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CAUCHY PROBLEM FOR NAVIER-STOKES EQUATIONS,
FOURIER METHOD

R.S. SAKS

Abstract. The Cauchy problem for the 3D Navier-Stokes equations with periodicity
conditions on the spatial variables is investigated. The vector functions under consideration
are decomposed in Fourier series with respect to eigenfunctions of the curl operator. The
problem is reduced to the Cauchy problem for Galerkin systems of ordinary differential
equations with a simple structure. The program of reconstruction for these systems and
numerical solutions of the Cauchy problems are realized. Several model problems are solved.
The results are represented in a graphic form which illustrates the flows of the liquid. The
linear homogeneous Cauchy problem is investigated in Gilbert spaces. Operator of this
problem realizes isomorphism of these spaces. For a general case, some families of exact
global solutions of the nonlinear Cauchy problem are found. Moreover, two Gilbert spaces
with limited sequences of Galerkin approximations are written out.

Keywords: Fourier series, eigenfunctions of the curl operator, Navier-Stokes equations,
Cauchy problem, global solutions, Galerkin systems, Gilbert spaces.

1. Introduction

1.1. Problem statement. Let us consider 2π-periodic functions f(x+ 2πm) = f(x) for all
m ∈ Z3 in the space R3. There exists a natural realization of the factor space R3/2πZ3 in the
form of a 3-dimensional torus

T = {(eix1 , eix2 , eix3) ∈ C3; (x1, x2, x3) ∈ R3},

given by the mapping (x1, x2, x3) 7→ (eix1 , eix2 , eix3). Whence, the standard realization of
functions periodic on R3 follows in the form of functions on a 3-dimensional torus. Let the
fundamental cube Q3 be given by the inequality 0 6 xj < 2π. Integration on T is determined
by means of the Lebesgue integral on the cube Q. Namely

∫
T f |T dx =

∫
Q
f dx, where f is

a restriction on Q of the periodic function in R3 generated by the function f on the torus.
Lp-spaces on T are identified with Lp-spaces on Q and are denoted by Lp(T). Note that the
class of continuous functions C(T)) corresponds not to the class of all continuous functions on
Q, but only to the functions that remain continuous when continued periodically on all R3.
The Banach space C(T) is a subspace in L∞(T) and is endowed with the L∞-norm ( see [1],
Ch.10, [2], Ch.7).

In addition, consider a subspace of solenoidal vector functions in [L2(T)]3 and denote it by

V̂ 0 = {v(x) ∈ [L2(T)]3 : div v = 0; ‖v‖V̂ 0 = (2π)−3‖v‖L2(Q)}.

Let us assume that complex vector functions g(x) ∈ V̂ 0 and f(t, x) ∈ V̂ 0 are given for any
t ≥ 0.
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Problem 1. Find the velocity vector v(t, x) = (v1, v2, v3) and pressure p(t, x) that are 2π-
periodic with respect to the space variables xj, continuous in R+ × R3, and that have the
corresponding smoothness and satisfy the Navier-Stokes

∂v

∂t
− ν∆v + (v · ∇)v = −∇p+ f, div v = 0 when (t, x) ∈ R+ ×R3 (1)

and the initial condition:
v(0, x) = g(x). (2)

Here ∆, ∇, div are linear Laplace’s, gradient and divergence operators, respectively and the
nonlinear operator (v · ∇)v =

∑3
j=1 vj∂jv.

In the classical statement, it is supposed that the functions g and f are smooth: g ∈ [C∞(T)]3

and f ∈ [C∞([0,∞)×T)]3. Physically meaningful solutions satisfy the conditions that functions
v and p should be smooth and globally determined:

v(t, x) ∈ [C∞([0,∞)× T)]3, p(t, x) ∈ [C∞([0,∞)× T)]3, (3)

and that the kinetic energy of the solution should be globally bounded, i.e. there is a constant
E ∈ (0,∞) such that ∫

Q

|v(t, x)|2 dx < E for any t ≥ 0. (4)

Wikipedia, the free encyclopedia in the Internet, discusses a complicated problem in the
article

”
Navier–Stokes existence and smoothness“. Namely, prove either (A) or (B).

(A) Existence and smoothness of the Navier–Stokes solutions in T3. Let f(t, x) ≡ 0. For
any smooth initial condition g there exists a smooth and globally defined solution to the
Navier–Stokes equations, i.e. there is a velocity vector v(t, x) and a pressure p(t, x), satisfying
the conditions (3), (4);

(B) Breakdown of the Navier–Stokes solutions in T3. There exists an external force f(t, x)
and an initial condition g(x) such that there exist no smooth and globally defined solutions
to the Navier–Stokes equations, i.e. the velocity vector v(t, x) and the pressure p(t, x) do not
satisfy the conditions (3), (4).

