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Abstract—The maximum of the modulus of a meromorphic function cannot be restricted from above
by the Nevanlinna characteristic of this meromorphic function. But integrals from the logarithm of
the module of a meromorphic function allow similar restrictions from above. This is illustrated by
one of the important theorems of Rolf Nevanlinna in the classical monograph by A. A. Goldberg and
I. V. Ostrovskii on meromorphic functions, as well as by the Edrei–Fuchs Lemma on small arcs
and its versions for small intervals in articles by A. F. Grishin, M. L. Sodin, T. I. Malyutina. Similar
results for integrals of differences of subharmonic functions even with weights were recently obtained
by B. N. Khabiblullin, L. A. Gabdrakhmanova. All these results are on integrals over subsets on
a ray. In this article, we establish such results for integrals of the logarithm of the modulus of a
meromorphic function and the difference of subharmonic functions over discs and planar small sets.
Our estimates are uniform in the sense that the constants in these estimates are explicitly written out
and do not depend on meromorphic functions and the difference of subharmonic functions provided
that these functions has an integral normalization near zero.
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1. INTRODUCTION. DEFINITIONS AND NOTATION

Upper estimates of integrals for meromorphic functions in the complex plane C over segments or
small sets on a ray via the Nevanlinna characteristic are considered in works [1, pp. 24–27], [2, Notes,
Ch. 1], [2, Ch. 1, Theorem 7.2], [3, Lemma 3.1], [4, Theorem 8], [5, Theorem 1 (on small intervals),
Remark 1.1, Conclusion of the Grishin–Malyutina Theorem], [6, Main Theorem]. Our article [6]
contains all these listed results as special cases (see Theorem 1 below). We give in [5, Inrtoduction]
and [6, 1.1–1.2] a detailed history of the issue with full formulations of all previous results. In this
paper, we obtain similar upper estimates for integrals already over discs or small planar sets. As in [1],
we establish the main theorem of the paper in a more general subharmonic version. Let’s move on to
precise definitions.

As usual, R is the real line, or the real axis of the complex plane C, and R
+ := {r ∈ R : 0 ≤ r} is

the positive closed semiaxis. We denote singleton sets by a symbol without curly brackets. So, R+ \ 0
is the positive open semiaxis, R is the extended real axis. Besides, D(z, r) := {z′ ∈ C : |z′ − z| < r}
is an open disc, D(z, r) := {z′ ∈ C : |z′ − z| ≤ r} is a closed disc, ∂D(z, r) := {z′ ∈ C : |z′ − z| = r}
is a circle with center z ∈ C of radius r ∈ R

+
; D(z, 0) = ∅, D(z, 0) = ∂D(z, 0) = z, D(z,+∞) = C,

D(r) := D(0, r),D(r) := D(0, r), ∂D(r) := ∂D(0, r).
Given a function f : X → R, f+ := sup{0, f} and f− := (−f)+ are positive and negative parts of

function f , respectively; |f | := f+ + f−. Given S ⊂ C, sbh(S) is the class of all subharmonic on an
open neighbourhood of S. We set sbh∗(S) :=

{
v ∈ sbh(S) : v �≡ −∞

}
.
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1176 KHABIBULLIN

By λ we denote the planar Lebesgue measure on C. We also use the notation mes for the linear
Lebesgue measure on R. For r ∈ R

+ and a function v : ∂D(r) → R, we define

Mv(r) := sup
|z|=r

v(z), r ∈ R
+, (1M)

Cv(r) :=
1

2π

2π∫

0

v(reiϕ)dϕ, r ∈ R
+ \ 0, (1C)

where Cv(r) is the average over the circle ∂D(0, r), if this integral exists. For a λ-measurable function
v : D(r) → R, we use also the average over the disc D(r) defined as

Bv(r) :=
1

πr2

∫

D(r)

vdλ, Bv(0) := Mv(0)
(1M)
= v(0) =: Cv(0). (2)

See [7, 2.6], [8, 2.7], [9, 3] on properties of Mv, Cv, Bv in the case of a subharmonic function v.
For a Borel subset S ⊂ C, the set of all Borel, or Radon, positive measures μ ≥ 0 on S is denoted by

Meas+(S), and Meas(S) := Meas+(S)− Meas+(S) is the set of all charges, or signed measures, on S.
For a charge ν ∈ Meas(S), we denote by

ν+ ∈ Meas+(S), ν− := (−ν)+ ∈ Meas+(S), |ν| := ν+ + ν− ∈ Meas+(S)

the upper, lower, total variations of this charge ν, respectively. We set

ν(z, r) := ν
(
D(z, r)

