
Theoretical and Mathematical Physics, 205(1): 1264–1278 (2020)

MODIFIED SERIES OF INTEGRABLE DISCRETE EQUATIONS ON

A QUADRATIC LATTICE WITH A NONSTANDARD SYMMETRY

STRUCTURE

R. N. Garifullin∗† and R. I. Yamilov∗‡

We recently constructed a series of integrable discrete autonomous equations on a quadratic lattice with a

nonstandard structure of higher symmetries. Here, we construct a modified series using discrete nonpoint

transformations. We use both noninvertible linearizable transformations and nonpoint transformations

that are invertible on the solutions of the discrete equation. As a result, we obtain several new examples of

discrete equations together with their higher symmetries and master symmetries. The constructed higher

symmetries give new integrable examples of five- and seven-point differential–difference equations together

with their master symmetries. The method for constructing noninvertible linearizable transformations

using conservation laws is considered for the first time in the case of discrete equations.
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1. Introduction

In [1], we presented an infinite series of discrete equations of the form

(un,m+1 + 1)(un,m − 1) = βN (un+1,m+1 − 1)(un+1,m + 1), (1)

where n, m ∈ Z are discrete independent variables and un,m is an unknown function of two discrete variables.
The equations of the series are labeled by natural numbers N , and the coefficients βN are roots of unity:
βN

N = 1, N ≥ 1.
To distinguish equations with different N , we consider primitive roots of unity. Clearly, β1 = 1. For

N > 1, primitive roots are defined as

βN
N = 1, βj

N �= 1, 1 ≤ j < N. (2)
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In particular,

β1 = 1, β2 = −1, β3 = −1
2
± i

√
3

2
, β4 = ±i, (3)

i.e., in the last two cases, there are two primitive roots corresponding to the plus and minus signs. For any
N > 2, there exist at least two primitive roots βN = e±2iπ/N . Therefore, we consider the series of equations
of form (1) where the coefficients βN are Nth-order primitive roots of unity.

Equations of series (1) are integrable in the sense that they have infinite hierarchies of higher symme-
tries and conservation laws the same as L–A pairs. Infinite hierarchies of autonomous equations can be
distinguished among these symmetries and conservation laws.

Analogous series of autonomous discrete equations were considered in [2]. Series of discrete Darboux-
integrable equations and Burgers-type equations were studied in [3], [4].

Using nonpoint transformations, we here obtain new series of discrete equations together with higher
symmetries. For simplicity, we restrict ourself to several simplest higher symmetries in each direction.

As shown in [1], the first- and second-order symmetries in the direction m for any equation of series (1)
have the forms

∂t1un,m = βn
N (u2

n,m − 1)(un,m+1 − un,m−1), (4)

∂t2un,m = β2n
N (u2

n,m − 1)[(u2
n,m+1 − 1)(un,m+2 + un,m) −

− (u2
n,m−1 − 1)(un,m + un,m−2) − 4(un,m+1 − un,m−1)]. (5)

There is an analogous higher symmetry in the direction m in each order. The structure of these symmetries
is such that the Nth Eq. (1) has autonomous higher symmetries of orders kN , k ∈ N.

The structure of higher symmetries is nonstandard in the direction n. The form and order of the
simplest symmetry in this direction depends on N . The simplest higher symmetry of the equation of
series (1) with N = 1 has the order one:

∂θ1un,m = (u2
n,m − 1)

(
an+1

un+1,m + un,m
− an

un,m + un−1,m

)
, (6)

where an = b + cn and b and c are arbitrary constants.
For N = 2, the simplest higher symmetry has the order two:

∂θ2un,m = (u2
n,m − 1)(Tn − 1)

(
an+1(un+1,m + un,m)

Un,m
+

an(un−1,m + un−2,m)
Un−1,m

)
,

Un,m = (un+1,m + un,m)(un,m + un−1,m) − 2(u2
n,m − 1).

(7)

Here, the function an = bn + cn, where c is a constant and bn ≡ bn+2 is an arbitrary two-periodic function
of n. It can be represented in the form bn = b(1) + b(2)(−1)n with two arbitrary constants b(1) and b(2).
Here, the shift operator in the direction n is denoted by Tn: Tnhn,m = hn+1,m.

For N = 3, the simplest higher symmetry has the order three:

∂θ3un,m = (u2
n,m − 1)(Tn − 1)

(
an+2Vn,m

Un,m
+

anWn,m

Un−2,m
+ (Tn + 1)

an+1Zn,m

Un−1,m

)
,

Vn,m = β2
3(u2

n+1,m − 1) + un+1,m(un+2,m − un−1,m) − un+2,mun−1,m + 1,

Wn,m = β3(u2
n−2,m − 1) + un−2,m(un−1,m + un−3,m) + un−1,mun−3,m + 1,

Zn,m = (un+1,m + un,m)(un−1,m + un−2,m),

Un,m = β2
3(u2

n+1,m − 1)(un,m + un−1,m) + β3(u2
n,m − 1)(un+2,m + un+1,m) +

+ (un+1,mun,m + 1)(un+2,m + un−1,m) + (un+1,m + un,m)(un+2,mun−1,m + 1).