In §5, we generate families of classical solutions to the problem in the explicit form for any
ν > 0 for particular cases of initial conditions g and the right-hand sides f , corresponding to
the eigenfunctions of the curl operator.

Let us turn to a generalized statement of the problem (see monographs [4, 5, 6, 7], we follow
the notation used in [8, 9]).

1.2. Function spaces of the problem. The basic space

V 0 = {v ∈ [L2(T)]3 : div v = 0,

∫
Q

v dx = 0; ‖v‖V 0 = (2π)−3‖v‖L2(Q)}, (5)

where the relation div v = 0 is interpreted in the sense of the theory of distributions over
the space Π∞ of infinitely differentiable 2π-periodic functions, where the convergence ϕn → 0
indicates a uniform convergence of ϕn to zero when n → ∞ together with all derivatives (see
[1], Ch. 10). That is

(div v , ϕ) ≡ −(v,∇ϕ) = 0 for any ϕ ∈ Π∞. (6)

Note the inclusion of spaces V 0 ⊂ V̂ 0.
The Fourier series

v(x) = v0 +
∞∑
|k|2=1

vk e
ikx, where vk =

1

(2π)3

∫
Q

v(x)e−ikx dx (7)
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is used to represent the vector functions v(x) ∈ [L2(T)]3. Here k = (k1, k2, k3) are integer-valued
vectors, k2 ≡ |k|2 = k2

1 + k2
2 + k2

3, the sign v(x) =
∑

indicates that the series converges to v(x)
in a quadratic mean, i.e. in the norm L2(T)3.

The Parseval-Steklov equality

(2π)−3‖v‖2 = |v0|2 +
∞∑

k2=1

|vk|2 (8)

exists in the set Π∞, dense in [L2(T)]3. It allows one to determine the Fourier expansion
(transform) for elements of [L2(T)]3 and for wider spaces of distributions [1].

The solenoidal condition v(x) is reduced to equalities (vk, k) = 0, i.e. to orthogonality of
vectors vk to wave vectors k for any k 6= 0.

The integral condition
∫
Q
v dx = 0 indicates that v0 = 0.

Following the works [1, 8], let us introduce the Sobolev space of periodic vector functions Hs

with the norm, defined by the equality

‖v‖2Hs = |v0|2 +
∞∑
|k|2=1

|k|2s|vk|2, s ∈ R+. (9)

Further, the spaces V̂ s and V s are intersections of V̂ 0 and V 0 with Hs:

V s = {v(x) ∈ Hs ∩ V 0; ‖v‖V s = ‖v‖Hs}. (10)

The squared norm in V̂ s is defined by the previous formula, provided that (vk, k) = 0 for all
k 6= 0. This causes certain difficulties in investigation.

This condition disappears with turning to the Fourier series of the curl operator. According
to §2, the eigenfunctions of the curl operator have the form c±k e

ikx и
_

k eikx, where
_

k= k/|k|.
Any vector function v(x) from L2(T)3 can be expanded into series in terms of the eigenfunctions
of the curl operator

v(x) = v0 +
∞∑
|k|2=1

(γk
_

k +γ+
k c

+
k + γ−k c

−
k )eikx, (11)

γk =
1

(2π)3

∫
Q

(v(x),
_

k )e−ikxdx, (12)

γ±k =
1

(2π)3

∫
Q

(v(x), c±k )e−ikxdx. (13)

Then,

‖v‖2Hs = |v0|2 +
∞∑
|k|2=1

|k|2s(|γk|2|+ γ+
k |

2 + |γ−k |
2), (14)

‖v‖2V s =
∞∑
|k|2=1

|k|2s(|γ+
k |

2 + |γ−k |
2), (15)

because according to Lemma 1, the function v(x) ∈ V s, if and only if all γk = 0 and v0 = 0.
The vector function v(t, x), as a function of t ∈ (0, T ) with values in the space V s, belongs

to the space L2(0, T ;V s) if it has a finite norm, the square of which equals to

‖v(t, x)‖2L2(0,T ;V s) =

∫ T

0

‖v(t, ·)‖2V sdt = (16)∫ T

0

(
∞∑
|k|2=1

|k|2s(|γ+
k (t)|2 + |γ−k (t)|2))dt.
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The space L2(0, T ;V s) is indicated as L2(R+;V s) when T = +∞.
The norm of v(t, x) in the space L∞(0, T ;V s) is defined as follows

‖ϕ‖L∞(0,T ;V s) = ess supt∈[0,T ]‖v(t, ·)‖V s . (17)

Finally, define the space W 1,2(s), where s ∈ [0,∞), by the formula

W 1,2(s) = {v(t, x) ∈ L2(0, T ;V 2+s) : ∂tv(t, x) ∈ L2(0, T ;V s)}. (18)

Note that usually, when physical fields v are represented, the mean of the vector function v
with respect to a cube is considered to be equal to zero, i.e. the vector v0 = 0. This condition
is included in definition of the space V 0.

