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Abstract—Let D be a domain in the complex plane and M be an extended real-valued function
on D. If f is a non-zero holomorphic function on D such that |f | ≤ expM , then it is natural to
expect that there should be some upper boundedness for the distribution of the zeros of f expressed
exclusively in terms of the function M and the geometry of the domain D. We have investigated
this question in detail in our previous works in the case when M is a subharmonic function and
the domain D either is arbitrary or has a non-polar boundary. The answer was given in terms of
constraints to the distribution of zeros of f from above via the Riesz measure of the subharmonic
function M . In this article, the function M is the difference of subharmonic functions, or a δ-
subharmonic function, and the upper constraints are given in terms of the Riesz charge of this
δ-subharmonic function M . These results are also new to a certain extent for the subharmonic
function M . The case when the domain D coincides with the whole complex plane is considered
separately. For the complex plane, it is possible to reach the criterion level of our results.
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1. INTRODUCTION

As usual, N := {1, 2, . . . }, R, R+ :=
{
x ∈ R

∣∣ x ≥ 0
}

, C are the sets of all natural, real, positive,
and complex numbers, respectively. We often denote singleton sets {x} simply by x, without the use of
curly braces. Let N0 := 0∪N, R+ \ 0 be the set of all strictly positive numbers, R := −∞∪R∪+∞ be
the extended real line, R

+
:= R

+ ∪+∞, and C∞ := C ∪∞ be the extended complex plane. Each of
this sets is endowed with its natural order, algebraic, geometric, and topological structure. For z ∈ C, we
denote by |z| its modulus and by z̄ its conjugate. For the empty set ∅ we put inf ∅ := +∞ := supR and
sup∅ := −∞ := inf R . For a subset S ⊂ C∞, let Hol(S) denote the algebra over C of all holomorphic
functions f on open subsets Of ⊃ S in C∞. Therefore, Hol(C) is the algebra of all entire functions.

Let S be a set, J be an index set, and Z := {zj}j∈J be an indexed set of points zj ∈ S. Such indexed
sets will be called distributions of points in S. We write z ∈ Z if there is zj such that zj = z. For a
subset S′ ⊂ S we write Z ⊂ S′ if zj ∈ S′ for each j ∈ J . The counting function nZ : S → N of Z is
defined by

nZ(z) :=
∑

zj=z

1 ∈ N0 := N0 ∪+∞ at each z ∈ S. (1z)
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We denote by the same symbol nZ the counting measure nZ : 2
S → N0 of Z defined by

nZ(S
′)

(1z)
:=

∑

zj∈S′

1 =
∑

z∈S′

nZ(z) ∈ N for each S′ ⊂ S. (1n)

We say that distributions Z and Z′ of points in S are equal and write Z = Z′ if nZ = nZ′ on S. Thus, both
the counting function and the counting measure uniquely determine distributions of points in S. We
write Z ⊂ Z′ if nZ ≤ nZ′ on S.

Let O 
= ∅ be an open subset in C. The zero set of f ∈ Hol(O) is a distribution Zerof of points in O
with the counting function of the multiplicity of zeros of f defined by

nZerof (z) :=
z ∈ O

sup

{

p ∈ N0

∣
∣∣ lim sup
z �=z′→z

∣
∣f(z)

∣
∣

|z′ − z|p < +∞
}

.

Therefore, for the zero function 0 ∈ Hol(O), we have nZero0(z)
(1z)
= +∞ for each z ∈ O and nZero0(S)

(1n)
=

+∞ for each S ⊂ O. The counting function nZerof of f ∈ Hol(O) is often called the divisor of zeros of
f . If Z ⊂ Zerof , then we write f(Z) = 0 and say that Z is a zero subset of f and f vanishes on Z.

For a subset S ⊂ C∞, we denote by �S := C∞ \ S, clos S, int S := �(clos �S), and ∂S := clos S \
int S its complement, closure, interior, and boundary always considered in the topology of C∞. We
write S � O if clos S ⊂ O.

A distribution of points Z ⊂ O is locally finite if nZ(S) < +∞ for each S � O.
Weierstrass Theorem. Let Z be a distribution of points in an open set O ⊂ C. The following

three statements are equivalent:

• There is f ∈ Hol(O) such that f 
= 0 and Z = Zerof .