(8)
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Here, β3 is one of the two primitive roots of unity in (3). The function an is given by an = bn + cn, where
c is a constant and bn ≡ bn+3 is an arbitrary three-periodic function, which can be represented in the form
bn = b(1) + b(2)βn

3 + b(3)β2n
3 , where b(1), b(2), and b(3) are arbitrary constants.

Each of formulas (6)–(8) contains an autonomous symmetry corresponding to an ≡ 1. The case where
an = n plays the role of the master symmetry for the corresponding discrete equation (1). For any fixed m,
formulas (6)–(8) determine integrable differential–difference equations for c = 0 and their master symmetries
for an = n.

Using nonpoint transformations, we obtain new examples of autonomous five- and seven-point differen-
tial–difference equations together with their master symmetries from formulas (6)–(8).

The nonpoint transformations that we use to construct modified series and higher symmetries are
divided into two types. The first type comprises the discrete noninvertible linearizable transformations
introduced in [5], which are constructed using special conservation laws. The method we use for constructing
linearizable transformations from conservation laws in the case of discrete equations is apparently new.

The second type contains nonpoint transformations that are invertible on solutions of the discrete
equation [6], [7]. In the case of higher symmetries and the corresponding differential–difference equations,
such transformations lead to noninvertible Miura-type transformations or compound-linearizable transfor-
mations.

In Sec. 2, we consider discrete noninvertible linearizable transformations. We first describe the proce-
dure for constructing such transformations using special conservation laws and the scheme for constructing
modified discrete equations and the corresponding higher symmetries. As a result of applying this method,
we then obtain four modified series of discrete equations together with the simplest higher symmetries.
In Sec. 3, we use nonpoint transformations that are invertible on solutions of the discrete equation. This
allows constructing two more modifications together with higher symmetries and master symmetries.

2. Linearizable transformations

Following [5], where differential–difference equations were discussed, we introduce the notion of a
linearizable transformation. In this section, we consider first-order transformations that are linearized by
point transformations. Such transformation in the direction n can be written in the form

Un,m = Fn,m[(Tn − 1)Gn,m(Vn,m)], (9)

where F ′
n,m(x) �= 0 and G′

n,m(x) �= 0 for any n and m. Using obvious nonautonomous point variable
replacements Un,m and Vn,m, we can bring such a transformation to the form

Ûn,m = (Tn − 1)V̂n,m,

which is the simplest linear transformation. Compositions of such transformations are also said to be
linearizable [5]. In the case where the composition consists of transformations in different directions, we
obtain a compound-linearizable transformation (see example (65) in Sec. 3.1). We note that Miura-type
transformations are not linearizable [5]. An example of such a transformation is given in Sec. 3.2 (see (75)).

In the direction m, the first-order linearizable transformations studied in this section have an analogous
form,

Un,m = Fn,m[(Tm − 1)Gn,m(Vn,m)],

where Tm denotes the shift operator in the direction m: Tmhn,m = hn,m+1.
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2.1. Construction of the simplest linearizable transformations. We assume that Eq. (1) has
a conservation law of the form

(Tm − 1)pn,m(un,m) = (Tn − 1)qn,m(un,m+1, un,m), (10)

where p′n,m(x) �= 0 for any n and m, i.e., pn,m(x) is invertible for all n and m. We can introduce a new
unknown function vn,m:

pn,m(un,m) = (Tn − 1)rn,m(vn,m), (11)

where r′n,m(x) �= 0 for any n and m. This relation gives an explicit formula for un,m:

un,m = p−1
n,m[(Tn − 1)rn,m(vn,m)]. (12)

Substituting function (12) in (10) and integrating over the discrete variable n, i.e., applying the inverse
operator (Tn − 1)−1, we obtain a discrete equation for the unknown function vn,m:

(Tm − 1)rn,m(vn,m) = qn,m

(
p−1

n,m+1[(Tn − 1)rn,m+1(vn,m+1)], p−1
n,m[(Tn − 1)rn,m(vn,m)]

)
. (13)

Discrete equation (13) is transformed into Eq. (1) by linearizable replacement (12).
The choice of the function rn,m in replacement (11) corresponds to a nonautonomous point transforma-

tion of the unknown function vn,m. Because of integration over n in relation (13), an integration function
ωm must appear; it is eliminated by the choice of rn,m. Moreover, we choose the function rn,m to simplify
replacement (12) and Eq. (13).

Higher symmetries of discrete equation (13) in the direction n can be found from (11) (see [5]). For
example, as the diagonalization method for L–A pairs shows [8], pn,m(un,m) becomes a conservation law
density of not only discrete equation (1) but also its higher symmetries (6)–(8) with c = 0. By virtue of
such higher symmetries, we have

Dθj pn,m(un,m) = (Tn − 1)h(j)
n,m(un+j−1,m, un+j−2,m, . . . , un−j,m), j = 1, 2, 3. (14)

Differentiating (11) with respect to θj and integrating over n, we obtain

r′n,m(vn,m)Dθj vn,m = h(j)
n,m + ω̃(j)

m , (15)

where all functions of the form un+k,m are replaced with vn+k,m by virtue of (12). Using the consistency
condition for discrete equation (13) and Eq. (15), we specify the integration function ω̃

(j)
m .