1.3. Generalized problem statement (see [7] §.3 Ch.3). Suppose that (v, p) is a classical
solution of the problem (1), (2) and

v ∈ C2([0, T ]× T), p ∈ C1([0, T ]× T).

Evidently, v ∈ L2(0, T ;V 2), ∂tv ∈ L2(0, T ;V 0). Multiplication (scalar n L2(Q)) of the first
equation (1) by an arbitrary vector function w of the class V 1 and integration by parts provides

d

dt
(v, w) + ν(∇v,∇w) + b(v, v, w) = (f, w), w ∈ V 1, (19)

where

b(u, v, w) ≡
3∑

i,j=1

∫
Q

ui(∂ivj)wjdx (20)

by definition. Note that ∇p falls out: (∇p, w) = −(p, divw) = 0, since w ∈ V 1.
P o b l e m 2. Given f(t, x) ∈ L2(0, T ;V 0), g ∈ V 1. In the class

W 1,2(0) = {v(t, x) ∈ L2(0, T ;V 2) : ∂tv(t, x) ∈ L2(0, T ;V 0)}, (21)

find a vector function v(t, x), satisfying Equations (19) and the initial condition (2): v(0,x)=g(x)
for any w ∈ V 1.

1.4. Results. The present paper is devoted to investigation of the Cauchy problem for the
Navier-Stokes system of equations in a three-dimensional space with periodicity conditions with
respect to space variables on the basis of Fourier series of the curl operator.

Some periodic eigenfunctions of the curl operator have long been known and used in works of
V.I. Arnold [10] and his disciples, O. Bogoyavlenskii [11], physicists [12], [13],[14],[15] . See also
V.V. Kozlov’s monograph "General Theory of Vortices"[16] and surveys by V.V. Pukhnachev
[17] and A.S. Makhalov and V.P. Nikolaenko [18].

In 2000, I managed to write out basis eigenfunctions of the curl operator in the space [L2(T)]3

(see Theorem in §2) and informed O.A. Ladyzhenskaya about it during a seminar in Ufa (see
[19],[20]). In 2003, Ladyzhenskaya tackled the problem "Construction of bases in spaces of
solenoidal vector fields"[21]. On page 73 she writes about the Galerkin scheme: "It is good for
proving existence theorems and further qualitative analysis of solutions. However, its numerical
realization requires knowledge of a fundamental system {ϕk} in H(Ω). In the present paper,
we suggest a method for its construction". In particular, O.A. Ladyzhenskaya was interested in
the possibility to calculate eigenfunctions of the Stokes operator in domains of simplest forms
(cube, ball etc) and asked me about it.

It turns out that the periodic eigenfunctions (vk, pk) of the Stokes operator are such that
pk = const and the vector functions vk coincide with the solenoidal eigenfunctions of the curl
operator u±k for k 6= 0 and uj0 for k = 0 [22].

Later on [23], I calculated eigenfunctions (vn, pn) of the Stokes operator in a ball with
the condition vn = 0 on the boundary. In this case, pn are also constants and every vector
eigenfunction vn of the Stokes operator is the sum vn = u+

n +u−n of vector eigenfunctions of the
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curl operator u+
n and u−n with the eigenvalues having the same absolute values but opposite signs.

These eigenfunctions at the ball boundary are located in the tangent plane and are oppositely
directed. Thus, in [23] another approach to solving the problem on construction of bases in
spaces of solenoid vector fields was obtained. I described the work [22] to O.A. Ladyzhenskaya
in POMI in late 2003, and the basis of the paper [23] to researchers of her laboratory in early
2005.

In [24], the Cauchy problem for the Navier–Stokes system in the class of 2р-periodic functions
was reduced to that for an infinite system of ordinary differential equations. Its explicit form
suggests a method for constructing families of exact solutions.

In the present paper, we construct "approximations" vl of the velocity vector v, using the
basis of periodic eigenfunctions of the curl operator in the space V 0. Coefficients vl satisfy
the finite nonlinear Galerkin system RSl. The system has a simple form in the given basis. Its
linear part is diagonal, and the nonlinear part of every equation is a quadratic form (of unknown
functions), with coefficients calculated explicitly via a scalar product of basis vectors of the curl
operator (see §3). Programs for calculating coefficients of the systems RSl, a numerical solution
of the Cauchy problem and others are developed.

Some models are calculated. Figures in §6 give an idea of oscillation of the velocity vector
in planes, orthogonal to wave vectors k. One can see that the motion of liquid is complicated
noticeably with the decrease of the viscous parameter.

