we may define the functions rn for the other values of n (and therefore Rn) as we like. So, we
consider equation (61) to be valid for all integer n thus proving equation (50).

Consequently, we can introduce a function r such that

r = r(t, un, un+1)
∂r

∂un+1
= R �= 0. (62)

Then we have (see equations (44) and (50))

∂rn

∂un+1
= ∂r

∂un+1

∂f

∂un+2
= Q(t)

∂r

∂un+1

(
D

∂r

∂un+1

)
. (63)

Integrating equation (63), we are led to the following representation for our equation and its
symmetry:

un,t = Q(t)
∂r

∂un+1
(Dr) + g(t, un+1, . . . , un+N) un,τ = pnr + qn(t, un).

We can apply a point transformation (43) with θ ′ = Q, φ = un(t) and redefine the functions
r , g, qn. After that we obtain equations (47)–(49). �

Let us consider equations of the form of equation (47) and symmetries of the form of
equations (48) and (49). Differentiating the compatibility condition (35) with M = 2 and
fn = f (where f and Sn are given by the right-hand side of equations (47) and (48)) with
respect to un+2 and dividing by F (see equation (44)), we are led to a second condition which
can be written in the form

(logF)τ = (D − 1)

(
1

F

∂Sn+1

∂un+2

∂f

∂un+1
− ∂Sn+1

∂un+1
− ∂Sn

∂un

)
. (64)

Equation (64) has the form of a local conservation law, and we can express it as the
condition that (logF)τ ∼ 0, i.e. that there exists a function +n (depending only on a finite
number of variables un+k), such that (logF)τ = +n+1 − +n. Using the representation of F
given in equation (50) withQ = 1 and R defined by equation (62) and its consequences

(logF)τ = (D + 1)(logR)τ = 2(logR)τ + (D − 1)(logR)τ

we find that

(logR)τ ∼ 0. (65)

This condition means that logR is a conserved density of equation (48). This is a condition
only for the symmetry (48), and it is a strong restriction. This allows us to write the following
proposition.
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Proposition 2. Equations (47)–(49) satisfy condition (64) if and only if they can be written
(up to point transformations (43)) in one of the following 2-forms.

In the linear case:

un,t = un+2 + b(t)un+1 + h(t, un, . . . , un+N) (66)

un,τ = pnβ(t)un+1 + (γ (t) + µn(t))un + νn(t) (67)

β �= 0 µn+1 + µn = pn+1βb (68)

and in the nonlinear case:

un,t = unun+1un+2 − u2
nun+1 + b(t)unun+1 + h(t, un, . . . , un+N) (69)

un,τ = pnunun+1 − pn+1u
2
n + µn(t)un (70)

µn+1 + µn = (pn+1 − pn)b. (71)

Here N � 0, and pn is defined according to equation (9).

Proof. From equation (65) we obtain

∂ logR

∂un
Sn +

∂ logR

∂un+1
Sn+1 = +n+1 −+n (72)

where+n may depend only on t , un, un+1. The second derivative of equation (72) with respect
to un and un+2 gives

∂2 logR

∂un∂un+1

∂Sn+1

∂un+2
= 0. (73)

As ∂Sn+1
∂un+2

= pn+1(DR), from equation (73) it follows that ∂2 logR
∂un∂un+1

= 0. So R can be written as
R = a(t, un)c̃(t, un+1). Then for the function r , we obtain

r = a(t, un)c(t, un+1) + r̃(t, un)

where a ∂c
∂un+1

�= 0 due to equation (49). The function r̃ disappears if we redefine g and qn in
(47) and (48). Applying the point transformation ũn = c(t, un) and redefining a, g and qn, we
obtain the same formula for r , but with c = un+1 and r̃ = 0. So, we are led to equations (47)
and (48) with

r = a(t, un)un+1 (a �= 0) (74)

instead of (49).
As R = a(t, un), from equation (65) we have

(log a)τ = pn
∂a

∂un
un+1 + qn

∂ log a

∂un
= +n+1 −+n (75)

where+n = +n(t, un). Applying the operator ∂2

∂un∂un+1
to equation (75), we obtain pn ∂

2a
∂u2

n
= 0,

which implies

a = α(t)un + β(t). (76)

Now we consider separately the two different cases α = 0 and α �= 0.
In the case α = 0, after obvious transformations, we are led, taking into account

equations (47), (48), (74) and (76), to the following form of the equation and symmetry:

un,t = un+2 + g(t, un+1, . . . , un+N) (77)

un,τ = pnβ(t)un+1 + qn(t, un) β �= 0. (78)
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Introducing the functions