For master symmetries (6)–(8) with an = n, we rewrite the function Dθjpn,m(un,m) in terms of vn+k,m

using (12) and in examples obtain a representation of the form

Dθj pn,m(un,m) = (Tn − 1)h̃(j)
n,m(vn+j,m, vn+j−1,m, . . . , vn−j,m). (16)

This representation allows finding a new master symmetry as in case (14).
To obtain higher symmetries of discrete equation (13) in the direction m, we write (13) in the form

(Tm − 1)rn,m(vn,m) = qn,m(un,m+1, un,m). (17)

Differentiating with respect to tj , j = 1, 2, by virtue of (4) and (5), we obtain

(Tm − 1)Dtj rn,m(vn,m) = s(j)
n,m(un,m+j+1, un,m+j, . . . , un,m−j). (18)
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Eliminating un,m+k in the right-hand side of this relation using (12), we obtain the dependence on vn,m+k

and vn+1,m+k. Using discrete equation (13), we bring this relation to the form

(Tm − 1)[r′n,m(vn,m)Dtj vn,m] = s̃(j)
n,m(vn+1,m, vn,m+j+1, vn,m+j , . . . , vn,m−j). (19)

In all examples considered below, we find that s̃
(j)
n,m is independent of vn+1,m and this function belongs

to the image of the operator Tm − 1. Integrating relation (19) over m, we obtain a differential–difference
equation for vn,m with the integration function ω̂

(j)
n . For this equation, we verify the compatibility with

not only discrete equation (13) but also replacement (12). Moreover, we specify the function ω̂
(j)
n .

In the case of a conservation law symmetric to (10) that has the form

(Tn − 1)pn,m(un,m) = (Tm − 1)qn,m(un+1,m, un,m), (20)

where p′n,m(x) �= 0 for any n and m, we use the scheme described above up to the exchange n ↔ m.

2.2. First modification. All discrete equations of series (1) have a conservation law of form (10):

(Tm − 1)(βn
Nun,m) = (Tn − 1)

[
−1

2
βn

N (un,m+1 − 1)(un,m + 1)
]
. (21)

We change the variables βn
Nun,m = (Tn − 1)(βn

Nvn,m), which are written in form (12) as

un,m = βNvn+1,m − vn,m. (22)

Using (13), we obtain the discrete equation for vn,m:

(βNvn+1,m+1 − vn,m+1 − 1)(βNvn+1,m − vn,m + 1) + 2(vn,m+1 − vn,m) = 0. (23)

For Eq. (23), we write four higher symmetries, which reduce to (4)–(7) by transformation (22). In the
direction m, we have the symmetries for any N

∂t1vn,m = −2βn
N(vn,m+1 − vn,m)(vn,m − vn,m−1), (24)

∂t2vn,m = 4β2n
N (vn,m+2 − vn,m−2)(vn,m+1 − vn,m)(vn,m − vn,m−1) (25)

corresponding to (4) and (5). Relation (17), which is used to construct these symmetries, has the form

2(vn,m − vn,m+1) = (un,m+1 − 1)(un,m + 1). (26)

In the direction n for N = 1, βN = 1, we obtain the first-order symmetry corresponding to (6):

∂θ1vn,m = −an
(vn+1,m − vn,m)(vn,m − vn−1,m) + 1

vn+1,m − vn−1,m
+ cvn,m, (27)

where an = b + cn as in (6). For N = 2, βN = −1, the higher second-order symmetry corresponding to (7)
has the form

∂θ2vn,m = [(vn+1,m + vn,m)2 − 1] ×

×
(

an+1
vn+2,m + vn,m + 2vn−1,m

Vn,m
− an

vn,m + 2vn−1,m + vn−2,m

Vn−1,m

)
+

+ (bn − bn+1)(vn+1,m + vn,m) + c(vn,m − vn+1,m),

Vn,m = (vn+2,m + vn,m)(vn+1,m + vn−1,m) + 2(vn+2,mvn,m + vn+1,mvn−1,m + 1),

(28)
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where an = bn + cn as in (7).
Fixing the integration functions ω̃

(j)
m and ω̃

(j)
n that arise in constructing these higher symmetries, in

all cases, we obtain an additional term of the form νβ−n
N with an arbitrary constant coefficient ν, which we

omit because discrete equation (13) is obviously invariant under the one-parameter transformation group
vn,m → vn,m + τβ−n

N corresponding to the point symmetry ∂τvn,m = β−n
N . This point symmetry explains

the presence of the abovementioned addition to the higher symmetries.
We note that for N = 2, autonomous discrete equation (23) has autonomous second-order higher sym-

metries in both directions. Symmetry (25) becomes autonomous because β2 = −1, and among symmetries
of (28), we have the autonomous particular case with bn ≡ 1 and c = 0.

2.3. New examples constructed in this paper. Discrete equation (23) with N = 1, i.e., βN = 1,
coincides with Eq. (T4) in [9] (Table 1 on p. 17) up to the change of variables vn,m = −2um,n + m. The
other equations of series (23) are apparently new. The same holds for remaining modified series of discrete
equations. All equations of the series are new except the case N = 1 in some of them.