• There is f ∈ Hol(O) such that f 
= 0 and f(Z) = 0.

• Z is locally finite.

Throughout this article, we only consider locally finite distributions Z of points in an open connected
subset D ⊂ C, i.e. D is a domain in the complex plane C.

If an additional constraint ln |f | ≤ M on D is imposed on a holomorphic function f 
= 0, where
M : D → R is an extended real-valued function, then the problem of describing zero sets and zero
subsets becomes much more complicated. In particular, zero sets are very often not the same as
zero subsets. In our paper, we consider only zero subsets under a restriction from above of the form
ln |f | ≤ M , when M is the difference of subharmonic functions with the Riesz charge ΔM . For
subharmonic functions M [1–3], this question was considered earlier in our series of works [4–7]. In
this article, we consider the difference M = Mup −Mlow of subharmonic functions Mup and Mlow with
the Riesz measures ΔMup of Mup and ΔMlow of Mlow and with the Riesz charge ΔM := ΔMup −ΔMlow of
M . It is shown that if ln |f | ≤ M , f 
= 0 and f(Z) = 0, then there is a number C ∈ R

+ such that
∑

zj

v(zj) ≤
∫

vdΔM + C (2)

for v from a very wide class of positive test functions. There are the necessary conditions, see Sec. 2,
Theorem 1, for (2) to be valid. Conversely, if (2) holds for much more narrow subclasses of positive
smooth subharmonic test functions v, then we have almost converse statements in the form ln |f | ≤
M� +R, where M� is a certain averaging of M over small disks, and R is a small addition related to
the distance to the boundary ∂D of D. In Sec. 3, Theorem 2, we also give some sufficient conditions.
In Sec. 3, we consider domains D with non-polar boundaries ∂D or, equivalently, with non-polar
complements �D. This very broad class of domains D includes most of the considered in function theory
and its applications. If the complement �D contains a connected subset with more than one point, then
the boundary ∂D is non-polar [1, Corollary 3.6.4], [3, Theorem 5.12]. But the boundary ∂C = ∞ ∈ C∞
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of C is polar. For the case of D = C in Sec. 4, Theorem 3, we obtain a criterion for a wide class of
functions M = Mup −Mlow under a single condition: There exist numbers P,C ∈ R

+ such that
2π∫

0

Mup

(
z +

1

(1 + |z|)P eiθ
)

dθ ≤ Mup(z) + C for each z ∈ C. (3)

2. NECESSARY CONDITIONS FOR ZERO SUBSETS OF HOLOMORPHIC FUNCTIONS
WITH UPPER CONSTRAINTS IN DOMAIN

2.1. Subharmonic Functions and Measures
Let sbh(S) be the cone over R+ of all subharmonic functions u on open neighborhoods of S ⊂ C∞

including the (−∞)-function −∞ : z �−→
z∈S

−∞. Let har(S) := sbh(S) ∩
(
−sbh(S)

)
be the space over R

of all harmonic functions u on S. We denote by sbh∗(D) :=
{
u ∈ sbh(D)

∣∣ u 
= −∞
}

the class of all
nontrivial subharmonic functions on a domain D ⊂ C.

If u ∈ sbh∗(D), then its Riesz measure is denoted by

Δu :=
1

2π
u ∈ Meas+(D),

where  is the Laplace operator acting in the sense of the theory of distributions or generalized
functions, and Meas+(D) is the cone over R+ of positive Radon measures on D. But by definition,
the Riesz measure of the (−∞)-function on D is such that Δ−∞(S) = +∞ for each S ⊂ D.

If f ∈ Hol(D), then ln |f | ∈ sbh(D) and nZerof = Δln |f | [1, 3.7.8].