G(t, un+1, . . . , un+N) = ∂g

∂un+1
Qn(t, un) = ∂qn

∂un

the condition (64) gives

(D − 1)(pn+1βG−Qn+1 −Qn) = 0

and hence

pn+1βG = Qn+1 +Qn − 2γ (t) (79)

where γ is an arbitrary function, and G = G(t, un+1, un).
Moreover, G must be of the form G = DA(t, un) + B(t, un). Introducing this into

equation (79), we have

Qn+1 − γ − pn+1β(DA) = −Qn + γ + pn+1βB = ηn(t)

or else

Qn − γ = pnβA + ηn−1 = pn+1βB − ηn.
If we consider the second equality for odd and even values of n, we see that A and B do not
depend on un, then Qn also does not depend. So, G is just a function of t , and qn is a linear
function of un:

G = b(t) qn = (γ (t) + µn(t))un + νn(t). (80)

Introducing these formulae in equation (79), we obtain the second of conditions (68). Taking
into account equations (77), (78) and (80), we are led to equations (66)–(68), i.e. we have
proved the first part of proposition 2.

Let us now consider the second case α �= 0 in equation (76). Applying the transformation
ũn = αun + β to equations (47), (48), (74) and (76), we obtain the same formulae as before,
but with

r = unun+1. (81)

This means that our equation and its symmetries now have the form

un,t = f = unun+1un+2 + g(t, un+1, . . . , un+N) (82)

un,τ = Sn = pnunun+1 + qn(t, un). (83)

From condition (65) we obtain

(log un)τ = pnun+1 +
qn

un
∼ pn+1un +

qn

un
= +n+1 −+n

where +n is just a t-dependent function. So, pn+1un + qn/un is a function µn(t) and thus

qn = −pn+1u
2
n + µn(t)un. (84)

Let us take into account condition (64), which we can now rewrite as

(D − 1)
pn+1

un

∂g

∂un+1
= pn+1un − pnun+1 + µn+2 + µn+1. (85)

Introducing νn, such that

pn+1

un

∂g

∂un+1
= −pn+1un + νn (86)
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we obtain from equation (85) the relation

νn+1 − νn = µn+2 + µn+1. (87)

Condition (87) implies that νn = νn(t). Considering equation (86) for n even (see the
definition of pn), we obtain for g an equation of the form

1

y

∂g(t, x, y, . . .)

∂x
= −y + b(t)

which implies

g = −u2
nun+1 + b(t)unun+1 + h(t, un, . . . , un+N). (88)

Condition (86) is equivalent to

νn = pn+1b

and condition (87) is equivalent to equation (71) for µn. Taking into account equations (84)
and (88), we obtain from equations (82) and (83), formulae (69)–(71) which conclude the
proof of proposition 2. �

Starting from the results of proposition 2 we can easily prove by straightforward calculation
the following theorem.

Theorem 1. An equation of the form

un,t = f (t, un+2, un+1, un, un−1, un−2)
∂f

∂un+2
�= 0 (89)

possesses a symmetry of the form (41) and (42) if and only if that equation and its symmetry can
be expressed (up to a point transformation (43) and a scaling τ̃ = cτ ) in one of the following
two forms.

In the nonlinear case:

un,t = unun+1(un+2 − un) +
h(t)

un−1

(
1 − un

un−2

)
(90)

un,τ = pnunun+1 − pn+1u
2
n + δ(−1)nun (91)

and in the linear case:

un,t = un+2 + h(t)un−2 (92)

un,τ = pnun+1 + (ε + δ(−1)n)un + νn(t) (93)

ν ′
n = νn+2 + hνn−2. (94)

Remark. It follows from this theorem that the equation

un,t = 1

un−1

(
1 − un

un−2

)

also has the symmetry (91), while the equation un,t = un−2 has the symmetry (93) with
ν ′
n = νn−2.
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4. Applications of the transformations to the kink solutions for the Burgers equation

In the class of equations obtained in theorem 1, associated with the integrable non-point
symmetries presented in section 3, is included, when h(t) = 0, the higher-order Burgers
equation (4). This equation [2] possesses a trivial linear representation, but nevertheless has
many of the properties of integrable nonlinear systems. In particular, it has an infinite class of
exact solutions of kink type. The simplest kink solution is given by

un(t) = e−(n+1)k+e−2k t + e(n+1)k+e2k t+n0

e−nk+e−2k t + enk+e2k t+n0
(95)

where k and n0 are two arbitrary parameters. Formula (95) is plotted in figure 1. Theorem 1
gives us the non-point integrable symmetry which can be associated with it

un,τ = pnunun+1 − pn+1u
2
n + δ(−1)nun (96)

with pn given by equation (9). Integrating this symmetry we obtain a non-point 1PG of
transformations given by

ũn(t) = un + pnun(δ − un+1)(e
−δτ − 1)− pn+1

un(δ − un)(e−δτ − 1)

1 + (e−δτ − 1)(δ − un) . (97)