For each fixed n, higher symmetries (24) and (25) in the direction m are one of the known modifications
of the Volterra equation and its higher symmetry. Integrable equations of the Volterra type were completely
classified in [10] (see review [11] for details). Symmetry (24) corresponds to a particular case of Eq. (V6)
in the list of Volterra-type equations in [11]. All the remaining higher symmetries in the direction m listed
below correspond to differential–difference equations of a similar nature; moreover, all three-point examples
belong to the same list in [11].

For each fixed m, higher symmetry (27) in the direction n determines an integrable differential–
difference equation with b = 1 and c = 0 and its master symmetry with b = 0 and c = 1. This differential–
difference equation is a particular case of Eq. (V4) with ν = 0 in [11]. For all equations of form (V4) with
ν = 0 in [12], master symmetries with an explicit dependence on its time have been constructed (see Sec. 4.3
in [13] for more details). In particular, in our case, the master symmetry has the form

∂τvn = − n

τ + 1
(vn+1 − vn)(vn − vn−1) + (τ + 1)2

vn+1 − vn−1
, (29)

where we omit the index m for brevity. In contrast to (29), the master symmetry obtained from (27) is
independent of its time and allows constructing higher symmetries not only for the differential–difference
equation but also for discrete equation (23) with N = 1. Moreover, it naturally arises in constructing higher
symmetries of the discrete equation.1

In the other examples, the higher symmetries in the direction n corresponding to N = 1 in the discrete
equation in the particular case b = 1 and c = 0 determine known Volterra-type differential–difference
equations in [11]. The master symmetries corresponding to the case b = 0 and c = 1 are mostly known.

With a fixed m, higher symmetry (28) determines an integrable five-point autonomous differential–
difference equation with bn ≡ 1 and c = 0, its nonautonomous symmetry with bn = (−1)n and c = 0, and
the master symmetry with bn ≡ 0 and c = 1. The equation and master symmetry are apparently new.

The remaining higher symmetries in the direction n given below and corresponding to the cases N = 2
and N = 3 in the discrete equations generate examples of five- and seven-point differential–difference
equations. The condition bn ≡ 1, c = 0 distinguishes the autonomous integrable cases among them. For
each of them, we automatically obtain one or two nonautonomous symmetries and the master symmetry.
All such examples including the nonautonomous equations and master symmetries except two five-point
autonomous equations mentioned below are new.

1Without going into the details, we note that there is a connection between these master symmetries, i.e., the example
obtained from (27) is not essentially new.
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2.4. Second modification. All discrete equations of series (1) have a conservation law of the form

(Tm − 1) log
un,m + 1
un,m − 1

= (Tn − 1) log
(

βn
N (un,m+1 − 1)(un,m + 1)

)
. (30)

To simplify new discrete equation (13), we choose rn,m = log wn,m +m log 4, where wn,m is a new unknown
function, as the function rn,m in relation (11). Then (11) implies that

un,m + 1
un,m − 1

=
wn+1,m

wn,m
, (31)

i.e., in explicit form, we have the transformation

un,m =
wn+1,m + wn,m

wn+1,m − wn,m
. (32)

Discrete equation (13) for wn,m can be written as

(wn+1,m+1 − wn,m+1)(wn+1,m − wn,m) = βn
Nwn+1,mwn,m. (33)

We obtain a series of modified discrete equations with one nonautonomous coefficient βn
N . The first equation

of this series, corresponding to N = 1, in the variable un,m = (−1)nwm,n coincides with (T6) in [9].
Relation (17), which is used to construct higher symmetries in the direction m, has the form

4
wn,m+1

wn,m
= βn

N(un,m+1 − 1)(un,m + 1). (34)

Both symmetries in this direction turn out to be autonomous:

1
4
∂t1wn,m = wn,m+1 +

w2
n,m

wn,m−1
, (35)

1
16

∂t2wn,m = wn,m+2 +
w2

n,m+1

wn,m
+

2wn,m+1wn,m

wn,m−1
+

w3
n,m

w2
n,m−1

+
w2

n,m

wn,m−2
. (36)

In the direction n with N = 1 and βN = 1, we obtain the first-order symmetry corresponding to (6):

∂θ1wn,m = −an
(wn+1,m − wn,m)(wn,m − wn−1,m)

wn+1,m − wn−1,m
+ cmwn,m, (37)

where an = b + cn as in (6). The autonomous particular case b = 1, c = 0 of this symmetry is invariant
under linear-fractional transformations wn,m (or Möbius invariant). This is just the well-known Schwarzian
version of the Volterra chain.

It is convenient to introduce the notation from [14] (Sec. 4)

Yn,m =
(wn+1,m − wn,m)(wn,m − wn−1,m)

wn+1,m − wn−1,m
,

Xn,m =
(wn+1,m − wn,m)(wn−1,m − wn−2,m)
(wn+1,m − wn−1,m)(wn,m − wn−2,m)

.

