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MULTI-COMPONENT INTEGRABLE SYSTEMS AND
NONASSOCIATIVE STRUCTURES

Dedicated to the memory of S.1. Suvinolupov

L T. HABIBULLIN, V.V. SOKOLOV, R.I. YAMILOV

Ufa Institute of Mathemalics, Russian Academy of Sciences
112 Chernyshevsky Street, Ufa, 450000, Russia

Some classification results concerning integrable multi-component evolution
equations are presented. They are naturally formulated in terms of nonassociative
algebraic structures and their deformations. A number of new examples
of integrable evolution, hyperbolic and differential-difference multi-component
equations and integrable boundary conditions for them are given.

1 Introduction

This survey contains all main results of Sergey Svinolupov concerning the
classification of integrable multi-component systems. He intended to write a
review article on the subject for the Proceedings, but his tragic death destroyed
the plan in embryo. We, being coauthors of some of his works, are trying to
do something instead of him.

Sometime, we formulate less general results than in original papers. Some
results of Sections 3 and 5 are published for the first time.

The symmetry approach to the classification of integrable equations is
based on observation (see 62:%:%8) that both linearizable equations and equations,
integrable by the inverse scattering method, possess higher symmetries. The
approach turns out to be most efficient for evolution equations of the form

iy = Al + F (4,8, ..., Un-1), (1)
where A is a constant matrix, @ = (u!,...,u")}, @ = 8'u/dz*.
The simplest case N = 1 was intensively investigated in 1979-1985 t
64,67,1,65,3,4.5,71 ¢ turns out that the existence of the higher symmetry
u; = G(u, ug, .. ., Um), m>n,

implies the solvability of a triangular chain of equations of the form

Dy (Xiy1) = filF, X1, .-, X3), i=1,...,m—mn, (2)
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where D, is the total derivative operator for equation (1 and X; are local
functions (i.e. functions depending on a finite number of variables u, Uy, ug, .. ).
As the equation D;(X) = f has a local solution only if 6 f/6u = 0, the chain
(2) leads to a set of conditions to which the rhs of (1) must satisfy. Using these
integrability conditions, Svinolupov and Sokolov (see %12:6:3.56) have found all
integrable equations of the form u, = F(, 2, %, s, us;) and scalar integrable
equations (1) for n = 3,4, 5.

R.I.Yamilov generalized the symmetry approach to the case of evolution
differential-difference equations and classified integrable Volterra and Toda
type lattices 48:49,

In the paper *°, higher symmetries were involved by Habibullin to investi-
gate initial boundary value problems for integrable equations. An effective
algorithm for describing integrable boundary conditions was presented. A
number of new such conditions for nonlinear equations of mathematical physics
were obtained in the paper 3.

Let us discuss multi-component equations (1). It is clear that the matrix A
in (1) can be reduced to the Jordan form by a linear transformation of @. The
case with A being degenerate or nondiagonalizable has not been investigated
yet. Let A be a diagonal nondegenerate matrix. Using a diagonalization
procedure (see 727%), one can prove that it is sufficient to consider two opposite
cases. First of them, when A has different eigenvalues, has been considered by
Mikhailov, Shabat and Yamilov #%7°. Svinolupov !! investigated the second
one in which A is the unity matrix. It turns out that this case is much more
similar to the scalar case than the first one. The system (2) 1s replaced by a
system of the form

Dz(Xi+1)+[Fn—lyXi+l]:fi(ﬁlea"'aXi)v i:]-;-")m_na (3)

where X; are local matrices, F; denotes the Jacobi matrix of F with respect
to 4;. For example, if we restrict ourselves to the equations

ﬂt:arxx+ﬁ(ﬁyazyﬁxr), 1=1,...,N, (4)
then first two equations of (3) take the form
DI(Xl)-I—[Fz,Xl]:Dg(Fz), (5)

DI(XQ)—{-[FQ,XQJI[Xl,Fl—FQQ]-I—Dt(Fl—Fzz). (6)

Using classifying conditions (3), Svinolupov investigated second order sys-
tems and some of third order ones. The results obtained will be formulated in
Section 2.
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The main technical problem in the classification of multi-component integ-
rable equations is that any straightforward calculation leads to enormous ex-
pressions quite impossible to deal with. The second point is that, in the case of
polynomial equations, integrability conditions yield an overdetermined system
of algebraic equations for coefficients of the rhs. As a rule, it is very difficult
to understand how many solutions such a system has. The most essential
problem is the third one. One should expect that the classification problem for
equations with arbitrary many unknown variables contains, as a subproblem,
a classical ”unsolvable” classification problem of algebra, such as, for instance,
the description of all finite dimensional Lie algebras.

In order to illustrate all above points, let us consider Svinolupov’s result
13 concerning the multi-component generalizations
of the Korteweg-de Vries equation. Here and below we assume that the
summation is carried out over repeated indices. Since any linear transformation
of @ preserves the class (7), the description of integrable cases has to be
invariant under these transformations.

To solve the problem of complication of computations, Svinolupov inter-
preted C?, as the structure constants of an (noncommutative and nonassocia-
tive) algebra J and rewrote (7) in the form

Us = Upge + U 0 Uy, (8)

where U(z,t) is a J-valued function. It is easy to see that equations related
by linear transformations correspond to isomorphic algebras.

It turns out that if J is commutative, then (8) is integrable iff J is the
Jordan algebra (see Appendix). Although there is no description of all the
Jordan algebras this result allows one: '

i) to check the integrability of a given system (7);

ii) to classify all integrable cases for small dimensions;

ii1) to construct the most interesting examples of an arbitrary high dimension.