)
∈ R if D(z, r) ⊂ S, 0 ≤ r ≤ R, (3z)

ν rad(r) := ν(0, r) = ν
(
D(r)

)
∈ R if D(r) ⊂ S, 0 ≤ r ≤ R, (3r)

Nν(r,R) :=

R∫

r

ν rad(t)

t
dt ∈ R

+
if D(R) ⊂ S, 0 ≤ r ≤ R, (3N)

provided that the last integral is well defined. For 0 ≤ r ≤ R ∈ R
+ and functions v : ∂D(r) ∪ ∂D(R) →

R, we define

Cv(r,R)
(1C)
:= Cv(R)− Cv(r) =

1

2π

2π∫

0

(
v(Reiϕ)− v(reiϕ)

)
dϕ (4)

provided that Cv(R) and Cv(r) are well defined.
If D ⊂ C is a domain and u ∈ sbh∗(D), then there is its Riesz measure

Δu :=
1

2π
�u ∈ Meas+(D), (5)

where � is the Laplace operator acting in the sense of the theory of distribution or generalized
functions. This definition of the Riesz measures carries over naturally to u ∈ sbh∗(S) for connected
subsets S ⊂ C. By the Poisson–Jensen–Privalov formula [7, 8], we have

Cv(r,R) = NΔv(r,R) for all 0 < r < R < +∞ if v ∈ sbh∗
(
D(R)

)
. (6)

Let U = u− v be a difference of subharmonic functions u, v ∈ sbh∗
(
D(0, R)

)
, i. e., a δ-subharmonic

non-trivial (�≡ ±∞) function [10], [11], [12], [13, 3.1] on D(R) with the Riesz charge

ΔU
(5)
:= Δu −Δv

(5)
:=

1

2π
�u− 1

2π
�v ∈ Meas

(
D(0, R)

)
, and Δ−

U := (ΔU )
−

is the lower variation of the Riesz charge ΔU of U . Now we can determine the difference Nevanlinna
characteristic T of δ-subharmonic non-trivial ( �≡ ±∞) function U as a function of two variables

TU (r,R) :=
(6)
= CU+(r,R) + NΔ−

U
(r,R), 0 < r ≤ R ∈ R

+. (7)
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INTEGRALS WITH A MEROMORPHIC FUNCTION 1177

A representation U = uU − vU with uU , vU ∈ sbh∗
(
D(0, R)

)
is canonical if the Riesz measure ΔuU

of uU is the upper variation Δ+
U of ΔU and the Riesz measure ΔvU of vU is the lower variation

Δ−
U := (ΔU )

− of ΔU . The canonical representation for U is defined up to the harmonic function added
simultaneously to each of the representing subharmonic functions uU and vU , and

TU (r,R)
(6)
= CU+(r,R) + CvU (r,R) = Csup{uU ,vU}(r,R), 0 < r ≤ R ∈ R

+. (8)

where 0 < r ≤ R ∈ R
+. By (8), the difference Nevanlinna characteristic TU is already uniquely defined

for all values 0 < r ≤ R < +∞ by positive values in R
+, and is also increasing and convex with respect

to the logarithmic function ln in the second variable R, but is decreasing in the first variable r ≤ R.
Recall that the following notation is used for the meromorphic function F �≡ 0 on C in the classic
monograph by A. A. Goldberg and I. V. Ostrovskii [2] for the maximum of module

M(r, F ) :=
r ∈ R

+
sup

{∣∣F (z)
∣
∣ : |z| = r

}
, (9M)

and for the Nevanlinna characteristic

T (r, F ) :=
r ∈ R

+
m(r, F ) +N(r, F ), (9T)

m(r, F ) :=
r ∈ R

+

1

2π

2π∫

0

ln+
∣∣F (reiϕ)

∣∣dϕ, (9m)

N(r, F ) :=
r ∈ R

+

r∫

0

n(t, F )− n(0, F )

t
dt+ n(0, F ) ln r, (9N)

where n(r, F ) is the number of poles of F in the closed disc D(r) := {z ∈ C : |z| ≤ r}, taking into
account the multiplicity. The function ln |F | is non-trivial δ-subharmonic on C, and

lnM(r, F )
(9M),(1M)

= Mln |F |(r), r ∈ R
+, (10M)

m(r, f)
(9m),(1C)

= Cln+ |F |(r), r ∈ R
+, (10m)

N(R,F )−N(r, F )
(9N),(3N)

= NΔ−
ln |F |

(r,R), 0 < r < R ∈ R
+, (10N)

T (R,F )− T (r, F )
(9T ),(7)
= Tln |F |(r,R). 0 < r < R ∈ R

+. (10T)

2. RECENT AND NEW RESULTS

Let us formulate the main result from [6] for the “one-dimensional” subset E ⊂ [0, r] ⊂ R
+ in the

special case without a weight function-multiplier g ∈ Lp(E), 1 < p ≤ +∞, in the integrand.