(38)

Then Eq. (37) can be easily written in terms of Yn,m. With N = 2 and βN = −1, the second-order
symmetry corresponding to (7) has the form

∂θ2wn,m = Yn,m

(
an+1

2Xn+1,m − 1
+

an

2Xn,m − 1

)
+ 2cmwn,m, (39)
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where an = bn + cn as in (7). For c = 0, it is obviously Möbius invariant under wn,m the same as (37).
Fixing the variable m, we see that the autonomous case bn ≡ 1, c = 0 coincides with the well-known
Eq. (32) in [14] up to a shift of θ2. Here, we find nonautonomous symmetry (39) with bn = (−1)n and
c = 0 and the master symmetry corresponding to bn ≡ 0 and c = 1 for this equation. Moreover, discrete
equation (33) with N = 2 compatible with symmetry (39) determines a Bäcklund autotransformation for
this well-known equation (see Sec. 4.1 in [13] for details).

For N = 3, the third-order symmetry corresponding to (8) has the form

∂θ3wn,m = Yn,m

(
an+2(Wn+2,m + β3)
β3Wn+1,m − Wn+2,m

+
an+1(β3 − 1)

β3Wn,m − Wn+1,m
− an(β3Wn−1,m + 1)

β3Wn−1,m − Wn,m

)
+ 3cmwn,m, (40)

Wn,m = 3Xn,m − 1,

where Xn,m and Yn,m are functions given by (38) and β3 and an = bn + cn are defined as in Eq. (8). For
fixed m and c = 0, Eq. (40) is obviously Möbius invariant. It contains three commuting particular cases
distinguished by the conditions bn ≡ 1, bn = βn

3 , and bn = β2n
3 . The first of these is a new autonomous

seven-point Möbius-invariant integrable equation. The case bn ≡ 0, c = 1 determines the master symmetry
for all three equations. Equation (33) with N = 3 determines a Bäcklund autotransformation for them.

2.5. Third modification. We start with Eq. (33), which for any N has the conservation law

(Tn − 1)[(−1)n+m log wn,m] = (Tm − 1)[(−1)n+m log(β−n/2
N (wn,m − wn+1,m))]. (41)

This conservation law has form (20), and the formula symmetric to (11) is

(−1)n+m log wn,m = (Tm − 1)[(−1)n+m+1 log zn,m]. (42)

This yields the simple linearizable transformation

wn,m = zn,m+1zn,m, (43)

which allows obtaining the discrete equation

zn,m+1zn,m − zn+1,m+1zn+1,m = β
n/2
N zn+1,mzn,m. (44)

The relation for constructing higher symmetries in the direction n has the form

β
n/2
N zn,mzn+1,m = wn,m − wn+1,m. (45)

The presence of half-integer powers of βN , which is inconvenient for studies, is a disadvantage of
Eq. (44). Using the nonautonomous point transformation znew

n,m = β
n(n−1)/4
N zn,m, we transform it into a

form analogous to (33):
zn,m+1zn,m − β−n

N zn+1,m+1zn+1,m = zn+1,mzn,m. (46)

This discrete equation with βN = 1 is not new, because after the transformation un,m = in−mzm,n, it
coincides with (T7) with c2 = 0 in [9].

We rewrite relations (43) and (45), which are needed for constructing higher symmetries, as

wn,m = β
−n(n−1)/2
N zn,m+1zn,m, β

−n(n−1)/2
N zn,mzn+1,m = wn,m − wn+1,m. (47)
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We note that there are no half-integer powers of βN here because n(n − 1)/2 is always an integer.
Two higher symmetries of discrete equation (46) in the direction m independently of N have the forms

1
4
∂t1zn,m =

zn,m+1zn,m

zn,m−1
, (48)

1
16

∂t2zn,m =
zn,m+2zn,m+1

zn,m−1
+

z2
n,m+1zn,m

z2
n,m−1

+
zn,m+1z

2
n,m

zn,m−1zn,m−2
. (49)

For N = 1 and βN = 1, Eq. (37) yields the first-order symmetry in the direction n

2∂θ1zn,m = −anzn,m
zn+1,m − zn−1,m

zn+1,m + zn−1,m
+ czn,m

(
m − 1

2

)
, (50)

where an = b + cn as in (6). After the nonautonomous shift znew
n,m = inzn,m, this equation with any fixed m

coincides with the well-known equation in [11], whose master symmetry is also known [12], [13].
For N = 2 and βN = −1, the second-order symmetry in the direction n obtained from (39) has the

form

∂θ2zn,m = zn,m

(
an

1 + (−1)n(zn+1,m(zn−2,m− (−1)nzn,m))/(zn−1,m(zn−2,m + (−1)nzn,m))
−

− an+1

1 + (−1)n(zn−1,m(zn+2,m − (−1)nzn,m))/(zn+1,m(zn+2,m + (−1)nzn,m))
+

+ cm +
bn+1 − bn

2

)
, (51)

where an = bn + cn as in (7). To eliminate the coefficient (−1)n, we use the nonautonomous point trans-
formation znew

n,m = i−(n−1)2/2−1/4zn,m and obtain

∂θ2zn,m = zn,m

(
an

1 − (zn+1,m(zn−2,m − zn,m))/(zn−1,m(zn−2,m + zn,m))
−

− an+1

1 − (zn−1,m(zn+2,m − zn,m))/(zn+1,m(zn+2,m + zn,m))
+ cm +

bn+1 − bn

2

)
. (52)

Because c is a constant and bn is an arbitrary two-periodic function here, we have three cases for any fixed
m: an autonomous differential–difference equation for an ≡ 1, its symmetry for an = (−1)n, and their
common master symmetry for an = n.