Let us explain what the term “most interesting” means. A system of
equations (7) is called irreducible if it cannot be reduced to the block-triangular
form by an appropriate linear transformation (in the case of the block-triangular
system, the functions u!,...,u™ (M < N) satisfy an autonomous system of
the form (7), and remaining equations are linear in uM+l M) Tt turns
out that irreducible systems are associated with the simple algebras. Thus, one
can use a well-known algebraic result 3¢, namely, the exhaustive description of
all the simple Jordan algebras to construct all irreducible systems. They are
nothing but so-called vector and matrix Korteweg-de Vries equations *>2%.
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The most interesting example here is the following vector KdV equation
24
U = Upprt+ < Ciu> up+ < Cyup > u— < u,u; > C, (9)
where < , > is the standard scalar product, C is a given constant vector.
Usually (see *3), one refers to the system

Ut = Ugprt < Cou > Uzt < Cyuy >u {10)

as the vector KdV equation (cf. (9) and (10) with (96) and (97)). However, we
recommend (9) as a claimant upon this role, since the system (10) is reducible

unlike (9).
Section 3 is devoted to multi-component systems for which classification
parameters are not constants, as above, but functions of # = (u!,...,uN)t.

One of the most interesting classes of such systems arc hyperbolic systems of
the form
Uy, = a;k(ﬁ)uiuz. (11)

This class is important for applications in the string theory. For instance, the
chiral field models belong to it. The papers 243% contain new examples of
integrable systems (11).

The class (11) is invariant under point transformations: 7 = ¥(i). The
vector functions ozj- « (@) are transformed as components of an affine connection
I' under these transformations. It is clear that an invariant description of
integrable cases must be reduced to some conditions on the connection.

There exist the ”geometric” classes of equations in the evolution case too.
The simplest of them are

= Auk + (e, (12)
with A2 =1, and
Uy = U, + ol (@l uk, + B (@) udubul. (13)

Subsection 3.2 contains some examples of integrable equations (12) and (13)

The classification of integrable equations (13) has been given by Svinolupov
and Sokolov (see Subsection 3.3). In the process of classification, a new class
of affinely connected spaces associated with integrable equations (13) has been
found.

Apparently for any integrable system of the geometric type one can find
a preferred system of coordinates which is singled out by the fact that the
functions a;k(fi) are the structure constants of an N-parameter family J(u)
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of nonassociative algebras like the Jordan or left-symmetric ones. One can
regard such a family of nonassociative algebras, with the structure constants
depending on parameters, as a deformation of an algebra with the structure
constants aj-k(O). Deformations of nonassociative algebras defined by the
overdetermined consistent system

8a;-k
Hum

19,30

_ AT ir 1 T
= O Qpj + Qe — Omr Ok (14)

were investigated in All the examples of integrable systems of the
geometric type known to the authors are associated with the deformation (14).

There are several papers of Svinolupov, Yamilov and Adler devoted to
multi-component integrable generalizations of evolution differential-difference
equations (chains) 14234732 Unlike first Svinolupov’s papers, the purpose of
these ones was not to classify integrable cases, but only to construct integrable
multi-component examples and to show that the algebraic approach gives
results in the differential-difference case as well.

Results of Svinolupov and Yamilov obtained in the papers are
discussed in Section 4. It is well-known ®7 that Béacklund transformations of
integrable partial differential equations generate integrable differential-difference
equations, and using some special Backlund transformations, we can obtain
evolution differential difference equations 44546, For example, the nonreduced
Schrédinger equation (or ZS-AKNS equation)

14 23
s

Uy = Ugy + 2u?v, —v = Vzr + 20%u (15)
admits two special Backlund transformations. One of them is of the form
Gy = u+ aly, —vy = 7+ v, (16)
the second one is the following explicit invertible auto-transformation:
@ = gy —ulfu+u’v, U =1/u. (17)
In the first case, if we consider a chain of Backlund transformations which
links together solutions (u,v) = (Un41,vs) and (&, ) = (tn,vn-1) of (15), we
come to the system of differential-difference equations
Ung = Unyl +USVn,  —Vng = Un_1+ ViUn, (18)

where n is discrete integer variable. By carrying out the continuous limit, as
one does for the Volterra equation to obtain the Korteweg-de Vries cquation,
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we get (15). In the second case, a chain of Bicklund transformations which
links together solutions (u,v) = (un,v,) and (%,7) = (up41, Unt1) of (15) is a
system of the form:

Uner = v, /un + Ungr — U Uun_1. (19)

Introducing u,, = expg,,, we obtain the classical Toda model

Iner = eXP(Qn+l - Qn) - eXp(qn - qn—1)~ (20)

According to ??, conservation laws and higher symmetries of (18) and (20) can
be constructed using ones of (15).

In the same manner as above, multi-component generalizations of the
differential-difference Schrddinger equation (18) and the Toda chain (20) possessing
higher order symmetries and conservation laws will be constructed in Section
4. We will use the fact that there is a multi-component integrable analog of
the system (15) (see '® and Section 2).

In the next Section, we present results obtained by Svinolupov, Yamilov
and Adler 32. The paper 32 contains not only generalizations of the Volterra
equation but also examples of multi-component local master symmetries (both
differential-difference and partial differential ones). Such master symmetries
exemplify local evolution equations explicitly depending on the spatial variable
and integrable by the inverse scattering method.