Theorem 1 ([6, Main Theorem]). Let 0 < r0 < r < +∞, 1 < k ∈ R
+, E ⊂ [0, r] be mes-meas-

urable, g ∈ Lp(E), where 1 < p ≤ ∞ and q ∈ [1,+∞) is defined by
1

p
+

1

q
= 1. If U �≡ ±∞ is a

non-trivial δ-subharmonic functions on C, and u �≡ −∞ is a subharmonic function on C, then
∫

E

MU+(t)g(t)dt ≤ 4qk

k − 1

(
TU (r0, kr) + CU+(r0)

)
||g||Lp(E)

q
√

mesE ln
4kr

mesE
, (11T)

∫

E

M|u|(t)g(t)dt ≤
5qk

k − 1

(
Mu+(kr) + Cu−(r0)

) q
√

mesE ln
4kr

mesE
. (11M)

In particular, by (10M)–(10T) we have for meromorphic functions the following

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 6 2021



1178 KHABIBULLIN

Corollary 1. Let, under the conditions of Theorem 1, F �≡ 0 be a meromorphic function, and
f �≡ 0 be an entire function. Then, in the traditional notation (9M)–(9N), we have

∫

E

(
ln+M(t, F )

)
g(t)dt ≤ 4qk

k − 1

(
T (kr, F ) −N(r0, F )

)
||g||Lp(E)

q
√

mesE ln
4kr

mesE
, (12T)

∫

E

∣
∣lnM(t, f)

∣
∣g(t)dt ≤ 5qk

k − 1

(
ln+M(kr, f) +m(r0, 1/f)

)
q
√

mesE ln
4kr

mesE
. (12M)

Proof. By (10M)–(10T) we have for U := ln |F |

TU (r0, kr) + CU+(r0)
(10T ),(10m)

= T (kr, F ) − T (r0, F ) +m(r0, f)
(9T )
= T (kr, F )−N(r0, F ). (13)

We can replace the bracket on the right-hand side of (11T) with the right side of these equalities. Then
we obtain (12T) by (10T) for the integrand in the left-hand side of (11T).

For u := ln |f |, we have

Mu+(kr) + Cu−(r0)
(10M)
= ln+ M(kr, f) + Cln− |f |(r0)

(10m)
= ln+M(kr, f) +m(r0, 1/f). (14)

We can replace the bracket on the right-hand side of (11M) with the right side of these equalities. Then
we obtain (12M) by (10M) for the integrand in the left-hand side of (11M). �

Remark 1. Our elementary example [6, 1.1, (3)] shows that it is impossible to discard the terms
−N(r0, F ) and m(r0, 1/f) in parentheses on the right-hand sides of inequality (12T) and (12M),
respectively. In particular, the classical Rolf Nevanlinna Theorem [2, Ch. 1, Theorem 7.2] can be
formulated in the following correct form: for each meromorphic function F �≡ 0 and 1 < k ∈ R

+

1

r

r∫

0

ln+M(t, F )dt ≤ 4k ln 4k

k − 1

(
T (kr, F ) −N(r0, F )

)
for all 0 < r0 ≤ r ∈ R

+. (15)

Indeed, it is sufficient to choose E := [0, r], g ≡ 1 with mesE = r, and p := ∞ with q = 1 in (12T).

Our main result is established for the case of a planar “two-dimensional” subset E ⊂ D(r) ⊂ C:

Theorem 2. Let 0 < r0 < r < +∞, 1 < k ∈ R
+, E ⊂ D(r) be a λ-measurable subset. If U �≡ ±∞

is a δ-subharmonic functions on C, and u �≡ −∞ is a subharmonic function on C, then
∫

E

U+dλ ≤ 2k

k − 1

(
TU (r0, kr) + CU+(r0)

)
λ(E) ln

100kr2

λ(E)
, (16T)

∫

E

|u|dλ ≤ 3k

k − 1

(
Mu+(kr) + Cu−(r0)

)
λ(E) ln

100kr2

λ(E)
. (16M)

Theorem 2 is proved at the end of Sec. 3 after some preparation.