Given f ∈ F ⊂ R
X

, we set f+ : x �→ max{0, f(x)}, and F+ := {f ∈ F : f = f+}. For a sequence

(fk)k∈N ⊂ R
X

, we write fk ↗
k→∞

f if this sequence (fk)k∈N is increasing and f = lim
k→∞

fk;

F ↑ :=

{
f ∈ R

X
∣∣
∣∃(fk) ⊂ F, fk ↗

k→∞
f

}
. (4)

Let sbh+(S) :=
(
sbh(S)

)+ be the class of all positive subharmonic functions on S. For a closed subset
S � D we define the class [4, Definition 1], [6]

sbh+0 (D \ S;≤ b) :=
{
v ∈ sbh+(D \ S)

∣∣
∣v ≤ b on D \ S, lim sup

D
z′→z
v(z′) =

z ∈ ∂D
0
}

(5)

of positive subharmonic test functions v in D \ S with an upper bound b ∈ R
+, and the class

sbh+↑
0 (D \ S;≤ b)

(4)
:=
(
sbh+0 (D \ S;≤ b)

)↑

of upper positive test functions v in D \ S with an upper bound b ∈ R
+.

The difference of two nontrivial subharmonic functions is called a nontrivial d-subharmonic
function, or a nontrivial δ-subharmonic function. A d-subharmonic function [8], [4, 3.1], [9]

M := Mup −Mlow, Mup ∈ sbh∗(D), Mlow ∈ sbh∗(D), ΔM := ΔMup −ΔMlow , (6)

with the Riesz charge ΔM of M is defined at each point z ∈ D where Mlow(z) 
= −∞. Below we put
M(z) := +∞ if Mlow(z) = −∞.

For a Borel subset S ⊂ C, we denote by Meas(S) the class of all Borel signed measures, or charges,
on S. Meascmp(S) is the class of charges μ ∈ Meas(S) with a compact support suppμ � S;

Meas+(S) := (Meas(S))+, Meas+cmp(S) := (Meascmp(S))
+.

For a charge μ ∈ Meas(S), we let μ+, μ− := (−μ)+ and |μ| := μ+ + μ− denote its upper, lower,
and total variations. A function f : S → R is called μ-integrable if there are four integrals
∫
f±dμ± ∈ R

+
such that

∫
f+dμ+ +

∫
f−dμ− < +∞ when

∫
f−dμ+ +

∫
f+dμ− = +∞, and vice

versa,
∫
f−dμ++

∫
f+dμ− < +∞when

∫
f+dμ++

∫
f−dμ− = +∞. Aμ-integrable function f : S →

R is μ-summable if
∫
|f |d|μ| 
= +∞.
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2.2. Jensen Measures and its Potentials
A measure μ ∈ Meas+cmp(D) is a Jensen measure for domain D ⊂ D at z0 ∈ D if [10, 4]

u(z0) ≤
∫

udμ for each z0 ∈ sbh(D). (7)

We denote by Jz0(D) the class of all these Jensen measures. Obviously, μ(D) = 1 for every μ ∈ Jz0(D).
For μ ∈ Jz0(D), the function

Vμ : z �−→
∫

ln |z′ − z|dμ− ln |z|, z ∈ C \ z0, V (∞) := 0, (8)

is the logarithmic potential of μ ∈ Jz0(D) with pole z0.
A positive subharmonic function V ∈ sbh+(C∞ \ z0) is a Jensen potential for D with pole z0 ∈ D

if there is a subset SV � D such that V (z) = 0 for each z ∈ D \ SV and
(
lim sup
z0 �=z→z0

V (z)

− ln |z − z0|
≤ 1

)
or⇐⇒
(
V (z) ≤ ln

1

|z − z0|
+O(1) as z0 
= z → z0

)
.

We denote by PJz0(D) the class of all such Jensen potentials. If D′ � D be a subdomain in domain
D ⊂ C, then its Green’s function gD′(·, z0) with pole z0 ∈ D′ belongs to PJz0(D).

Lemma 1 [[10, Propositions 1.2, 1.4]]. Let D 
= ∅ be a domain in C and z0 ∈ D.

(i) The mapping P : μ
(8)�−→ Vμ is an affine bijection from Jz0(D) on PJz0(D), and

P−1(V ) = ΔV

∣∣
C\z0 +

(
1− lim sup

z0 �=z→z0

V (z)

− ln |z − z0|

)
δz0 , V ∈ PJz0(D). (9)

where δz0 is the Dirac probability measure with the support supp δz0 = z0.

