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NECESSARY CONDITIONS OF DARBOUX INTEGRABILITY
FOR DIFFERENTIAL-DIFFERENCE EQUATIONS OF A

SPECIAL KIND

S.YA. STARTSEV

Abstract. This work dwells upon chains of differential equations of the form
ϕ(x, ui+1, (ui+1)x) = ψ(x, ui, (ui)x), where u depends on the discrete variable i and the
continuous variable x, and the functions ϕ(x, y, z), ψ(x, y, z) and x are functionally-
independent. We demonstrate that necessary Darboux integrability conditions for chains
of the above form can be easily derived from already known results. These conditions are
not sufficient but may be useful for classification of Darboux-integrable differential-difference
equations. As an auxiliary result, we also prove a proposition about structure of symmetries
for differential-difference equations of a more general form.
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A class of integrable equations of the form

uxy = F (x, y, u, ux, uy) (1)

is generated by the following equations. For every such equation there is a differential
substitution of the form v = X(x, y, u, ux, uxx, . . . ) as well as substitution of the form
w = Y (x, y, u, uy, uyy, . . . ), that transform solutions of (1) to solutions of equations vy = 0
and wx = 0, respectively. Such equations are said to be Darboux integrable. They are also
termed as equations of the Liouville type. A complete classification of Darboux integrable
equations of the form (1) was made in [1].

A chain of differential equations of the form

(ui+1)x = F (x, ui, ui+1, (ui)x),

where the unknown function u depends on an integer i and a real variable x, can be considered
as a differential-difference analogue of Equation (1). Some of the chains are Darboux integrable
as well. However, unlike equations of the form (1), the above mentioned “semidiscrete” Darboux
integrable equations have not been classified completely, only separate examples (see, e.g., [2])
and results of classification for chains of a special form [3] are known.

In order to give a rigorous definition of Darboux integrability one has to introduce some
notation. In what follows the index i is omitted in all formulae for the sake of brevity, in
particular the above chain is written in the from

(u1)x = F (x, u, u1, ux). (2)

We assume that Fux 6= 0 and therefore, Equation (2) can be written in the form

(u−1)x = F̃ (x, u, u−1, ux). (3)

By virtue of Equations (2)–(3), derivatives u(n)
m := ∂nui+m/∂x

n of shifts of u for any nonzero
m ∈ Z and n ∈ N can be expressed via x and the so-called dynamic variables ul := ui+l,
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u(k) := ∂kui/∂x
kui. The notation g[u] indicates that the function g depends on x and a finite

number of dynamic variables.
Lets us denote the shift operator with respect to i due to Equations (2) by T. The operator

is given by the following rules: T (f(a, b, . . . )) = f(T (a), T (b), . . . ) for any function f ; T (um) =

um+1; T (u(n)) = Dn−1(F ) ( i.e. “mixed” variables u(n)
1 are expressed via dynamic variables by

virtue of Equation (2)). Here

D =
∂

∂x
+ u(1) ∂

∂u
+
∞∑

k=1

(
u(k+1) ∂

∂u(k)
+ T (k−1)(F )

∂

∂uk

+ T (1−k)(F̃ )
∂

∂u−k

)
,

i.e. D designates an operator of a total derivative with respect to x by virtue of Equations
(2)–(3). The backward shift operator T−1 is given likewise.

Definition 1. Equation (2) is said to be Darboux integrable if there are functions I[u] and
X[u], everyone depending on at least one dynamic variable, such that the relations D(I) = 0
and T (X) = X hold. In this case, the functions I[u] and X[u] are called the i-integral and the
x-integral of Equation (2), respectively.

A special subclass of Equations (2) is considered in the present paper, namely equations of
the form

ϕ(x, u1, (u1)x) = ψ(x, u, ux), (4)
where functions ϕ(x, y, z) and ψ(x, y, z) satisfy the conditions ϕyψz − ϕzψy 6= 0 and ϕzψz 6= 0.
This subclass is of interest, e.g. since such equations admit an invertible transformation v =
ϕ(x, u, ux) (for more details see [4]), translating (4) to an equation of the form

(v1)x = p(x, v, v1)vx + q(x, v, v1). (5)
Thus, studying a subclass of Equations (4), we also investigate equations of the form (5) at the
same time. Moreover, some conditions of Darboux integrability for equations of the form (4)
have already been obtained in earlier works. One can readily see it comparing results of the
works [2], [4]–[6]. The present article is devoted to this observation.