The concept of the master symmetry was introduced in %61, As it is
known, for the first time the master symmetries have arisen and were investigated
as integrable equations with the spectral problem in which the spectral parameter
depends on the time (sec e.g. 3°74). Later it was observed that these equations
generate higher symmetries for usual integrable equations, and a possibility
appeared to give an algebraic definition for them.

The well-known Volterra equation

Une = vn(“n+1 - Un—l) (21)
can be rewritten in the form
Upne = UZ(U,H_l — un—l) (22)

by introducing u, such that w,41u, = v,. The form (22) is more convenient
to construct multi-component generalizations. The chain (22) possesses the
following local master symmetry

tnr = up[(n+ Datngs — (n = Dup_1] (23)
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obtained for the first time in 8 as an integrable chain. We see that (23) is
the local evolution equation, the rhs of which does not contain any integrals or
their difference analogs unlike, for example, the master symmetry of the KAV
equation
Ur = 2(Ugze + 6utiy) + 4(uss + 2u”) + 2u, 07 " (u).

This is the reason why the master symmetry (23) is called local. This master
symmetry admits an L — A pair with the spectral parameter depending on the
time 58,

Following 32, we point out in Section 5 the multi-component generalizations
of (22) and (23) corresponding to an arbitrary Jordan triple system. Moreover,
multi-component ” continuous” examples of local master symmetries will arise
there in a natural way.

In the last Section 6, we generalize results of ®1:*2:°* concerning the phenomena
of integrable boundary conditions, to the case of the multi-component Burgers
and nonlinear Schrédinger equations described in Section 2. Note that the
use of algebraic notation allows one to express not only equations but also
integrable boundary conditions in a compact elegant form.

Results of this Section have been obtained by Svinolupov in collaboration
with Habibullin 2829,

Let us remind the definition of the integrable boundary condition. A bou-
ndary condition

ug = f(u,t)]a=0 (24)

for an integrable equation

u = Flu,uq,...,Un) (25)
is said to be integrable if it is compatible with higher symmetries

ur = Gy, u1, ..., Um) (26)

of (25).
In order to explain the definition given above, we consider boundary conditions
of the form

s = F(W)l=o (27)

for the classical Burgers equation
Up = Ugr + 2Uly, (28)
compatible with the fourth order symmetry

uy = ug + duus + 10w ug + 6ulug + 12uu? + duPuy (29)
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of (28).
Differentiating (27) with respect to ¢ and using the Burgers equation one
gets the expression for the variable us in terms of u, uy:

uz = f'(u)(ug + 2uf(u)) — 2uuy — 2f(u)? = fi(u, uy).

After one more step of this kind, one can derive a formula for the variable us
us = fa{u,us, uq) . Then, differcntiating the constraint (27) with respect to
7 in virtue of the higher symmetry (29), we obtain the equality u,, = f.G,
where G is the rhs of (29). Using expressions given above, we can evaluate
from this equality the 7-derivative and the variables Ui, uz, us, and then,
by definition, the equality must be satisfied identically. After a calculation,
one is led to the following condition which is necessary and sufficient for the
boundary condition (27) to be compatible with the symmetry (29): fuuw = -2,
Le. f=—u?+4+Ciu+Cs. It has been proved in 53 that this boundary condition
is compatible with all the even order homogeneous symmetries of the Burgers
equation. Furthermore, if (27) is compatible with at least one higher symmetry,
then it is of the form uy = —u? + Cyu + Cs.

2 Polynomial systems

One of the most remarkable observations of Svinolupov is the discovery of
the fact that polynomial multi-component integrable equations are closely
connected to the well-known nonassociative algebraic structures as the left-
symmetric algebras, Jordan algebras, Jordan triple systerns, etc. This connection
allows one to clarify the nature of known vector and matrix generalizations (see,
for instance #!+%243) of classical scalar integrable equations and to construct
some new examples of this kind 24.

In this Section, we will consider some classes of polynomial integrable
systems of evolution equations generalizing the following famous scalar integrable
equations: the Burgers equation

Ut = Ugpr + 2UlUg,
the modified Korteweg-de Vries equation

U = Ugpr + ulug,
the nonlinear Schrodinger equation

Ut = Ugpy + 2“20, —V = Ugg + 2’()211, (30)
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and the nonlinear derivative Schrodinger equation

Up = Uz + 2(u2v),, —Up = Vgz + Q(UZU)x.

Class 2.1. The multi-component Burgers equation introduced by Svino-

lupov in ! is of the form

A . ik o .
up = Uy, + 205w vy + B w U™, i=1,...,N, (31)

where ui = u'(t, z), and the parameters a?k, b;km are constant. The summation
on the repeated indices is assumed.

The following classification statement holds.

Theorem 2.1. In order to the system of equations (31) possesses at least
one higher symmetry, it is necessary and sufficient that the set of parameters
@, b;- em Satisfy the constraints

i — ioor ior i ,T ior ior i o
jkm — §(ajrakm + QprQpmj + Ui — By Opry, — Qg Oy — armajk)) (32)

i T i r  __r i r i
T Apr@im = Ak Qrm — OkiCrm - (33)

The relation (33) means that a%, are the structure constants of a left-
symm_etric algebra A (see Appendix). Let e;,...,exy be a basis of A and
u = u'e;. Then (31) can be written in the following simple form

U = Upy +2uo0uy +uo(uou)— (uou)ou, (34)

where o denotes the multiplicationin A. Let us consider two simplest examples
of the systems (34).