(ii) If μ ∈ Jz0(D), then the following Poisson–Jensen formula holds:

u(z0) =

∫

D\z0

udμ−
∫

D

VμdΔu for each u ∈ sbh(D) with u(z0) 
= −∞. (10)

We denote by PJ↑z0(D) :=
(
PJz0(D)

)↑ the class of all test Jensen functions.
If D ⊂ C is a domain with non-polar boundary ∂D, then there is its Green’s function gD(·, z0) with

pole z0 ∈ D. Moreover, gD(·, z0) is the largest Jensen test function in PJ↑z0(D). If the boundary ∂D is
polar, then the largest test Jensen function in PJ↑z0(D) is the (+∞)-function +∞ : z �−→

z∈D
+∞.

2.3. Main Result on Necessary Conditions for Zero Subsets in Domains
The main aim of this section is to establish the largest possible range of necessary conditions for

the distribution of zero subsets of holomorphic functions f ∈ Hol(D) satisfying the upper constraint
ln |f | ≤ M on D. We establish these conditions for arbitrary domains in C and arbitrary d-subharmonic
majorants M from (6).

Theorem 1 (necessary conditions). Let Z be a locally finite distribution of points in a domain
D ⊂ C and let M be a d-subharmonic function (6). Suppose that there exists a function f ∈
Hol(D) such that f 
= 0, f(Z) = 0 and

ln
∣
∣f(z)

∣
∣ ≤ M(z) at each z ∈ D. (11)

Then, for any closed set S � D with int S 
= ∅ and for any b ∈ R
+, there is a number C ∈ R

+ such

that, for each test upper positive function v
(5)
∈ sbh+↑

0 (D \ S;≤ b), we have
∑

zj∈D\S
v(zj) ≤

∫

D\S

vdΔM + C provided v is ΔM-summable on D \ S. (12)
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If z0 ∈ D, f(z0) 
= 0 and Mup(z0) +Mlow(z0) 
= −∞, then there is C ∈ R such that (12) holds with
the singleton S := {z0} for each test Jensen function v ∈ PJ↑z0(D).

Proof. In the case v
(5)
∈ sbh+0 (D \ S;≤ b) without ↑ we use

Lemma 2 ([4, Main Theorem]). For any point z0 ∈ int S satisfying Mup(z0) +Mlow(z0) 
= −∞,
any regular (for the Dirichlet problem) domain D̃ ⊂ C with the Green function gD̃(·, z0) with pole
at z0 ∈ D̃ which satisfies the conditions S � D̃ ⊂ D and � clos D̃ 
= ∅, any function u ∈ sbh∗(D)

satisfying the inequality u ≤ M on D, and any test function v ∈ sbh+0 (D \ S;≤ b), the following
inequality holds:

Cu(z0) +

∫

D\S

vdΔu ≤
∫

D\S

vdΔM +

∫

D̃\S

vdΔ−
Mlow

+ CCM , (13)

where C := b
/
infz∈∂S gD̃(z, z0) > 0 and

CM :=

∫

D̃\z0

gD̃(·, z0)dΔM +

∫

D̃\S

gD̃(·, z0)dΔ
−
M +M+(z0) ∈ R, (14)

but for D̃ � D, this constant CM < +∞ in (13) is finite and independent of v and u.

We put u
(11)
:= ln |f | and fix a point z0 ∈ int S and a regular domain D̃ � D such that f(z0) 
= 0 and

the assumptions of Lemma 2 hold. Then, by (13)–(14), C ∈ R, CM ∈ R, and
∫

D̃\S

vdΔ−
Mlow

≤ bΔ−
Mlow

(
D̃
)
< +∞

are independent of f and v. Thus, there is a number C̃ such that
∑

zj∈D\S
v(zj) =

∫

D\S

vdnZ ≤
∫

D\S

vdnZerof =

∫

D\S

vdΔln |f |

=

∫

D\S

vdΔu ≤
∫

D\S

vdΔM + C̃ −C ln
∣
∣f(z0)

∣
∣

for each test function v ∈ sbh+0 (D \ S;≤ b). Hence, for C ′ := C̃ − C ln
∣
∣f(z0)

∣
∣ ∈ R, we obtain

∑

zj∈D\S
v(zj) +

∫

D\S

vdΔMlow ≤
∫

D\S

vdΔMup + C ′ (15)

for each test function v ∈ sbh+0 (D \ S;≤ b). Let (vk)k∈N ⊂ sbh+0 (D \ S;≤ b) be an increasing sequence
and v := lim

k→∞
vk ∈ sbh+↑

0 (D \ S;≤ b) is ΔM-summable. Then
∫

D\S

vkd(nZ +ΔMlow) =
∑

zj∈D\S
vk(zj) +

∫

D\S

vkdΔMlow

(15)

≤
∫

D\S

vkdΔMup + C ′ ≤
∫

D\S

vdΔMup + C ′ < +∞ for each k ∈ N.