To be more specific, its basic result is proof of the following statement.

Theorem 1. If Equation (4) is Darboux integrable then, solving it with respect to (u1)x, one
obtains equations of the form

ξx(x, u1) + ξu1(x, u1)(u1)x = α(x, ψ)(ξ(x, u1))
2 + β(x, ψ)ξ(x, u1) + γ(x, ψ),

and solving (4) with respect to ux, one arrives to an equation of the form

ηx(x, u) + ηu(x, u)ux = α̂(x, ϕ)(η(x, u))2 + β̂(x, ϕ)η(x, u) + γ̂(x, ϕ).

In other words, for any Darboux integrable equation (4) there exist pointwise substitutions
of the variables ũ = ξ(x, u) and ū = η(x, u), reducing the equation to the form

(ũ1)x = α(x, ψ̃)ũ2
1 + β(x, ψ̃)ũ1 + γ(x, ψ̃),

as well as to the form
ūx = α̂(x, ϕ̄)ū2 + β̂(x, ϕ̄)ū+ γ̂(x, ϕ̄).

It means that in notation of the form (2) and (3), the right-hand side of Equation (4) turns to
be quadratic with respect to u1 and u−1, respectively upon an appropriate change of variables.

Before proceeding to the proof of Theorem 1, we have to give a definition and prove two
auxiliary statements.

Definition 2. An equation of the form ut = s[u] is called a symmetry of Equation (2) if the
relation L(s) = 0, where

L = TD − FuxD − Fu1T − Fu,

holds.
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Lemma 1. Let us assume that X[u] ∈ ker(T − 1) for an equation of the form (2). Then,
X[u] does not depend on shifts of u (on dynamic variables of the form ul, l 6= 0).

Proof. Let us make a contrary proposition and denote by j and r respectively the largest
positive and the smallest negative numbers for which X[u] depends on uj and ur. Differentiation
of the relation T (X) = X with respect to uj+1 and ur provides T (Xuj

) = 0 and Xur = 0,
respectively. Thus, we arrive to a contradiction that proves the lemma.

Lemma 2. Any symmetry ut = s[u] of Equation (2) has the form

ut = ŝ(x, ul, ul+1, . . . , u−1, u, u1, . . . , uk) + s̄(x, u, u(1), . . . , u(n)), (6)

i.e. s[u] splits into a sum of two addends. One addend depends only on shifts, the other one
depends only on derivatives of u.

Proof. Let the symmetry have the form

ut = s(x, ul, ul+1, . . . , u−1, u, u1, . . . , uk, u
(1), . . . , u(n)).

Differentiating the determining relation for the symmetry with respect to u(n+1), one obtains

(L(s))u(n+1) = Fux(T (su(n))− su(n)) = 0.

Applying Lemma 1, one can see that su(n) is independent of shifts of u and hence, can depend
only on variables x, u, u(1), . . . , u(n). Therefore, the right-hand side s[u] of the symmetry is
represented in the form

s[u] = g(x, ul, ul+1, . . . , uk, u
(1), . . . , u(n−1)) + h(x, u, u(1), . . . , u(n)).

Now, assume that

s[u] = g(x, ul, ul+1, . . . , uk, u
(1), . . . , u(m)) + h(x, u, u(1), . . . , u(n)), (7)

wherem is a natural number less than n. Then, differentiating the determining relation L(s) = 0
with respect to u(m+1), one obtains

(L(h))u(m+1) + Fux(T (gu(m))− gu(m)) = 0. (8)

Note that L(h) can depend only on x, u, u1 and derivatives of u. This allows us to apply the
reasoning of the proof for Lemma 1 to (8) and demonstrate that gu(m) is independent of shifts
of u. Therefore, the right-hand side of the symmetry is written in the form

s[u] = g̃(x, ul, ul+1, . . . , uk, u
(1), . . . , u(m−1)) + h̃(x, u, u(1), . . . , u(n)).

It means that (7) provides validity of the relation with m one less, and by virtue of the principle
of mathematical induction the expression (6) is true.