We have not seen before these estimates (16T) and (16M) even for the case E = D(r):
Corollary 2. If U �≡ ±∞ be a δ-subharmonic functions on C, and u �≡ −∞ be a subharmonic

function on C, then

BU+(r) ≤ 7k ln(ek)

k − 1

(
TU (r0, kr) + CU+(r0)

)
for all 0 < r0 < r ∈ R

+ and 1 < k ∈ R
+, (17T)

B|u|(r) ≤
11k ln(ek)

k − 1

(
Mu+(kr) + Cu−(r0)

)
for all 0 < r0 < r ∈ R

+ and 1 < k ∈ R
+. (17M)

Proof. Let E := D(r) in (16). Then λ(E) = πr2,

ln
100kr2

λ(E)
= ln

100k

π
≤ 7

2
ln ek, BU+(r)

(2)
=

1

λ(E)

∫

E

U+dλ, B|u|(r)
(2)
=

1

λ(E)

∫

E

|u|dλ,
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and by (16) we obtain (17). �

For a meromorphic function F �≡ 0 on C, in the frame of traditional notation (9), we denote the
average of ln+ |F | over a disc D(r) as

m[2](r, F ) :=
r∈R+

2

r2

r∫

0

⎛

⎝ 1

2π

2π∫

0

ln+
∣∣F (teiϕ)

∣∣dϕ

⎞

⎠ tdt
(1C)
=

2

r2

r∫

0

m(t, F ) tdt
(2)
= Bln+ |F |(r). (18)

Corollary 3. Let, under the conditions of Theorem 1, F �≡ 0 be a meromorphic function, and
f �≡ 0 be an entire function. Then, in the traditional notation (9M)–(9N) and (18), we have

∫

E

ln+
∣∣F (z)

∣∣dλ(z) ≤ 2k

k − 1

(
T (kr, F ) −N(r0, F )

)
λ(E) ln

100kr2

λ(E)
, (19T)

∫

E

∣
∣∣ln

∣
∣f(z)

∣
∣
∣
∣∣dλ(z) ≤

3k

k − 1

(
ln+M(kr, f) +m(r0, 1/f)

)
ln

100kr2

λ(E)
. (19M)

m[2](r, F ) ≤ 7k ln(ek)

k − 1

(
T (kr, F ) −N(r0, F )

)
, (19F)

m[2](r, f) +m[2](r, 1/f) ≤ 11k ln(ek)

k − 1

(
Mu+(kr) + Cu−(r0)

)
(19f)

for all 0 < r0 < r ∈ R
+ and 1 < k ∈ R

+.
Proof. For U := ln |F |, we obtain (19T) by (16T), (13), (10), and also (19F) by (17T), (13), (18).
For u := ln |f | we obtain (19M) by (16M), (14), (10), and also (19f) by (17M), (14), (18) since

m[2](r, f) +m[2](r, 1/f)
(18)
= B| ln |f ||(r) for all r ∈ R

+. �

3. LEMMATA AND PROOF OF THEOREM 1

Lemma 1. Let 0 ≤ r < R < +∞, E ⊂ D(r) be λ-measurable, U = u− v be a difference of
subharmonic functions u, v ∈ sbh∗

(
D(R)

)
, Δv be the Riesz measure of v. Then

∫

E

U+dλ ≤ 1

2

(
R+ r

R− r
CU+(R) +Δrad

v (R)

)
λ(E) ln

(10R)2

λ(E)
. (20)

Proof.For w ∈ E ⊂ D(r), by the Poisson–Jensen formula [7, 4.5], we have

U(w) =
1

2π

2π∫

0

U(Reiϕ)Re
Reiϕ + w

Reiϕ − w
dϕ−

∫

D(R)

ln
∣
∣∣
R2 − zw̄

R(w − z)

∣
∣∣dΔu(z)

+

∫

D(R)

ln
∣
∣∣
R2 − zw̄

R(w − z)

∣
∣∣dΔv(z) ≤

R+ r

R− r
CU+(R) +

∫

D(R)

ln
2R

|w − z|dΔv(z)

where the right-hand side of the inequality is positive. Hence, by integrating, we get
∫

E

U+dλ ≤ R+ r

R− r
CU+(R)λ(E) +

∫

D(R)

∫

E

ln
2R

|w − z|dλ(w)dΔv(z)

≤ R+ r

R− r
CU+(R)λ(E) +Δv

(
D(R)

) ∫

E

ln
2R

|w − z|dλ(w). (21)

Denote by λE the restriction of the Lebesgue measure λ to λ-measurable set E ⊂ D(r). Obviously,

suppλE ⊂ D(r) ⊂ D(R), (22s)
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λE(w, t)
(3z)

≤ πt2 for each w ∈ C and t ∈ R
+, (22t)

λE(C) = λ(E) ≤ πr2 ≤ πR2. (22E)

Consider the last integral in (21):