Applying the monotone convergence theorem for integrals to the left-hand side, we obtain
∑

zj∈D\S
v(zj) +

∫

D\S

vdΔMlow =

∫

D\S

vd(nZ +ΔMlow) ≤
∫

D\S

vdΔMup +C ′
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for each test upper function v ∈ sbh+↑
0 (D \ S;≤ b).

It remains to consider the case of test Jensen functions.
By the Weierstrass Theorem there are a function fZ ∈ Hol(D) with zero set ZerofZ = Z and a function

g ∈ Hol(D) such that fZ(z0) 
= 0, g(z0) 
= 0 and ln |fZ|+Mlow

(11)

≤ Mup − ln |g| onD outside some polar

set, and hence everywhere. Integrating with respect to a Jensen measure μ
(7)
∈ Jz0(D), we obtain

∫

D

ln |fZ|dμ+

∫

D

Mlowdμ ≤
∫

D

Mupdμ−
∫

D

ln |g|dμ ≤
∫

D

Mupdμ− ln
∣
∣g(0)

∣
∣.

By the Poisson–Jensen formula (10), for ln |f |, Mup, and Mlow we have
∫

D

VμdnZ + ln
∣
∣f(z0)

∣
∣+
∫

D

VμdΔMlow +Mlow(z0) ≤
∫

D

VμdΔMup +Mup(z0)− ln
∣
∣g(0)

∣
∣

Hence∫

D

VμdnZ +

∫

D

VμdΔMlow ≤
∫

D

VμdΔMup +
(
Mup(z0)− ln

∣
∣f(z0)

∣
∣−Mlow(z0)− ln

∣
∣g(0)

∣
∣
)

︸ ︷︷ ︸
C

for logarithmic potentials Vμ of all Jensen measures μ ∈ Jz0(D). By Lemma 1(i), if μ runs through
Jz0(D), then Vm runs through the whole class PJz0 . Thus,

∫

D

V d
(
nZ +ΔMlow

)
=

∫

D

V dnZ +

∫

D

V dΔMlow ≤
∫

D

V dΔMup + C for each V ∈ PJz0(D).

Let (Vk)k∈N ⊂ PJz0(D) be increasing and V := lim
k→∞

Vk ∈ PJ↑z0(D) be ΔM-summable. Then
∫

D

Vkd
(
nZ +ΔMlow

)
≤
∫

D

VkdΔMup + C ≤
∫

D

V dΔMup +C < +∞.

Applying the monotone convergence theorem for integrals to the left-hand side, we obtain
∑

zj∈D\S
V (zj) +

∫

D\S

V dΔMlow =

∫

D\S

V d(nZ +ΔMlow) ≤
∫

D\S

V dΔMup + C ′

for each test Jensen function V ∈ PJ↑z0(D). �

3. SUFFICIENT CONDITIONS FOR ZERO SUBSETS OF HOLOMORPHIC FUNCTIONS
WITH UPPER CONSTRAINTS IN DOMAINS

3.1. Integral Means of Subharmonic and d-subharmonic Functions

We denote by D(z, t) :=
{
z′ ∈ C : |z′ − z| < t

}
, D(z, t) :=

{
z′ ∈ C : |z′ − z| ≤ t

}
, ∂D(z, t) :=

D(z, t)\D(z, t) an open disk, a closed disk, a circle of radius t ∈ R
+

centered at z ∈ C, respectively.
If D 
= ∅ be a proper domain in C, i.e. D 
= C, then we use a function r : D → R on D such that