Example 2.1. The set of all quadratic matrices forms an associative
(and, therefore, left-symmetric) algebra. The corresponding equation (34) is
the matrix Burgers equation

Ut = Ugg + 2'(“11- (35)

Example 2.2. (V.V. Sokolov) The left-symmetric algebra (89) generates
the following vector Burgers equation

U = Upe + 2 < U, up >C+2<u,C>uy +
HlulP? < v,C > C - [IC1*[|u]|u. (36)
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Every equation of the classes presented below has infinitely many higher
symmetries and a zero-curvature representation of the form U, — V, = [, v],
where U and V' belong to the superstructure Lie algebra of a Jordan algebra
or a Jordan triple system (see 38:0),

Class 2.2. Multi-component generalizations of the nonlinear Schrodinger
equation (see °) are given by the systems of 2N equations of the form

i i ik, m
up = gy + 205, uwIvtu
i _ 1 9 1 P ) (37)
Vi =~V — 2ay,,, v utu,
where ¢ = 1,..., N, and a,__ are constants. Without loss of generalit , We
* ) ’ Jkm

assume that a;km:a:nkj.
The following statement has been proved in 8.

Theorem 2.2. In order to the system (37) possesses at least one non-
degeneratc higher symmetry, it is necessary and sufficient that the constants
aj-km satisfy the following relation:

n

1 i n 1 n i no
CiknOmsp — Amsn gy — Crsp®ikm + Cmnp ks = 0. (38)

The relation (38) just means that azkm are the structure constants of a
Jordan triple system. Using this fact, one can write down integrable systems
of the form (37) in an invariant compact form. Setting u = u'e; and v = v¥e;,
we can see that (37) is equivalent to

U = Uz + 2{u, v,u}, Vp = —Uge — 2{v,u, v}. (39)
The formulas (94)-(97) given in Appendix yield examples of integrable matrix

and vector Schrédinger equations.

Example 2.3. The well-known vector Schrédinger equation 34
U = Uzp + 2 < u,v > u, Vg = —VUgp —2< 0, u >V (40)
corresponds to the Jordan triple system (97).
Example 2.4. A new integrable vector nonlinear Schrédinger equation

U = Upg + 4 < u, v > u— 2||ul?v, (a1)
Ut = —Vpr — 4 < v,u > v+ 2||v])Pu

contained in ?* corresponds to the Jordan triple system (96). Note that (41)
looks very similar to equations of the paper 7 devoted to the fibre optics.
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Example 2.5. The well-known matrix generalization of the Schrédinger
equation
Uy = Ugy + 2uvy, Uy = —Upgp — 20U, (42)

where v and v are m x m matrices, is associated with the Jordan triple system
(94).

For the next two types of multi-component equations, we do not formulate
any classification results (see '#1%21) but write down classes of equations
containing all irreducible systems.

Class 2.3. The following generalization of the derivative nonlinear Schré-
dinger equation
U = Uge + 2{v, 4, v}, Ut = —Vpr — 2{u, v, u}, (43)
is integrable for any Jordan triple system. Matrix and vector examples are
constructed using formulae (94)-(97).

Class 2.4. In Introduction we described the multi-component KdV equ-
ations. Here we present equations of the MKdV type. Equations of the form

Ui = Ugpgy + {ua U, U:c} (44)

are integrable for any Jordan triple system. Matrix and vector examples can
be obtained in the standard way (see 24).

3 Geometric type systems

Results of this Section have been obtained by Svinolupov and Sokolov.

3.1 Deformations of the Jordan algebras

It can be shown that for any initial data
O‘;’k(o) = a;‘k» (45)

where a;-k are the structure constants of a Jordan algebra Jy, a solution a;-k(u)
of (14) exists (for a sufficiently small u) and is unique. Morcover, a}k(u)
turn out to be the structure constants of a Jordan algebra J, for any u. Let
us denote by a;'-km(u) the structure constants of a Jordan triple system o,
generated by the algebra J, by means of the formula (99). There are two

important cases in which the deformation equation can be solved explicitly
19,30
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Construction 3.1. If Jy possesses the unity element e, then the multi-
plication ay(X,Y) in the J, is given by the formula

(X, Y) = —(e—u) " o(X oY) +(X o(e—u) ™ )oY +(Y ofe—u) "o X. (46)

The definition of the inverse element is contained in Appendix. For every
simple Jordan algebra the inverse element can be explicitly found. For example,
the simple algebra of the type A, is defined by the multiplication (91). The
inverse of v coincides with the standard matrix inverse v=!. For the algebra of
the type D, (see formula (92)),

L _2<Gu>C— O]y
EREE

v

Construction 3.2. Let {X,Y,Z} be a Jordan triple system, ¢(u) be a
solution of the following overdetermined consistent system

0

W = _{¢s €k, ¢}1 (47)
k=1,...,N. Then the structure constants of J(u) with the multiplication
o, (X,Y) ={X,4,Y} (48)

satisfy the deformation equation (14). The Jordan triple system corresponding
to (48) is of the form

ou(X,Y,Z) = {X,{¢,Y, ¢}, Z}. (49)
If {X,Y, Z} is given by (94), then one of the solutions of (47) is
o(u) =u"t. (50)

An analog of u~1 is well-known in the theory of the Jordan triple systems. Let
us define a linear operator Px by the formula Px (Y) = {X,Y, X}. Then, by
definition, v~ = P (u).

Assume that there is a vector X, such that Px is nondegenerate. Then
o(u) = P;_II_U(X + u) exists for small u and satisfies (47). Without loss of
generality, we assume in this case that

¢(u) = Pt (u). (51)

In particular, one can choose

o(u) = TP (52)
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for the Jordan triple system (96).