In §4, solvability of the Cauchy problem for a linear homogeneous Stokes system in the scale
of spaces W 1,2(s)(s ≥ −1) is investigated. The operator of the problem (∂t + A, γ0)v → (0, γ0v)
is proved to realize the isomorphism of spaces W 1,2(s) ∩Ker(∂t + A) and V s+1 (Theorem 2).

In §3, solutions vl of the Cauchy problems for Galerkin equations RSl with given Slf, Slg are
considered in proposition that f ∈ L2(0, T ;V 0), g ∈ V 1. The sequence {vl}∞l=1 is proved to be
bounded both in the space L2(0, T ;V 1) and in the space L∞(0, T ;V 0).

In §5, families of exact global solutions are singled out. For the sake of simplicity, we limit
ourselves to four cases. Other families can be written out from [25], assuming that Ω = 0.

A.Babin, A.Makhalov and V. Nikolaenko published a number of works (see [8] and the survey
[18]) devoted to investigation of the Cauchy problem for the Navier-Stokes system of equations
in a space rotating uniformly (about a vertical vector with the angular velocity Ω) with the
initial data periodic with 2πaj periods along coordinate axes ej. In this case, the Coriolis force
equal to Ω[e3, v] is introduced in the equations (1). Assuming that g(x) ∈ V α and ‖g(x)‖α ≤Mα,
and the right-hand side of f(t, x) belongs to the space V α−1 for α > 1/2 and

sup
T

∫ T+1

T

‖f‖2α−1 dt ≤ M2
αf , (22)

they prove that there is a number Ω1, depending onMα,Mαf , ν, a1, a2, a3 such that for Ω ≥ Ω1,
the Navier-Stokes system has a global solution U(t) with the value in V α, and ‖U(t)‖α ≤ M ′

α

for all t ≥ 0.
Studying the article [8], I restricted myself to the case when periodicity with respect to

variables xj is the same, a1 = a2 = a3 = 1, and expanded the given and sought vector functions
in Fourier series in terms of eigenfunctions of the curl operator. This entailed significant
simplification and gave a possibility to write out the explicit form of the Galerkin equations
and various families of exact solutions of the Navier-Stokes equations (see [25, 26, 27]).

A.V.Fursikov [9] studied the initial boundary-value problem for the Navier-Stokes equations
in a bounded domain with a smooth boundary and proved its local solvability in V 1,2(0) with
initial conditions from a unbounded ellipsoid El1/2ρ = {g ∈ V 1 : ‖g‖V 1/2 < ρ} with the small ρ.

S.S.Titov ( see, e.g., [28] Ch.4) studies the periodic Cauchy problem for the Navier-Stokes
equations by the Cauchy-Kovalevskaya method in scales of the Banach spaces. Solution is



56 R.S. SAKS

constructed in the form of a special power series. Existence of a solution is proved via
L.V. Ovsyannikov’s results with definite conditions of smallness v(0, x) and time t.

2. Fourier series

2.1. Fourier series and eigenfunctions of the Laplace operator. The spectrum of the
Laplace operator in the class of 2π-periodic functions consists of the numbers |k|2 = k2

1 +k2
2 +k2

3,
equal to squared lengths of integer valued vectors k. When k ∈ Z3, j = 1, 2, 3, the eigenfunctions
(2π)−3/2eje

ikx generate an orthonormal basis in the space [L2(T)]3 of vector functions, integrable
with a squared module in a cube Q.

Any vector function f(x) ∈ [L2(T)]3 can be expanded in a Fourier series

f(x) = f0 +
∞∑
|k|2=1

fk e
ikx, where fk =

1

(2π)3

∫
Q

f(x)e−ikxdx, (23)

converging in the quadratic mean (see, e.g., [1, 2, 3]).
Note that trigonometric polynomials are dense in C(T)3 and Lp(T)3, 1 6 p <∞.
If all Fourier coefficients vanish for some f ∈ Lp(T)3, then f = 0.
If f ∈ L2(T)3 and

∑
k∈Z3 fk e

ikx is its Fourier series, then the Parseval-Steklov equality holds

(2π)−3‖f(x)‖2 =
∑
k∈Z3

|fk|2. (24)

The correspondence f ↔ {fk} is a unitary mapping of L2(T3)3 on l2(Z3)3 .
The Fourier series (23) can be rewritten in the form of the Fourier integral

f(x) =

∫
Q

(
∑
k

fk δ(y − k)) eixy dy. (25)

The formula (25) indicates that a bornological function
∑

k fk δ(y − k) serves as the Fourier
transform of the periodic function f(x) (see [1], ch. 10).

2.2. Fourier series on the basis of eigenfunctions of the curl operator. In [22], I
proved that the spectrum of the curl operator consists of the number 0 of infinite multiplicity
and of numbers ± |k| of finite multiplicity.