⎧
⎨

⎩

0 ≤ r(z) < dist(z, ∂D) := inf
z′∈∂D

|z − z′| for each z ∈ D,

inf
z∈K

r(z) > 0 for each K � D,
(16D)

but if D = C, then we use another function

r(z) :=
z∈C

1

(1 + |z|)P with a number P ∈ R
+. (16C)
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Let u : D → R be a function. The integral means of u over circles ∂D
(
z, r(z)

)
are

u�r(z) :=
1

2π

2π∫

0

u
(
z + r(z)eiθ

)
dθ, z ∈ D, D(z, r(z)) ⊂ D, (17�)

the integral means of u over disks D
(
z, r(z)

)
are

u•r(z) :=
1

πr2(z)

r(z)∫

0

2π∫

0

u(z + teiθ)dθ tdt, z ∈ D, D(z, r(z)) ⊂ D, . (17•)

Naturally, we assume that the above integrals are well defined and [1, 2.6], [11], [12, Theorem 3]

u ≤ u•r ≤ u�r ≤ u•(
√
er) on D for each u ∈ sbh∗(D), (18)

where the last inequality holds under the assumption that
√
er < dist(·, ∂D) on D.

We impose one very weak requirement on function (16D). For the function

r̂(z) := inf

{
R ∈ R

+
∣∣
∣

⋃

z′∈D(z,r(z))

D
(
z′, r(z′)

)
⊂ D(z,R)

}
, z ∈ D, (19r)

we require

D
(
z, r̂(z)

)
⊂ D for each z ∈ D. (19̂r)

We define the class [6, (1.12)]

sbh+00(D \ S;≤ b) :=
{
v ∈ sbh+0 (D \ S;≤ b)

∣∣
∣ (20)

there is a subset Sv � D such that v(z) = 0 at each z ∈ D \ Sv

}
. (21)

of test subharmonic positive compactly supported functions for D outside of S � D.

3.2. Main Result on Sufficient Conditions for Zero Subsets in Domains

The order of formulating sufficient conditions in Theorem 2 differs from the order of formulating
necessary conditions in Theorem 1. First, we give sufficient conditions for arbitrary domains D and
d-subharmonic majorants M in terms of smooth Jensen potentials from PJz0(D), and then we state
sufficient conditions for arbitrary domains D with non-polar boundary ∂D and arbitrary d-subharmonic
majorants M from (6) in terms of smooth test subharmonic functions from sbh0(D \ S;≤ 1). The main
task of this section is to establish the smallest possible set of sufficient conditions for the distribution of
zero subsets of holomorphic functions f ∈ Hol(D) satisfying the upper constraint ln |f | ≤ M on D.

Theorem 2 [sufficient conditions]. Let Z be a locally finite distribution of points in a domain
D ⊂ C containing z0 /∈ Z and M be a d-subharmonic function (6) with Mup(z0) +Mlow(z0) 
= −∞.

Let there be a subdomain Uz0 � D containing z0 ∈ Uz0 such that the inequality (12) with
S := {z0} is fulfilled for each smooth Jensen potential

v ∈ PJz0(D)
⋂

har(Uz0 \ z0)
⋂

C∞(D \ z0) (21P)

satisfying

v(z) = − ln |z − z0|+O(1) as z0 
= z → z0. (210)

Then, for each function (16), satisfying (19), and for any number a > 0 there exists a function
f ∈ Hol(D) such that f 
= 0, f(Z) = 0 and

ln |f |
17�
≤ M�r̂

up −Mlow +R on D, where r̂ is defined in (19), and (22M)
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R(z) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ln
1

r(z)
+ (1 + a) ln

(
1 + |z|

)
, if D 
= C,

ln
1

r(z)
, if D 
= C is simply connected or � clos D 
= ∅,

0, if D = C,

(22R)

at each z ∈ D.
In addition, if the boundary ∂D of D is non-polar and there exist a closed subset S � D with

int S 
= ∅ and a number C ∈ R
+ such that the inequality (12) is fulfilled for each smooth test

function v
(20)
∈ sbh+00(D \ S;≤ 1)

⋂
C∞(D \ S), then, for any function (16D), there is a function

f ∈ Hol(D) such that f 
= 0, f(Z) = 0 and (22) is fulfilled.
Proof of Theorem 2. We first prove the statement for Jensen potentials. We denote by PJ1z0(D) the

class of all Jensen potentials v satisfying (210) and put (cf. [7, (13V)])