Let us take (97) for the Jordan triple system . It is easy to see that the
operator Px is degenerate for any X, and we must solve (47) straightforwardly.
The general solution is

C
W) =5 s Cas (53)
where C' is an arbitrary constant vector.
The formula (53) is a special case of the following formula
$(u) = C(C*u)™, (54)

where C is a constant n x m matrix, corresponding to the Jordan triple system

(95)

3.2 FEzamples of geometric typc integrable equations generated by
the deformation

We present here some classes of integrable equations closely related to the
deformation (14). A class of integrable chains generated by (14) is contained
in Section 4. Formulas (50}, (52), (53) allow one to build up one matrix and
two vector equations for every class, using Construction 3.2. We will write
down some of them explicitly. The paper 2* contains examples of integrable
equations corresponding to (54).

Class 3.1. Let J(u) be the deformation of a Jordan algebra. Consider
the equation
ey = (i, ), (55)
where ay, is the multiplication in J{u). In the matrix case, {55) coincides with
the equation of the principal chiral field

1
Upy = i(u,;u_luy + uyu~ ug). (56)

For this reason we will call (55) the Jordan chiral field equation.
It is easy to verify that (55) admits the following zero-curvature represen-
tation
v, = LL v ¥, = —2—L 04
xr (1-—A) Uz ) y—(1+/\) Uy <+
Here and below we denote by Ly the left multiplication operator: Lx(Y) =
a,(X,Y). Note that this formula gives us a zero-curvature representation for
(56):
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where ¥ is a matrix and

MU = —uu™ W — Uy, N = —uyu™ !0 — Ty~ ty,,
different from the standard one. It should also be remarked that (55) is
linearizable if J, is the deformation of a left-symmetric algebra (see 2430,

All equations of classes presented below have higher symmetries and zero-
curvature representations in the superstructure Lie algebra of J, (see 38).

Class 3.2. The following equation

3
Ut = Uggr — 3au(ua:a uxr) + s oulus, ug, u:v) (57)

2

of the form (13) is integrable if it corresponds to the deformation of a Jordan
algebra. Matrix and vector equations have the following form:

Up = Ugpy — §uxu_1u” — iu”u‘luz + —2-uxu—1uzu"1uz, (58)
where u(z,t) is an m x m matrix,
< U, Ugp > < U, Upy > < Up,Upy >
R TR T M
3 ||uz)? < U Uy D2 <u,up > |ugl)?
- Uz + 6 Uy — 3 u (59)
2 fJul? ™ fluf® ] ’
and
w = 1 3<C,u1>u -?1<C’u”>u +3<C,u$>2u
T Cu> T2 <Cus P Cust
Class 3.3. The following integrable equations
V¢ = VUppg — é‘avr (sz‘y Uzz) (60)

are related to ones of Class 3.2 by the potentiation u = v,. Vector equations
are of the form:

< Uy, Ury > 3 ”ul'l'“2
Ut = Uppgy — 3— -

P T e T 2 g
3< Cuge >

U = Uggy — ¢ Uzg-
2 <Ciuy >
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Class 3.4. The scalar representative of this class is given by the Heisenberg

model (see 7°)
2
Utzuzx_u+vu?;y vtz_vzx+u+vv§~
The following coupled equation
Ut = Upr — 20‘u+v (u:r:y u:c)) Uy = —VUgz + 2au+u(vx, vx) (61)

is integrable if it is associated with the deformation of a Jordan algebra. The
equation (61) has a higher symmetry of the form

Ut = Ugzgr — 60u+v(um u:cz) + 60’u+v (Ur; Uz, uz)a

UVt = Vzzg — 6C‘u+u (ny vzz) + 60’u+v (Uz; Vg, vz)~ (62)

Note that (62) belongs to Class 3.2. After the reduction u = v and the scaling
2u — u, it turns into (57). A matrix equation (61) is of the form

Up = Upy — 2ug(u + v)_lux, v = —Uggp + 2vp(u+ v)_lvz‘ (63)

One of vector equations is

< utv> l|uz|)?
Uy = Ugpy — 4 Uz +2 u+v),
¢= e A Y T g g )
< Vg, u+v> vz |12
U = —VUpp + 4 Vg — u 4 v).
b= e H AT T o )

3.8 Classification of integrable equations (13)
Let us consider the systems of the type (13). It is convenient to rewrite (13)

in the following way

dadt . . . .
km i r 3 r i k. m
4 205, Qe — O Oy + ﬁjkm)u;uzur , (64)

oul

i __ 8 i 7.k
Up = Upgq + 3ajkuxu:cz + (

where ﬂ;-km = ﬂ,’;jm = fnkj, ie.
B(X,Y,Z) =B(Y,X,2)=B(X,2,Y)

for any vectors X,Y, Z.

The class (64) is invariant under arbitrary point transformations u —
®(u), where u = (u',...,ul¥)". It is easy to see that under such a change
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of coordinates, a;-k and ,BJ"-km are transformed just as components of an affine
connection I' and a tensor, respectively. Let R and T be the curvature and
torsion tensors of T.