Let k0 ∈ Z3\{0}. Denote by u±k (x) basis vector eigenfunctions of the curl operator,
corresponding to their eigenvalues ±|k0|, respectively. They satisfy the equations

rot u±k (x) = ±|k0|u±k (x) (26)

and have the form
u±k (x) = (2π)−3/2c±k e

ikx. (27)

Here, points k lie on the sphere of the radius |k0|. Vectors c±k = a±k + ib±k are chosen depending
on whether the vector k′ = (k1, k2) equals to zero:

c±k = ±
√

2

2|k′|

 k2

−k1

0

 +i

√
2

2|k||k′|

 k1k3

k2k3

−k2
1 − k2

2

 when k′ 6= 0 (28)

and

c±k = ±
√

2

2|k|

 k3

0
0

+ i

√
2

2

 0
1
0

 when k′ = 0 and k 6= 0. (29)
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One can readily verify that b+k is a vector product of
_

k= k/ |k| and a+
k and that for any k 6= 0

three vectors c+k , c
−
k and

_

k construct an orthonormal basis in a complex space C3, and three
vectors

√
2a+

k ,
√

2b+k ,
_

k construct it in a real space R3, respectively.
A zero eigenvalue of the curl operator corresponds to the vector functions

uk(x) = (2π)−3/2
_

k eikx when k 6= 0 and the vectors uj0 = (2π)−3/2ej when k = 0.
Together with u±k (x) they construct an orthonormal basis in L2(T)3 [22]. This result will be

used in what follows and is represented in the form of the following theorem with the proof.
Theorem. Any vector function f(x) ∈ [L2(T)]3 can be expanded in a Fourier series

f(x) = f0 +
∞∑
|k|2=1

(φk
_

k +φ+
k c

+
k + φ−k c

−
k )eikx (30)

with respect to eigenvalues of the curl operator. The vector f0 is the integral

f0 =
1

(2π)3

∫
Q

f(x)dx, (31)

which is the mean f with respect to a cube, the remaining coefficients φk, φ+
k , φ

−
k equal to

φk =
1

(2π)3

∫
Q

(f(x),
_

k )e−ikxdx, (32)

φ±k =
1

(2π)3

∫
Q

(f(x), c±k )e−ikxdx. (33)

The brackets (f, g) indicate scalar products in C3. The series converges in the quadratic mean,
i.e. in the norm [L2(T)]3.

Let us term the expansion (30) as a modified Fourier series. The Parseval-Steklov equality
takes the form

(2π)−3‖f‖2 = |f0|2 +
∞∑
|k|2=1

(|φk|2 + |φ+
k |

2 + |φ−k |
2). (34)

Proof. The expansion

h = (h,
_

k )
_

k +(h, c+k )c+k + (h, c−k )c−k (35)

exists for any vector h of C3 when k 6= 0.
According to the notation (32) and (33), it has the following form for the vector fk of (23):

fk = φk
_

k +φ+
k c

+
k + φ−k c

−
k . Substituting this expansion into the series (23), one obtains the series

(30). Denote by Slf(x) a partial sum of the series (30), projection of the vector f(x) onto a
finite-dimensional space Gl, spanned on the basis vectors uj0, uk and u±k for |k|2 6 l. Then,

(2π)−3‖Slf(x)‖2 = |f0|2 +
l∑

|k|2=1

(|φk|2 + |φ+
k |

2 + |φ−k |
2) =

l∑
|k|2=0

|fk|2. (36)

The vector f − Slf(x) is orthogonal to Gl and ‖f − Slf(x)‖2 = ‖f‖2 − ‖Slf(x)‖2 due
to the Pythagoras theorem [4]. The Parseval equality entails that the difference norm
‖f − Slf(x)‖ → 0 when l → ∞. Hence, the sequence Slf(x) converges to f(x) in the norm
of the space L2(T)3 . Theorem is proved.
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2.3. Summation of series. Multiplicity of eigenvalues ±|k0| of the curl operator equals to
the number κ(|k0|2) of points of an integer lattice in Z3, located on a sphere of the radius |k0|.
The number |k0|2 is integer. Numbers n = 4m(8q + 7), where m, q ≥ 0 are integer, are not
representable in the form of a sum of three squared integers, the number n = 7 is the first one.
For such n, we assume that κ(n) = 0. Then, Nl = κ(1) + ... + κ(l) is the number of nonzero
points of an integer lattice located in a sphere of the radius

√
l. The sign

∑∞
|k|2=1 indicates

that the series (30) are summed over the levels |k|2 = l, where l = 1, 2.... Summation of lattice
points is arbitrary on every such sphere, and convergence of the sphere is independent of the
order of summation. The levels for which κ(n) = 0 are omitted.