Moreover, the second relation in (47) becomes

zn,mzn+1,m = wn,m − wn+1,m, (53)

and for a fixed m, this relates differential–difference equations (39) and (52). With an ≡ 1, Eq. (52) becomes
autonomous and is related to the well-known autonomous equation (39) with an ≡ 1 by autonomous
transformation (53). Transformation (53) is linearizable, but it is not explicit in both directions [5].

2.6. Fourth modification. The right- and left-hand sides of relation (26) can be denoted by yn,m.
We thus introduce a new unknown function, which as follows from (4) and (24) satisfies the equation

∂t1yn,m = βn
Nyn,m(yn,m+1 − yn,m−1). (54)

This is the Volterra equation for any fixed n, which is natural because one of the transformations defined
here,

yn,m = (un,m+1 − 1)(un,m + 1), (55)
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is just the known transformation of the modified Volterra equation into the Volterra equation. The other
transformation,

yn,m = 2(vn,m − vn,m+1),

relating (24) and (54), is also known, as is (55) (see, e.g., review [11]). Letting βn
Nyn,m denote the right-

and left-hand sides of relation (34), we again obtain relations between (35) and (4) with the same Eq. (54).
We can expect an analogous result from relation (53). Here, we show that the transformation

yn,m = wn,m − wn+1,m (56)

obtained from (53) allows deriving one more modification together with higher symmetries from discrete
equation (33). We note that in contrast to (22), (32), and (43), transformation (56) has another direction
in the sense that it allows expressing the new unknown function yn,m in terms of wn,m in an explicit form.

Transformation (56) allows easily rewriting higher symmetries in the direction n. Symmetries (37)
and (39) become

∂θ1yn,m = y2
n,m

(
an+1

yn+1,m + yn,m
− an

yn,m + yn−1,m

)
+ c(m − 1)yn,m, (57)

∂θ2yn,m = −y2
n,m

(
an+2(yn+2,m − yn+1,m)

Υn+1,m
+

an+1(yn+1,m − yn−1,m)
Υn,m

+

+
an(yn−1,m − yn−2,m)

Υn−1,m

)
+ 2c(m − 1)yn,m,

Υn,m = (yn+1,m + yn,m)(yn,m + yn−1,m) − 2yn+1,myn−1,m,

(58)

where the functions an are the same as in (6) and (7). We can also rewrite higher symmetry (40).
The new discrete equation for yn,m and its higher symmetries in the direction m contain square roots,

but it is important that transformation (56) allows constructing them.
We rewrite discrete equation (33) using transformation (56) in the form of a quadratic equation for

the unknown function wn,m:
yn,m+1yn,m = βn

N (wn,m − yn,m)wn,m. (59)

We introduce the notation
Θn,m = 1 + 4β−n

N

yn,m+1

yn,m
(60)

and then write solution (59) as
wn,m =

yn,m

2
(
1 +

√
Θn,m

)
, (61)

where
√

Θn,m is any branch of the square root. Applying the operator 1 − Tn to relation (61), we obtain
the new discrete equation

yn+1,m

(
1 +

√
Θn+1,m

)
+ yn,m

(
1 −

√
Θn,m

)
= 0. (62)

To find the simplest higher symmetry in the direction m, we differentiate transformation (56) with
respect to t1 by virtue of symmetry (35). In the right-hand side of the obtained expression, we eliminate
wn+1,m+1, wn+1,m, and wn+1,m−1 by virtue of transformation (56) and then wn,m and wn,m−1 by virtue
of (61). We obtain the higher symmetry

∂t1yn,m = 2βn
Nyn,m

(√
Θn,m

√
Θn,m−1 − 1

)
. (63)

The point transformation yn,m = eŷn,m allows obtaining a symmetry in terms of ŷn,m that for each fixed n

has the form of the known Eq. (V6) in [11].
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3. Transformations invertible on solutions of discrete equations

In this section, for the discrete equations, we construct nonpoint transformations that are invertible on
solutions of these discrete equations. For higher symmetries of the discrete equations, these transformations
generate Miura-type transformations or compound-linearizable transformations [5]. In this case, we use the
method developed in [6], [7] for discrete and semidiscrete equations. Another version of this method intended
for constructing Miura-type transformations was presented in [15], [16].

As a result, we obtain two more modifications of series (1) of discrete equations together with their
higher symmetries.

3.1. First modification. We rewrite discrete equation (1) as
un,m − 1

un+1,m + 1
= βN

un+1,m+1 − 1
un,m+1 + 1

. (64)

This representation allows introducing the new unknown function vn,m as

vn,m+1 =
un,m − 1

un+1,m + 1
, vn,m = βN

un+1,m − 1
un,m + 1

. (65)

We can solve the obtained expressions for the old unknowns un,m and un+1,m:

un,m =
vn,m+1vn,m + 2βNvn,m+1 + βN

βN − vn,m+1vn,m
,

un+1,m =
vn,m+1vn,m + 2vn,m + βN

βN − vn,m+1vn,m
.