In order to formulate classification results, we introduce the following
tensor:

(XY, Z) = B(X,Y, 7) - %5(){, Y, 2) + -;;J(Z, X,Y),
where
§(X,Y,2) = T(X,T(Y, 2)) + R(X,Y, Z) - Vx(T(Y, Z)).
Using the Bianchi’s identity, one can find that

o(X,Y,2) =0(2,Y,X). (65)

Theorem 3.1. Eq. (64) possesses a higher symmetry of the form

uT:un+é(u,uz,---,un_1), n >3,
iff
Vx(R(Y,Z,V)) = R(Y, X, T(Z,V)), (66)
Vx (Vy(T(Z,V)) - T(Y,T(Z,V)) - R(Y, Z,V)) =0, (67)
Vx(o(Y,Z,V)) =0, (68)
T(X,0(Y,Z,V)) +T(Z,0(Y, X,V)) +
+T(Y,0(X,V,2)) +T(V,0(X,Y,Z)) =0, (69)
and

o(X,0(Y,2,V),W) - o(W,V,0(X,Y, Z)) +
+0(Z,Y,0(X,V,W)) — (X, V,c(Z,Y,W)) = 0. (70)

The identities (65) and (70) mean that J;:km(u) are the structure constants
of a Jordan triple system for any u.

It follows from (66) that any free-torsion space of this kind is the symmetric
one. In the case T # 0, a generalization of the symmetric spaces gives rise.
We don not know if such affine connected spaces have been considered by
geometers.
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Theorem 3.2. For every Jordan triple system {-, -, -} with the structure
constants s} em, bhere exists a unique (up to point transformations) integrable
equation (64), such that T =0 and

U;'km(o) = S;km' (71)

In the case T = 0, there is a class of integrable equations (64) generated by
the deformation (14). If the structure constants a;'-k (u) of a family of Jordan
algebras satisfy (14) and cr;km(u) are given by (99), then all the conditions
(65)-(69) turn out to be satisfied. Corresponding examples are presented above
(see Class 3.2). This class contains all integrable equations whose initial Jordan
triple system {-, -, -} (see Theorem 3.2) can be obtained from a Jordan algebra
by the triple product (99).

Equations with initial Jordan triple systems (96) and (97) cannot be
obtained in this way. Using some tricks, we have found such equations, solving
directly (66) and (68). They are of the form

_ 3 9 A—-1 9
e = s+ 3 (P(0,0)(C = [CIPw),, + 3557 G P, ue)u,
where A=1or A =0, and

<Ciug >u
P(u,uz) = it s Bttt
4 Multi-component generalizations of the differential-difference
Schrédinger equation and the Toda model

In this Section we, following the papers 14?3 by Svinolupov and Yamilov,
discuss integrable generalizations of the scalar chains (18) and (19). As it has
been said above (see Section 2), for any Jordan triple system we can construct
the multi-component Schrodinger system (39).

Theorem 4.1. The system of equations (39) admits a Backlund transfor-
mation of the form

Gy = u+ {&,v, 4}, —vy = ¥+ {v,%,v} (72)

iff {-,-,} is a product in the Jordan triple system.

In Theorem 2.2 the condition that a triple algebra associated with (39)
must be the Jordan triple system was derived by assurning that (39) possesses
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higher order symmetries. Now we have obtained the same condition, using
quite different assumption.

As in the scalar case (see Introduction), let us consider a chain of Backlund
transformations which links together solutions (u, v) = (un1,vn) and (i, 7) =
(tn,va—1) of (39). Such a chain is equivalent to the following system of
differential-difference equations:

Ung = Unt1 + {Un, Vn, Un},  —Unz = Uno1 + {Vn, un, v} (73)

It can be verified that (73) is a differential-difference approximation of
the system (39). According to 23, a chain obtained in this way is integrable:
conservation laws and higher symmetries of (73) can be constructed using the
known ones of (39) (see 1°).

Two vector and one matrix examples of chains of the form (73) can be
constructed as in the continuous case. For instance, the matrix example
corresponding to (95) is of the form

t _ t
Ung = Un41 + Un Uy Uy, ~Ung = Un—1+ UnU, Uy,

where u, and v, are N x M matrices. Vector chains (73) can be written as
follows:

Ung = Unt1+ < Un, Vn > Up, ~Ung = Un-1+ < Up, Up > Up;
and

Uny = Un41 +2< Un, Up > Un— < Up, Up > Un,

- vnx:vn—1+2<un1vn>vn_<Unyvn>un-

For all vector and matrix chains there are zero curvature representations
47, for any integrable chain of the form (73) there is a recursion operator 4. In
the case when the Jordan triple system is generated by a simple Jordan algebra,
the corresponding chain is Hamiltonian 4. The last statement is valid for all
chains and partial differential systems we discuss in Sections 2-5.

Theorem 4.2. If a system of the form (39) corresponds to the Jordan
triple system {-,-,-} generated by (99) from a Jordan algebra with unity
element, then this system is invariant under the following transformation:

U= Ups — {uz, u™ " up} 4 {u,v,u}, b=yl (74)

where u™! is the inverse of u.
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A chain of transformations (74) which links together solutions (u,v) =
(tn,vs) and (&,7) = (Un41,vn41) of (39) can be written in the form

Ungr — {um:aur_xla unz} + Unt1 — {un: u;ipun}' (75)

The chain (75) can be regarded as a Jordan generalization of the Toda
model. In particular, in the matrix case we have the well-known matrix Toda
chain:

(tnztin)o = tnyruy’ —unugly.

As Jordan triple system from Theorem 4.2 has to be generated by the

Jordan algebra with unity element, we can construct only one vector example

< Up, Ung > ”uﬂl‘||2
=2 — _
Unzz “unHZ Ung ”Un”2 Un + Un+ti
< Up,Un—1 > ”un”2
-2 Un + Up—1-
Munall® " llun-al® "

Conservation laws and higher symmetries of the Jordan Toda model (75)
can be constructed using ones of (39) 2.