Calculating the Fourier coefficients (32), (33), one has to know the enumeration of the
lattice points. A program for enumeration of nonzero points of the lattice

k → ϑ(k) : 1(−1, 0, 0), 2(0,−1, 0), 3(0, 0,−1), ..., 18(1, 1, 0), ...,

where the point (−1, 0, 0) is the first one, the point (1, 1, 0) is the 18th one etc is developed.
Calculating integrals over cubes, we used Sobolev’s cubature formulae with a regular

boundary layer ([1], ch.14).

2.4. Decomposition to orthogonal subspaces. The Fourier series (23) and (30) indicate
that there are 2 ways to decompose the vector space L2(T)3 into orthogonal subspaces:

L2(T)3 = ⊕
j,k
F j
k and L2(T)3 = ⊕

j
F j

0 ⊕
k 6=0

(Rk ⊕ R+
k ⊕R

−
k ), (37)

where F j
k and Rk, R

±
k are subspaces, generated by vector functions ejeikx (j = 1, 2, 3), and

_

k eikx, c±k eikx, respectively.
Indeed, choosing another basis in a complex space Fk = F 1

k ⊕ F 2
k ⊕ F 3

k , we obtain the
decomposition Fk = Rk⊕ R+

k ⊕R
−
k . These bases are equivalent, their choice is ambiguous (see

[22]).
Lemma 1. Let f(x) of L2(T)3 be represented by the series (30). It satisfies the equation

divf = 0 in terms of generalized functions if and only if its coefficients (32) vanish φk = 0.
Indeed, due to (6), the condition divf = 0 indicates that the vector f is orthogonal to the

gradient of any scalar periodic function ψ(x) from Π∞.
An arbitrary function ψ(x) of Π∞ is expanded into a Fourier series ψ(x) = ψ0+

∑
k 6=0 ψk e

ikx,
converging in L2(Q) together with derivatives of any order.

Its gradient equals to
∑

k 6=0 ikψk e
ikx. The formula (32) indicates that i(2π)3|k|φk =

−(f,∇eikx) is a scalar product of −f and ∇eikx in L2(Q). Therefore,

−(f(x),∇ψ(x)) = i(2π)3

∞∑
|k|2=1

|k|φkψk. (38)

Hence, div f = 0, if all φk = 0. The inverse statement follows from the arbitrary choice of ψk
and completeness of the exponential system {eikx}.

Lemma 1 implies that there is an expansion

f(x) = f0 +
∞∑
|k|2=1

(φ+
k c

+
k + φ−k c

−
k )eikx (39)

for functions f ∈ V̂ 0. The squared norm of the expansion equals to

‖f‖2
V̂ 0 = |f0|2 +

∞∑
|k|2=1

(|φ+
k |

2 + |φ−k |
2). (40)
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2.5. Gradient and solenoidal components of vector function. Let us expand the vector
function F (x) ∈ L2(T)3 in the Fourier series (30) and represent it in the form of a sum F (x) =
f(x) +∇q(x), where

f = f0 +
∞∑
|k|2=1

(
φ+
k

(t)c+k + φ−
k

(t)c−k
)
eikx, q = −i

∞∑
|k|2=1

φk |k|−1 eikx. (41)

Whence, one can observe that f ∈ V̂ 0 and q ∈ H1(T). The vector functions ∇q(x) and f(x)
are mutually orthogonal. They are projections of F on the spaces

G = ⊕
k 6=0

Rk, and V̂ 0 = F0 ⊕
k 6=0

(R+
k ⊕R

−
k ); L2(T)3 = G⊕ V̂ 0. (42)

Denote them by Π̂0F and ΠGF, i.e. f = Π̂0F , ∇q = ΠGF .
Another formulation of the Lemma 1 is as follows: f ∈ V̂ 0 ⇔ ΠGf = 0.
If the function F (t, x) depends on time t, then the functions q and f depend on t as well.

Substituting ∇q+ f into the right-hand side of Equation (1) and assuming that P = p− q, one
obtains equations of the same form, where F = f and f(t, x) is solenoidal for any t ≥ 0.

2.6. Connection between eigenfunctions of the curl and Stokes operators. Periodic
vector eigenfunctions (vn, pn) of the Stokes operator satisfy the equations [5]:

−ν∆vn +∇pn = λvn, div vn = 0. (43)

Whence, one readily obtains that pn are harmonic functions, ∆pn = 0. However, a harmonic
function is periodic if and only if it is constant pn = const. Hence, ∇pn = 0, and Equations (43)
do not contain pressure. Solenoidal eigenfunctions of the curl operator uj0(x) and u±k (x) satisfy
these equations with λ = 0 and λ = ν|k|2 when k 6= 0. According to Theorem 1, there are no
other eigenfunctions. Thus, the series (39) is an expansion of the vector function f(x) ∈ V̂ 0

over eigenfunctions of the curl operator as well as of the Stokes operator.