∫

E

ln
2R

|w − z|dλ(w) =
∫

C

ln
2R

|w − z|dλE(w)
(22s)
=

2R∫

0

ln
2R

t
dλE(z; t)

(22t)
=

2R∫

0

λE(z; t)

t
dt. (23)

By (22E) we have
√

λ(E)
(22E)

≤ √
πr < 2r ≤ 2R. From here we can split the last integral in (23) into

the sum of two positive integrals:

2R∫

0

λE(z; t)

t
dt =

√
λ(E)∫

0

λE(z; t)

t
dt+

2R∫

√
λ(E)

λE(z; t)

t
dt. (24)

Using (22t), we have for first integral on the right-hand side of this equality (24) the estimate
√

λ(E)∫

0

λE(z; t)

t
dt

(22t)

≤

√
λ(E)∫

0

πt2

t
dt =

π

2
λ(E). (25)

Using (22E), we have for second integral on the right-hand side of (24) the estimate

2R∫

√
λ(E)

λE(z; t)

t
dt ≤ λ(C)

2R∫

√
λ(E)

λE(z; t)

t
dt

(22E)
=

1

2
λ(E) ln

4R2

λ(E)
. (26)

Thus, it follows from (25), (26), and (24) that

2R∫

0

λE(z; t)

t
dt ≤ π

2
λ(E) +

1

2
λ(E) ln

4R2

λ(E)
=

1

2
λ(E) ln

4eπR2

λ(E)
≤ 1

2
λ(E) ln

(10R)2

λ(E)
, (27)

where ln (10R)2

λ(E) ≥ 2, since λ(E)
(22E)

≤ πR2, and estimate (27) together with (23) and (21) gives (20). �

Lemma 2 ([6, Lemma 1]). Let μ ∈ Meas+
(
D(R)

)
. Then

μrad(r) ≤ R

R− r
Nμ(r,R) for each 0 ≤ r ≤ R. (28)

Lemma 3. Let 0 < r < +∞, 0 < b ∈ R
+, E ⊂ D(r) be λ-measurable, U = u− v be a difference

of subharmonic functions u, v ∈ sbh∗
(
D
(
(1 + b)2r

))
. Then

∫

E

U+dλ ≤ 1 + b

b

(
CU+

(
(1 + b)r

)
+ NΔv

(
(1 + b)r, (1 + b)2r

))
λ(E) ln

(
10(1 + b)r

)2

λ(E)
. (29)

Proof. By Lemma 1 with R := (1 + b)r we have
∫

E

U+dλ ≤ 1

2

(
2 + b

b
CU+(R) +Δrad

v

(
(1 + b)r

))
λ(E) ln

(
10(1 + b)r

)2

λ(E)
.
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Hence, by Lemma 2 with (1 + b)2r instead of R and (1 + b)r instead of r, we obtain
∫

E

U+dλ ≤ 1

2

2 + b

b

(
CU+

(
(1 + b)r

)
+ NΔv

(
(1 + b)r, (1 + b)2r

))
λ(E) ln

(
10(1 + b)r

)2

λ(E)
,

which gives (29). �

Proof of Theorem 1. We can assume that U = u− v is the canonical representation of U . Consider
a number b > 0 such that (1 + b)2 = k. By Lemma 3, we have

∫

E

U+dλ ≤
√
k√

k − 1

(
CU+(

√
kr) + NΔv(

√
kr, kr)

)
λ(E) ln

(
10
√
kr

)2

λ(E)

≤ 2
k

k − 1

(
CU+(r0, kr) + NΔv(r0, kr)︸ ︷︷ ︸

TU (r0,kr)

+ CU+(r0)
)
λ(E) ln

(
10r

)2
k

λ(E)
,

and, by definition (7), obtain (16T). If u ∈ sbh∗(C), then the function M+
u is increasing, and

∫

E

u+dλ
(1M)

≤ Mu+(r)λ(E) for E ⊂ D(r). (30)

For Uu := 0− u, the difference 0− u is the canonical representation of δ-subharmonic non-trivial
function Uu and we have

TUu(r,R)
(8)
= Csup{0,u}(r,R) = Cu+(r,R) ≤ Cu+(R) ≤ Mu+(R). (31)

Hence, by Theorem 2 in part (16T) for Uu in the role of U , we obtain
∫

E

(−u)+dλ
(16T )

≤ 2k

k − 1

(
TUu(r0, kr) + CU+

u
(r0)

)
λ(E) ln

100kr2

λ(E)

(31)

≤ 2k

k − 1

(
Mu+(kr) + C(−u)+(r0)

)
λ(E) ln

100kr2

λ(E)
.

The latter together with (30) gives (16M). �
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