5 Jordan analogs of the Volterra equation, and multi-component
local master symmetries

Here we present some results obtained by Svinolupov, Yamilov and Adler in
the paper 32. The Jordan analog of the Volterra equation is given by the
following multi-component differential-difference system:

Unz = {Un, Unt1,Un} — {Un, Un—1,Un}, (76)

where {-, -, -} is a Jordan triple system. The local master symmetry corresponding
to (76) have the form:

Unr = (n + 1){una un+1;un} - (n - 1){u"7 Un-1, u”}' (77)

Theorem 5.1 The chain (77) is the master symmetry of (76) if the
associated triple system {-, -, -} is the Jordan one.

Theoretically we, as usually, can construct one matrix and two vector
examples of the Jordan Volterra equations. However, one of the vector examples
is degenerate. In fact, in the case of the simplest vector triple system, we are
led to the chain

Upg =< Up41 — Un—1, Un > Up.
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If u, = (u},. .., ul))?, the constraint (log(u},/uf)); = 0 holds for any ¢ and j,
and one can easily reduce the multi-component chain under consideration to
the system consisting of N scalar equations (22).

It turns out that if the Jordan triple system is generated by a Jordan
algebra with unity element, then the chain (76) generates an invertible auto-
transformation

a=v—(uY),, i=u (78)

for the multi-component derivative Schrodinger equation (43) which also has
the local master symmetry

Ur = 2(Uee + 2{u,v,u}z) + (e + g)ur + 2{u, v, u},

vr = z(~vp — 2{v,u,v}s) + (a - g)vr +2{v,u, v}, (79)

where a is an arbitrary constant. As far as we know, equations (77) and (79)
are first examples of multi-component local master symmetries. Two following
examples explain why these equations are integrable and what is the difference
between a usual integrable equation and it’s master symmetry.

Example 5.1. In the matrix case the chain (76) admits the usual Lax
representation L,; = [A,, L,], where

L, = un(D+ D7}, 245 = untn1(D? + 1) — upup,_1(1+ D72,
and D is the shift operator. In the case of (77), there is the representation

1
Ln‘r = [-BnyLn] + §L?;

with the same operator L,, and
2B, =(n+ -;—)unun.,_l(D2 +1)—(n— %)unun_l(l + D7?),
This means that in the case of (77) we have the spectral problem
Lntn = Mn, Ynr = Bntp

with the spectral parameter A depending on the time 7 : A(7) = (¢ — )= 1/2,

The transformation (78) allows one to construct exact solutions for the
system (43), starting from a solution (u, v) such that v = 0 and u satisfies the
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multi-component heat equation u; = uz. As for system (79), this transforma-
tion (78) changes the parameter a: @ = a + 1. Consequently, to obtain exact
solutions of (79), we must use not only (78) but also the Galilei transformation:
# =z + 1. As a starting point, we can take a solution (u,v) such that v =0
and u satisfies the following linear equation:

Ur = TUgy + (@ + 5)“:0-

6 Integrable boundary conditions for multi-component equations

Here we present a class of integrable boundary conditions for multi-component
equations (34), (39) obtained by Habibullin and Svinolupov 2%29.

6.1 Integrable boundary conditions for the multi-component Burgers equations

Theorem 6.1. The following boundary conditions for the equation (34):

(Z(D‘ + L(uz + uow)) (Ki(uz + vou) + Miu+¢;))|z=0 =0 {80)

i=0
are integrable. Here K;, M; are arbitrary linear operators satisfying the identi-
ties
M;{(XoY)— (X oMY) =0, Ki(XoY)— (XoKY)=0, (81)
o is the multiplication in a left-symmetric algebra A, c; are constant vectors

satisfying the condition
AS(X,Y,c) =0. (82)

Both the equalities (81) and (82) must be held for all X,Y € A. The operator
D, is the total ¢-derivative for (34), and the operator L(X) is defined by
L(X)Y = X oY.

Since M; = 0, K; = Id, ¢ = 0 satisfy (81), (82), the boundary condition
uz + (u o u) = 0 is integrable for any equation (34).

Example 6.1. The following boundary conditions
i) u=0,
i)  uger + uley +uce+e3 =0

are integrable for the matrix Burgers equation (35) of Example 2.1. Here
¢1,c2, c3 are arbitrary constant matrices.
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Example 6.2. In the case of the equation of Example 2.2, only scalar (i.e.
proportional to the identical) operators satisfy (81). The simplest integrable
boundary conditions are

i) u=0,
i) ug+ <u,C>u+|[uPC+Iu=0,

where A is a scalar parameter.

6.2 Integrable boundary conditions for the multi-component nonlinear Schré-
dinger equations

For equations (39), the following boundary conditions are integrable:

7) u=0, v=0;
1) Uy = cu, vr = cv;

i) Uz — CUz + 2{Uvu, } = 0, Uzg — CUp + 2{viv,} = 0, (83)
where ¢ is an arbitrary constant, i is a solution of the equation
{tva} +u—cu=0. (84)

These conditions generalize the known boundary conditions 31:52 for the nonlinear
Schrédinger equation (30):

B e = cutle=o, Vg = V=g

i) Uzz = (¢4 uv)?uzp=q, Vzz = (¢ 4 uv) 2, |=0.