In figure 2 we present the one-kink solution of figure 1 transformed under the
transformation (97). This transformation acts differently on the even and odd points of the
lattice. Moreover, the transformation changes when δ − un(t) changes sign. As one can see
from figure 1, the initial kink solution, for the parameters chosen, has amplitude equal to
u0(0) = 1 at the origin n = 0. So the behaviour of the transformation is different if δ is less
than or equal to 1 or is much greater than 1. In figure 2 one can find a plot of the one-kink
solution (95) transformed by (97) with δ = 1. In this case we can clearly see a different
behaviour between even and odd points of the lattice and the difference in results when un(t)
is less than δ at the left of n = 0, where u2k+1(t) > u2k(t), and when un(t) is greater than δ
at the right, where u2k(t) > u2k+1(t). A different behaviour can be observed in figure 3 when

Figure 1. The one-kink solution of the differential-difference Burgers equation un(t) for k = 0.1,
n0 = 0, t = 0.
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Figure 2. The transformed one-kink solution of the differential-difference Burgers equation ũn(t)
for k = 0.1, n0 = 0, t = 0, τ = −0.095 and δ = 1.

Figure 3. The transformed one-kink solution of the differential-difference Burgers equation ũn(t)
for k = 0.1, n0 = 0, t = 0, τ = −0.091 and δ = 2.

δ is always greater than un(t). In such a situation un(t) is increased at the odd points of the
lattice, while it is decreased at the even points of the lattice.

A similar behaviour can be observed for all the multikink solutions of the Burgers equation.

5. Conclusions

In this paper we have shown that in the case of differential difference equations we can extend
the class of integrable symmetries from the case of intrinsic point symmetries [3], where the
infinitesimal generator depends on the dependent field un(t) only in the point n of the lattice,
to the case when the infinitesimal generator depends on a few neighbouring points of the
lattice. To be able to integrate the symmetry generator and obtain a transformation which
satisfies the conditions necessary to form a Lie group, we need the coefficients to depend
explicitly on n. The transformations so obtained are such that they have no counterpart in
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the continuous limit when the lattice spacing goes to zero and the number of lattice points
to infinity. Restricting ourselves, for the sake of simplicity, to the case of transformations
depending on only two points in the lattice, un(t) and un+1(t), we find that the class of equations
which possess such symmetries is given fundamentally by the differential-difference Burgers
equation and the equations equivalent to it by point transformations. If we now start from the
Burgers equation (4) and look for its integrable symmetries, it is easy to see that the following
symmetries are part of its symmetry algebra:

un,τ1 = pn
(
tunun+1 + 1

2 (n + 1)
) − pn+1

(
tu2
n +

n

2

un

un−1

)
(98)

un,τ2 = pnunun+1 − pn+1u
2
n un,τ3 = pn − pn+1

un

un−1
(99)

un,τ4 = (pn − pn+1)un. (100)

These symmetries contain those presented previously in equation (96).
We can extend the class of symmetries, by considering group transformations of the form

ũn(t) = Hn(τ, t, un+N(t), un+N−1(t), . . . , un−M(t)) Hn(τ = 0) = un(t). (101)

Introducing the infinitesimal generator corresponding to (101)

hn(t, un+N(t), un+N−1(t), . . . , un−M(t)) = dHn
dτ

(τ = 0) (102)

we can introduce the following differentiation operator:

Dτ =
∞∑

i=−∞
hn+i

∂

∂un+i
. (103)

Consequently, the group closure condition becomes

Hn = eτDτ un (104)

which, introducing the functions

hkn(t, un+N(t), un+N−1(t), . . . , un−M(t)) = ∂kHn

∂τ k
(τ = 0)

h0
n = un(t) h1

n = hn

(105)

is equivalent to the following conditions:

h2
n = Dτhn h3

n = Dτh
2
n . . . . (106)

These conditions mean that the functionshknmust depend only on the variablesun+N, . . . , un−M .
In particular, in the case whenN = 1 andM = 1, a functionHn which satisfies the conditions
(106) is given by

Hn = λnµnAn + λn(1 − µn)Bn + (1 − λn)µnCn + (1 − λn)(1 − µn)Dn (107)

where

An = An(τ, t, un−1(t), un(t), un+1(t))

Bn = Bn(τ, t, un(t), un+1(t))

Cn = Cn(τ, t, un−1(t), un(t))
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and

Dn = Dn(τ, t, un(t))

with

∂An

∂un+1

∂An

∂un−1

∂Bn

∂un+1

∂Cn

∂un−1
�= 0 λnλn+1 = µnµn+1 = 0 for any n.

Clearly, the same structure is also valid for the infinitesimal coefficient hn.
We leave to a subsequent work the study of the equations associated with such higher non-

point integrable symmetries together with a more detailed analysis of the triangular symmetries.
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