(66)

Writing these expressions at the one point un+1,m, we obtain a new discrete equation. It is essentially
simplified if we rewrite it in terms of (un+1,m − 1)/(un+1,m + 1):

vn,m(vn,m+1 + 1)
vn,m + βN

=
vn+1,m+1(vn+1,m + βN )

βN (vn+1,m+1 + 1)
.

One more equivalent form is

(vn+1,m + βN )(1 + βNv−1
n,m) = βN (vn,m+1 + 1)(1 + v−1

n+1,m+1). (67)

We see that modified equation (67) is obtained from (1) using transformation (65), which is invertible
on solutions of discrete equation (1). The inverse transformation has form (66). We note that for βN = 1,
nothing new is obtained because the point transformation

v̂n,m =
1 − vn,m

1 + vn,m
(68)

leads to a discrete equation that after the exchange n ↔ m becomes Eq. (1) with βN = 1.
Invertible transformation (65) allows rewriting higher symmetries in a regular way [7]. From symme-

tries (4) and (5) of Eq. (1), we thus obtain the two simplest higher symmetries in the direction m for the
new discrete equation (67):

∂t1vn,m = 4βn+1
N vn,m(vn,m + 1)(vn,m + βN )

vn,m+1 − vn,m−1

Vn,m+1Vn,m
,

Vn,m = vn,mvn,m−1 − βN ,

(69)

∂t2vn,m = 16β2n+2
N (vn,m + 1)(vn,m + βN )

[
−vn,m(vn,m+1 + 1)(vn,m+1 + βN )

Vn,m+2V 2
n,m+1

+

+
vn,m(vn,m−1 + 1)(vn,m−1 + βN )

V 2
n,mVn,m−1

− vn,m+1 + vn,m + βN + 1
V 2

n,m+1

+

+
vn,m + vn,m−1 + βN + 1

V 2
n,m

+
βN (vn,m + 1)(vn,m + βN )(vn,m+1 − vn,m−1)

V 2
n,m+1V

2
n,m

]
. (70)
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We note that for any fixed n, the point transformation vnew
n,m = (

√
βN − vn,m)/(

√
βN + vn,m) transforms

symmetry (69) into the known equation of form (V2) in [11].
We turn to symmetries in the direction n and consider the case N = 1. The higher symmetry obtained

from (6) and then rewritten in terms of v̂n,m in (68) for any fixed m becomes the modified Volterra equation
with the known master symmetry [17]:

4∂θ1 v̂n,m = (v̂2
n,m − 1)(an+2v̂n+1,m − anv̂n−1,m), an = b + cn. (71)

The simplest higher symmetry for N = 2 obtained from (7) has the form

∂θ2vn,m = vn,m(1 − T 2
n)

(
an+1

vn,m − 1

V̂n,m

− an
vn−2,m + 1

V̂n−1,m

)
− 2cvn,m,

V̂n,m = vn,mvn−1,m − vn,m + vn−1,m + 1,

(72)

where an is defined as in (7). For any fixed m with an ≡ 1, it generates a five-point analogue of the
modified Volterra equation. On the other hand, this case an ≡ 1 is a new example of an autonomous
differential–difference equation with the nonautonomous symmetry an = (−1)n and the master symmetry
an = n.

Each of transformations (65) transforms higher symmetry (7) directly into (72) because they are
completely defined on line n in the same way as the symmetries. This is how they differ from transfor-
mations (66), which relate the same symmetries but on solutions of discrete equation (67). In contrast to
the transformations studied in Sec. 2, transformations (65) are linearized in a more complicated way. For
example, the first of them is a composition of transformations:

vn,m+1 =
yn+1,m

yn,m
, yn,m = zn,m − zn−1,m, un,m =

zn−1,m + zn,m

zn−1,m − zn,m
. (73)

They are linearizable because they can be easily written in form (9) up to the shift Tn.
The same compound-linearizable transformations (65) relate higher symmetry (8) to the symmetry

∂θ3vn,m = vn,m(T 2
n − 1)

[
an+2β3

vn+1,mvn,m + β3vn+1,m + vn,m + β2
3

Ṽn,m

+

+ an+1β
2
3

(vn,m + β3)(vn−2,m + 1)

Ṽn−1,m

+

+ an
vn−2,mvn−3,m + β3vn−2,m + vn−3,m + 1

Ṽn−2,m

]
− 3cvn,m,

Ṽn,m = (vn+1,m + 1)(vn,m + β2
3)(vn−1,m + β3) + (β3 + 2)(vn−1,m − vn+1,m),

(74)

where the coefficients an, c, and β3 are the same as in (8). Here, for any fixed m, we have one autonomous
seven-point analogue of the modified Volterra equation, its two nonautonomous commuting symmetries,
and one master symmetry.