2.7. Hilbert space Hs(T), s ∈ R. This is the notation for the Sobolev space of 2π -periodic
vector functions with the norm

‖f‖2Hs = |f0|2 +
∞∑
|k|2=1

|k|2s
(
|φk|2 +

∣∣φ+
k

∣∣2 +
∣∣φ−k ∣∣2) (44)

when s ≥ 0, and H0(T) is identified with L2(T)3. The space H(−s) for s > 0 is defined as a
space conjugate to Hs with respect to a scalar product in L2(T)3. The norm in H(−s) is defined
by the formula (44), where s is negative. Thus, the spaces Hs are defined for any s of R (see
[1], ch. 12, [6], ch.1).

S.L. Sobolev defined and investigated these spaces when s are integer.
In section 1.2, we determined the space V̂ s = Hs ∩ V̂ 0 and its subspace V s = Hs ∩ V 0,

consisting of vector functions f with the zero mean f0 = S0f = 0 when s ≥ 0. Now they can
be determined for all s ∈ R. Let us single out injections of the spaces. When s > 1, one has

V s ⊂ V 1 ⊂ V 0 ⊂ V −1 ⊂ V −s.

If f ∈ V s then, according to Lemma 1,

‖f‖2V s =
∞∑
|k|2=1

|k|2s
(∣∣φ+

k

∣∣2 +
∣∣φ−k ∣∣2) . (45)

Note that the norm (45) of the function f in the space V s for s = 1 coincides with the norm
‖∇f‖V 0 , and for s = 2 it coincides with the norm ‖4f‖V 0 .
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Furthermore, the norm of the function f(t, x) = Π̂0f(t, x) in the space L2(0, T ; V̂ s) is defined
as follows:

‖f‖2
L2(0,T ;V̂ s)

=

∫ T

0

(|f0(t)|2 +
∞∑
|k|2=1

|k|2s(|φ+
k (t)|2 + |φ−k (t)|2)) dt. (46)

Substituting the series (45) into the formulae (17) and (18), we obtain the explicit expressions
for the norms f in spaces L∞(0, T ;V s) and W 1,2,(s) via the modified Fourier coefficients and
their derivatives.

2.8. Real eigenfunctions of the curl operator and vortex flows. Since a curl operator
is a differential operator of the first order with real coefficients and its eigenvalues are real, the
real and imaginary parts of its eigenfunctions are also eigenfunctions with the same eigenvalues.
Let us write out the explicit form of their real parts.

Suppose that φk = αk + iβk = |φk| eiθk ,

φ±k = α±k + iβ±k =
∣∣φ±k ∣∣ eiθ±k , where |θk| ,

∣∣θ±k ∣∣ ≤ π,

then
Re(φke

ikx)
_

k= (αk cos kx− βk sin kx)
_

k= |φk| cos(kx+ θk)
_

k,

Re(φ±k c
±
k e

ikx) =
∣∣φ±k ∣∣ (cos(kx+ θ±k )a±k − sin(kx+ θ±k )b±k

)
. (47)

The resulting expressions give a possibility to represent fluid dynamics in R3, definable by the
stationary fields d±k (x) = 2Re(φ±k c

±
k e

ikx). Let the fluid velocity be v(x) = d+
k (x). Evidently, the

vector d+
k (x) belongs to the plane, generated by vectors a+

k , b
+
k . Its length

∣∣d+
k (x)

∣∣ is independent
of x and equals

√
2
∣∣φ+
k

∣∣, and the direction is constant in every plane Pδ+2πn, where kx =
δ + 2πn, n ∈ Z, because

d+
k (x)

∣∣
Pδ+2πn

= d+
k (x)

∣∣
Pδ

= 2
∣∣φ+
k

∣∣ (cos(δ + θ+
k )a+

k − sin(δ + θ+
k )b+k

)
. (48)

The plane Pδ is orthogonal to the vector k and the vector d+
k (x), transferred to the point

x ∈ Pδ, is located inside the plane. Therefore, fluid flows uniformly in one and the same direction
in every such plane. If the vectors d+

k (x) are laid off the points x, belonging to an axis of the
vector k, then kx = |k||x| and hence, they rotate when x varies.

The vector rot d±k (x) at the point x is called the vorticity of the flow given by the field d±k (x).
Since

rot d±k (x) = ±|k| dk±(x) (49)
for any k ∈ Z3\{0}, and the length of the vectors d±k (x) is constant in x, then the vorticity of
such fluid flows is not vanishing at every point x ∈ R3. Let us call them vortices. Note that
vector functions

_

d
±
k (x) of a unit length satisfy Equation (49) as well. Vorticity of the flows

increases with |k|.