V(Uz0) := PJ1z0(D)
⋂

har(Uz0 \ z0)
⋂

C∞(D \ z0). (23)

We denote by Meas+∞(D) the subclass of all measures μ ∈ Meas+(D) with densities m ∈ C∞(D), i.e.
dμ = mdλ, where λ is the Lebesgue measure on D, and put (cf. e[7, (13M)])

M(Uz0) := Jz0(D)
⋂

Meascmp(D \ Uz0)
⋂

Meas+∞(D). (24)

By Lemma 1(i), it is easy to see that the mapping P−1 in (9) defines a bijection from the subclass V(Uz0)
to the subclass M(Uz0) [7, Theorem A].

By the Weierstrass Theorem there is a function fZ ∈ Hol(D) with zero set ZerofZ = Z.
For all Jensen potentials v ∈ V(Uz0) we have the inequality (12) with S := {z0}. Hence, by

the Poisson–Jensen formula of Lemma 1(ii), (10), applied to ln |f |, Mup, Mlow, and by bijection

P−1(D) : V(Uz0)
(24)−→ M(Uz0), we have (cf. [7, (15)])

∫

D

(
ln |fZ|+Mlow

)

︸ ︷︷ ︸
u

dμ =

∫

D

ln |fZ|dμ+

∫

D

Mlowdμ

≤
∫

D

Mupdμ+
(
ln
∣∣fZ(z0)

∣∣+Mlow(z0)−Mup(z0)
)

︸ ︷︷ ︸
c

for each μ ∈ M(Uz0). (25)

Lemma 3 (A very special case of [13, Corollary 8.1.II.1] with H := sbh∗(D), cf. [7, Theorem B]). If,
for some number c ∈ R, assertion (25) holds, then, for any function r, satisfying (16D), there are
a function h ∈ sbh∗(D) and a positive function ř ≤ r from the class C∞(D) such that

u+ h ≤ M�ř
up ∈ C∞(D) on D, (26)

where, by the construction from [13, (8.3–6), (8.10)], [6, (2.18–19)], M�ř
up are “moving

contracting” smoothing averages over some probabilistic measures α(ř(z)) ∈ Meas+∞
(
D(z, ř(z))

)
,

obtained by the shift, compression, and normalization of a single approximate unit a ∈ C∞(C),
depending on the modulus | · | only with support supp a ⊂ D(0, 1).

By Lemma 3 we choose a subharmonic function h ∈ sbh∗(D) such that ln |fZ|+Mlow + h ≤ M�ř
up

on D. By [14, Proposition 3] or [15, Theorem 4], for the subharmonic function Mup we have M�ř
up ≤

M�ř
up ≤ M�r

up on D. Thus ln |fZ|+Mlow + h ≤ M�r
up on D. Hence,

ln |fZ|+Mlow + h•r
17•
≤
(
ln |fZ|

)•r
+M•r

low + h•r ≤
(
M�r

up

)•r on D. (27)

Lemma 4 ([16, Theorem 3, Corollary 3(i),(iii)]). Let h ∈ sbh∗(D) be a subharmonic function on a
domain D ⊂ C. Then, for any number a > 0, there is a function g ∈ Hol(D) such that g 
= 0 and

ln |g| ≤ h•t +R on D, (28)
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where R is a function from (22R).
By Lemma 4 and (27), we get

ln |fZg|+Mlow = ln |fZ|+Mlow + ln |g| ≤
(
M�r

up

)•r
+R on D, (29)

where f := fZg 
= 0 and f(Z) = 0.
The following lemma is an elementary very special case of [15, Theorems 2, 4].
Lemma 5. If r and r̂ are defined by either (16D) or (16C) and (19), then (u�r)•r ≤ u�r̂ on D.
By Lemma 5, it follows from (29) that

ln |f |+Mlow = ln |fZg|+Mlow ≤ M�r̂
up +R on D.