Proof of Theorem 1. It was proved in [2] that for any Darboux integrable equation of the
form (2) there is a differential operator R =

∑r
k=0 ck[u]Dk, such that ut = R(ω) is a symmetry

of this equation for any ω ∈ ker(T − 1). Let us demonstrate that coefficients ck of the operator
R can depend only on x, u and derivatives of u. Let us make a contrary assumption: suppose
that coefficients of R depend on uj for some j 6= 0. Denote by l the largest number for which
(cl)uj

6= 0. Let us consider the x-integral as ω, provided that the order m of the highest-
order derivatives of u, on which the integral depends, is higher than orders of derivatives of u
contained in coefficients of the operator R. (Since the operator D transforms x-integrals to x-
integrals again, we can always construct the x-integral depending on derivatives of sufficiently
high orders.) Then (R(ω))uju(m+l) = (cl)uj

ωu(m) 6= 0, which contradicts Lemma 2. Thus, the
symmetry ut = R(ω) for any ω ∈ ker(T − 1) has the form

ut = s(x, u, u(1), . . . , u(n)). (9)
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It was proved 1 in the work [4] that any symmetry of the form (9) for Equation (4) is
transformed into an equation of the same form (9) by means of a differential substitution
v = ϕ(x, u, ux), as well as the substitution ṽ = ψ(x, u, ux). On the other hand, according to [5],
Equation (9) is transformed by a differential substitution v = f(x, u, ux) to an equation of the
same form again if and only if (9) is a symmetry of equation uxy = −fuuy/fux . Recall that (9)
is said to be a symmetry of Equation (1), if s belongs to the kernel of the operator

M = DxDy − FuxDx − FuyDy − Fu,

where Dx and Dy denote total derivatives by virtue of Equation (1) with respect to x and
y, respectively. Note that operators Dx and D coincide with each other on a set of functions
depending only on x, u and derivatives of u with respect to x.

Thus, if equation (4) is Darboux integrable, then there is an operator R =
∑r

k=0 ck[u]Dk
x

such that ut = R(ω) is a symmetry for two equations simultaneously

uxy = − ϕu(x, u, ux)

ϕux(x, u, ux)
uy and uxy = − ψu(x, u, ux)

ψux(x, u, ux)
uy (10)

for any ω ∈ ker(T−1). In particular, any function g(x) can be taken as ω. Setting the coefficients
of derivatives of g of the same order in the relation M(R(g)) = 0 equal to zero, one obtains
that ut = R(g(x)) is a symmetry of Equation (1) for any function g if and only if the following
chain holds

(Dy − Fux)(cr) = 0,

M(ck) + (Dy − Fux)(ck−1) = 0, k = 1, r,

M(c0) = 0.

One can easily verify that ut = R(ω) is a symmetry of Equation (1) for any ω not only from
ker(T − 1), but from kerDy as well, provided that this chain holds.

Equations of the form

uxy = − fu(x, u, ux)

fux(x, u, ux)
uy,

for which there is a differential operator R, such that ut = R(ω) is a symmetry of the equation
for any ω ∈ kerDy are described in the work [6]. It was proved in it that any such equation
can be reduced to an equation of the same form ũxy = −f̃ũ/f̃ũxũy, where f̃ = f(x, λ,Dx(λ))

satisfies the relation ũx = α(x, f̃)ũ2 + β(x, f̃)ũ + γ(x, f̃) by means of a pointwise substitution
of variables u = λ(x, ũ). Application of the result to Equations (10) proves the theorem.

In conclusion note that conditions obtained in the theorem are necessary but not sufficient
for Darboux integrability of Equation (4). In order to illustrate this we assume that ϕ equals
to (u1)x, and ψ equals to ux + c2u

2 + c1u + c0, where cj are some constants and consider the
equation

(u1)x = ux + c2u
2 + c1u+ c0. (11)

One can easily see that conditions of Darboux integrability hold for any values of the constants
cj (in notation of Theorem 1, ξ = u1, α = β = 0, γ = ψ and η = u, α̂ = −c2, β̂ = −c1,
γ̂ = ϕ − c0). However, (11) is Darboux integrable only if c2 = c1 = 0, because there is no a
single equation with d, independent of u1, and different from the constant in the list of Darboux
integrable equations of the form (u1)x = ux + d(u, u1) composed in [3].

1In the strict sense, the work [4] dwelled upon Equations (4) independent of x explicitly. However, one can
readily verify that reasoning behind this work can be carried over to the case of explicit dependence of Equation
(4) on x without serious changes.
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