Just like Eq. (23), Eq. (67) is an autonomous modification of autonomous discrete equation (1). Just
as in the case of Eq. (1), we can show that it is an example of an autonomous discrete equation with
two hierarchies of autonomous higher symmetries. For example, for N = 2 and βN = −1, the simplest
autonomous higher symmetries are symmetries (70) and (72) with an ≡ 1, which turn out to be five-point.
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3.2. Second modification. We let 3βN/wn,m+1 denote the right- and left-hand sides of discrete
equation (67), and these two equalities yield the formulas

wn,m =
3vn+1,m

(vn+1,m + 1)(vn,m + 1)
, wn,m+1 =

3βNvn,m

(vn+1,m + βN )(vn,m + βN )
. (75)

They determine a transformation of vn,m and vn+1,m into wn,m and wn,m+1 that is invertible on solutions of
discrete equation (67). As in case (65), we can construct a new discrete equation and its higher symmetries
in both directions in terms of wn,m. But the inverse transformation contains square roots, and the discrete
equation and the symmetries in the direction m must therefore also contain square roots. Formulas (75)
provide explicit rational transformations for symmetries in direction n, which also turn out to be rational.
We write most of these symmetries, but we give the corresponding discrete equation in only one important
case.

In contrast to transformations (65), we here have not linearizable transformations but transformations
of the Miura type. Indeed, in terms of v̂n,m, from relations (68) and

v̌n,m =
βN − vn,m

βN + vn,m
, (76)

we obtain
wn,m = −3

4
(v̂n+1,m − 1)(v̂n,m + 1), wn,m+1 = −3

4
(v̌n+1,m + 1)(v̌n,m − 1). (77)

These are known discrete Miura transformations relating the Volterra equation and its known modification.
They are obtained here by point transformations of the function vn,m.

In the case N = 1, βN = 1, using the first transformation in (77), we obtain the higher symmetry in
the direction n

− 3∂θ1wn,m = wn,m(an+3wn+1,m − anwn−1,m + cwn,m − 3c), an = b + cn, (78)

from symmetry (71) written in terms of v̂n,m. The strategy for rewriting differential–difference equations
using such transformations is explained in Appendix A.2 in [18]. For any fixed m, symmetry (78) is the
Volterra equation with its known master symmetry [19].

If N = 2, i.e., βN = −1, from symmetry (72) using the first transformation in (75), we obtain the
higher symmetry

∂θ2wn,m = wn,m(Tn + 1)
[

an+3wn,m

2wn+1,m − 3
− anwn−1,m

2wn−2,m − 3
+

1
2
(Tn − 1)

(
an − 3an+1

2wn−1,m − 3

)]
, (79)

where the coefficient an is defined as in (7).
We can obtain a known equation in terms of

w̃n,m = − 3
2wn,m − 3

. (80)

We write symmetry (79) as

−2∂θ2w̃n,m = (w̃n,m − 1)
[
an+4

w̃n+2,m(w̃n+1,m − 1)w̃n,m

w̃n+1,m
− an

w̃n,m(w̃n−1,m − 1)w̃n−2,m

w̃n−1,m
−

− an+3w̃n+1,m + an+1w̃n−1,m + (an − an+2)w̃n,m

]
. (81)
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In the particular case an ≡ 1 for any fixed m, this is a five-point analogue of the Volterra equation. This
equation was previously found in [14] (Eq. (39) there); it coincides with our equation up to a dilation θ2 and
w̃n,m. It was noted in [20] that this equation plays a crucial role for a special class of differential–difference
equations.

Formula (81) with the same fixed m for this equation gives a nonautonomous symmetry for an = (−1)n

and the master symmetry for an = n. Moreover, for this known equation, we can write a corresponding
discrete equation determining the Bäcklund autotransformation:

w̃n+1,m+1 − 1
w̃n+1,m+1(w̃n+1,m + 1)

(Θn+1,m − w̃n+1,m+1 + w̃n+1,m + 2) +

+
w̃n+1,m − 1

w̃n+1,m(w̃n,m+1 − 1)
(Θn,m + w̃n,m+1 − w̃n,m − 2) = 4,

Θn,m =
√

4w̃n,m+1w̃n,m + (w̃n,m+1 + w̃n,m + 2)2.

(82)

For N = 3, we can construct a seven-point analogue of the Volterra equation. Using the first transfor-
mation in (75), from (74), we obtain the higher symmetry

3∂θ3wn,m = wn,m(1 + Tn)[An,m + (1 − Tn)(wn−1,mBn,m)],

An,m = an+4
β3wn+1,mwn,m

Wn+2,m
− an+2

(β3 + 1)wn,mwn−1,m

Wn,m
+

+ an
wn−1,mwn−2,m

Wn−2,m
− 3c

(
wn,m − 3

2

)
,

Bn,m = an+2
2β3 + 1
Wn,m

− an+1
β3 + 2

Wn−1,m
+ an,

Wn,m = β3wn−1,m − wn,m + 1 − β3,

(83)

where the coefficients an, c, and β3 are defined as in (8). If we fix m, then from symmetry (83), we obtain
the abovementioned analogue with an ≡ 1, its nonautonomous commuting symmetries with an = βn

3 and
an = β2n

3 , and also its master symmetry with an = n.
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