Let us discuss the problem how to eliminate the extra variable @ from the
boundary condition. For a large class of Jordan triple systems (for instance,
for those which are generated by a Jordan algebra with the unity, (see *¢)),
we have det N(v,v;) # 0, where N(X,Y)}Z = {X,Y,Z}. This allows one to
express the variable @ from the second equation of (83):

_ 1 -1
u=—§N(v,v,) (Vze — CUZ). (85)

Substituting this expression for % to (83) and (84), one obtains a boundary
condition in the usual form. But sometimes it’s more convenient to express
@ from the equation (84). In the examples given below we just follow such a
way.
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Example 6.3. The following integrable boundary conditions specified at
z = zg are compatible with the system of Example 2.3:

i) u=0, v =0
i1) Uy = cu, Uy = CV;
zzz) Uw:(c_<u,v>)uz_<v,uz>u’
Q Q
Vos = (¢ — <u,v >)U:v'— < U, Vg >v.
Q Q

Here Q is a solution of the equation Q* — cQ+ < u,v >=0, and c is a scalar
parameter.

Example 6.4. The integrable boundary condition for the vector Schrodinger
equation of Example 2.4 is of the form: ‘

< U, Uy >

< U, Uy >

Upy + Py — 2 2 +2 2 v=0,
< U, vy > < v, Vg >
Vpp + Pvg — 2 Pz v+2 Px u=0,

where P is determined from the equation
P4 (d<u,v>—cB)PP+4<u,v>2 —4ul?|v]* = 0,
and c is a scalar parameter.

Example 6.5. Let us write down the integrable boundary condition of the
second order for the matrix Schrodinger equation of Example 2.5. It follows
from the general formulas (83), (84) that this condition has the form:

Ugr + Pz +u:Q =0, vpp +Qus + v, P =0.
Here P and Q satisfy the equations P? = %Id —uvand Q= %Id— v, ¢ 1S
a scalar parameter, and Id is the unity matrix.

7 Appendix

We present here definitions and the simplest examples we need in the main
body of the paper. We refer to 3%:36:33:39,38:40,56 for more detail information.

Let eq,es,...,en be a basis of a finite dimensional algebra J over C. The
multiplication in J is given by the formula

(ej o €x) = aiei, (86)
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where aj, are the structure constants of J. If al;, = al; then J is commutative.
The formula

XoV =A< X,C>Y+u<Y,C>X+v<X,Y>C, (87T)

where <, > is the standard scalar product in a vector space J and C is a
given vector, gives us for different A, 4, v a number of interesting examples of
nonassociative algebras. The so called vector nonlinear differential equations
arc closely related to those,

We shall use the following notation:

AS(X,)Y,Z)=(XoY)oZ—-Xo (Yo 2),
[X,Y,Z] = AS(X,Y,Z) — AS(Y, X, Z).
Note that J is associative iff AS(X,Y, Z) = 0.
Definition 1. An algebra J is called leftsymmetric if
[X,Y,Z]=0. (88)
Any associative algebra is leftsymmetric one. The formula
XoY=<X,C>Y+ < X,Y >C, (89)

gives us an example of leftsymmetric algebra of the type (87).

Definition 2. A commutative algebra J is said to be Jordan if the
following identity is fulfilled

AS(X 0 XY, X) = 0. (90)

The set of all matrices is a Jordan algebra with respect to the anticommutator
operation

XoY:%(XY+YX). (01)
The formula

XoYV =<X,C>Y+<Y,C>X-<X,Y>C (92)

turns a vector space J to a Jordan algebra. For a Jordan algebra with the unity
e the element X! is defined as a polynomial of X such that X 0 X~! = e.

In the article 3 S.I. Svinolupov and V.V .Sokolov have introduced a class
of nonassociative algebras defined by the identity

[V,X,Y o Z]—[V,X,Y]oZ-Y o[V, X, 2] =0. (93)
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The multiplication (87) satisfies (93) if » = 0. It is interesting to note that all
nonassociative algebras naturally arising in connection with integrable systems
(Lie algebras, Jordan algebras, left-symmetric algebras, LT-algebras 56) satisfy
the universal identity (93). Furthermore, the class of algebras with identity
(93) is invariant with respect to the deformation (14).

While any collection of constants a;- & can be regarded as a set of structure
constants of an algebra J, every collection cr;. &+, defines a triple system {X,Y, 7}
by the formula

{ej, ek, €m} = Tipmei-
Definition 3. A triple system {X,Y, Z} is said to be Jordan if
{X,Y,7)={2,Y,X},
and
(XY, Z,V}, W}={W, V. {X,Y, Z}}+{Z, Y. {X, V, W}}-{X,V,{2,Y,W}} = 0.

The set of n x n-matrices equipped with the operation
(X,Y,7) = %(xyz + 27 X), (94)

is a Jordan triple system. The vector space of all n x m-matrices is a Jordan
triple system with respect to operation

1
{X,Y,Z} = §(XYtZ + ZYiX), (95)

where ”t” stands for transposition. The following operations
{X,Y\2)=<X,)Y > Z+ <Y, 2> X-< X,Z>Y, (96)

and
{X,Y,Z2} =< X,Y>Z+<Y,Z>X (97)

define two ”vector” (cf. (87)) simple Jordan triple systems.
For each Jordan triple system {X,Y, Z} and a given vector C the system

o(X,Y,2) = {X,{C,Y,C}, 7} (98)

is also Jordan one.
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There exists close relationships between the Jordan algebras and the Jordan
triple systems. Namely, any Jordan algebra gencrates a triple system by the
formula

{X,Y,Z} =(XoY)oZ+(ZoY)o X -Yo(XoZ). (99)

Conversely, any Jordan triple system {X, Y, Z} yields a family of Jordan algebras
with the multiplication
XoY ={X,4,Y}, (100)

where ¢ is an arbitrary element.
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