Thus, under (12) for smooth Jensen potentials, we have proved (22).
Now consider the case of a domain D with non-polar boundary ∂D.
Lemma 6 ([6, Theorem 3]). Under the conditions of Theorem 2, there is a subharmonic function

u ∈ sbh∗(D) such that nZ ≤ Δu and u ≤ M•r on D.
By Lemma 6 there is a subharmonic function u ∈ sbh∗(D) such that

nZ ≤ Δu and u ≤ M•r = M•r
up −M•r

low

(18)

≤ M•r
up −Mlow on D. (30)

By the Weierstrass Theorem, there is fZ ∈ Hol(D) with ZerofZ = Z, and fZ 
= 0.

Consider a d-subharmonic function h := u− ln |fZ| with Riesz charge Δh = Δu − nZ
(30)

≥ 0, i. e.,
Δh ∈ Meas+(D) and h ∈ sbh∗(D). It follows from (30) that

ln |fZ|+ h = u
(30)

≤ M•r
up −Mlow on D. (31)

Hence, for ln |fZ| ∈ sbh∗(D) and h ∈ sbh∗(D), we obtain

ln |fZ|+ h•r ≤
(
ln |fZ|

)•r
+ h•r =

(
ln |fZ|+ h

)•r
= u•r

(31)

≤
(
M•r

up

)•r −M•r
low

18
≤
(
M•r

up

)•r −Mlow on D. (32)

Using Lemma 4, we put f := fZg 
= 0. Then f(Z) = 0 since Z = ZerofZ , and

ln |f | = ln |fZg| = ln |fZ|+ ln |g|
(28)

≤ ln |fZ|+ h•r +R
(32)

≤
(
M•r

up

)•r −Mlow +R on D. (33)

By Lemma 5 with u := Mup, we obtain ln |f |
(33)

≤ M�r̂
up −Mlow +R on D. �

4. ZERO SUBSETS IN THE COMPLEX PLANE
In this section, we give to the results of Theorems 1 and 2 a form related to subharmonic functions

of polynomial growth and point out a very general case when the necessary and sufficient conditions
coincide. We denote by

Pot :=
{
p ∈ sbh∗(C)

∣
∣∣ lim sup

z→∞

p(z)

ln |z| < +∞
}

the convex cone over R+ of all subharmonic functions of polynomial growth [17, 6.7.2]. We use the
convex subcone over R+

Pot+1
0 :=

{
p ∈ Pot

∣∣
∣p(0) = 0, p ≥ 0 on C, lim sup

z→∞

p(z)

ln |z| ≤ 1

}
⊂ Pot (34)

of positive subharmonic functions of polynomial growth with unit upper seminormization at ∞.
Theorem 3. Let Z be a locally finite distribution of points in C and 0 /∈ Z. Let M be a

d-subharmonic function (6) on D := C. Suppose that Mup(0) +Mlow(0) 
= −∞ and there are
numbers P ∈ R

+ and C ∈ R
+ such that (3) holds. Then the following three statements are

equivalent:

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 4 2021



NECESSARY AND SUFFICIENT CONDITIONS 809

I. There exists an entire function f 
= 0 such that f(Z) = 0 and

ln
∣∣f(z)

∣∣ ≤ M(z) at each z ∈ C. (35)

II. There is a number C ∈ R
+ such that, for each p ∈ Pot+1

0 , we have
∑

j

p
( 1

z̄j

)
≤
∫

C

p
(1
z̄

)
dΔM(z) + C provided p

(1
z̄

)
is ΔM-summable on C \ 0. (36)

III. There are numbers C ∈ R
+ and R0 > 0 such that (36) is fulfilled for each

p ∈ Pot+1
0

⋂
C∞(C)

⋂
har
(
C \D(0, R0)

)
(37P)

such that p = 0 on some neighborhood of the origin and

p(z) = ln |z|+O(1) as z → ∞. (370)

Proof. Here (35) is a particular case of (11) for D = C. Let z0 := 0. The inversion transformation
z �−→

z∈C
1
z̄ , 0 �→ ∞ �→ 0 from C∞ onto C∞ gives a bijection from Pot+1

0 onto PJ↑0(C) and a bijection

from the class (37) onto the class (21), or onto the class V(Uz0) from (23). Thus, (36) is (12) with
v(z) =

z∈C∞
p(1/z̄). Hence, the implication I =⇒ II follows from Theorem 1, the implication II =⇒ III is

obvious, and the implication III =⇒ I follows from Theorem 2 if we take into account condition (3). �
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