2.9. Fourier series of a real function. Consider an integer lattice Z3 and its
subsets M1 = {k : k1 ∈ N, k2= k3 = 0}, M2 = {k : k1 ∈ Z, k2 ∈ N, k3 = 0}, M3 =
{k : ( k1, k2) ∈ Z2, k3 ∈ N} . Denote the union of the subsets, and a set centrally symmetric
with M by M = M1 ∪M2 ∪M3, and by M∗, respectively. The vector −k ∈ M∗, if k ∈ M and
vice versa. M ∪M∗ = Z3/{0}.

Let k ∈M . The formulae (28), (29) manifest that c̄+k = −c+−k = −c−k , where the bar indicates
a complex conjugation. Hence, φ+

k c
+
k e

ikx = φ+
−kc

+
−ke

−ikx if and only if φ+
k = −φ+

−k.
The difference f(x) − f(x) = 0 for a real function f(x). Taking into account that

representation of f(x) in the form of a Fourier series is unique, one arrives at the the following
statement.
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Lemma 2. Let us assume that a vector function f(x) ∈ L2(T) is represented by the series
(30). It is real, f(x) = f(x) if and only if its Fourier coefficients satisfy the relations

φ̄k = −φ−k, φ̄+
k = −φ+

−k, φ̄−k = −φ−−k, k ∈M, and f j0 = f̄ j0 , j = 1, 2, 3.

For a real function, the series (30) takes the form:

f(x) = f0 + 2Re
∑
k∈M

(φk
_

k +φ+
k c

+
k + φ−k c

−
k )eik·x. (50)

The norm of the function Π̂0f , projection of f on V̂ 0, is given by the formula

‖Π̂0f‖2V̂ 0 = |f0|2 + 2
∑
k∈M

(|φ+
k |

2 + |φ−k |
2). (51)

3. The Faedo-Galerkin method

3.1. The generalized Cauchy problem. Let us use the Faedo-Galerkin method [5, 6, 7].
Consider eigenfunctions of the Stokes operator

uj0 = $−1ej and u±k (x) = $−1c±k e
ikx, where j = 1, 2, 3, k 6= 0,

$ = (2π)3/2, being also eigenfunctions of the curl operator, as a fundamental orthonormal
system in V̂ 0

The condition f(t, x) ∈ L2(0, T ; V̂ 0) means that the vector function f = Π̂0f , represented by
the series (39), has a finite norm

‖f(t, x)‖2
L2(0,T ;V̂ 0)

=

∫ T

0

(|f0(t)|2 +
∞∑
|k|2=1

(|φ+
k (t)|2 + |φ−k (t)|2))dt. (52)

Since V 0 ⊂ V −1, the norm f in L2(0, T ; V̂ −1) is aso finite.
The condition g ∈ V̂ 1 indicates that g = Π̂0g and is expanded into the series

g(x) = g0 +
∞∑
|k|2=1

(ψ+
k c

+
k + ψ−k c

−
k )eik·x, (53)

where

g0 =
1

(2π)3

∫
Q

g(x)dx, ψ±k =
1

(2π)3

∫
Q

(g(x), c±k )e−ik·xdx. (54)

Meanwhile,

‖g(x)‖2
V̂ 1 = |g0|2 +

∞∑
|k|2=1

|k|2(|ψ+
k |

2 + |ψ−k |
2) <∞. (55)

Hence, the sequence of partial sums of the series (53)

Slg(x) = g0 +$

l∑
|k|2=1

(ψ+
k u

+
k (x) + ψ−k u

−
k (x)) (56)

converges to g in the norm V̂ 1 ⊂ V̂ 0. At the same time, the quantities ‖g − Slg‖2V̂ 0
=

‖g‖2
V̂ 0 − ‖Slg‖2V̂ 0 = $−2

∫
Q

|g|2dx− |g0|2 −
l∑

|k|2=1

(|ψ+
k |

2 + |ψ−k |
2), (57)

also tend to zero when l→∞.
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Let f(t, x) ∈ L2(0, T ; V̂ 0), g ∈ V̂ 1. Let us find the "approximate" solution to the problem 2
in the form

vl(x, t) = $

3∑
j=1

vj0(t)ej0 +$

l∑
|k|2=1

(γ+
k,l(t)u

+
k (x) + γ−k,l(t)u

−
k (x)), (58)

where the functions vj0(t) and γ±k,l(t) are obtained from conditions

vj0(0) = gj0, γ±k,l(0) = ψ±k , j = 1, 2, 3, 0 < |k|2 6 l, (59)

and equations
d

dt
(vl, u

j
0) + ν(∇vl,∇uj0) + b(vl, vl, u

j
0) = (f, uj0), j = 1, 2, 3, (60)

d

dt
(vl, u

±
k ) + ν(∇vl,∇u±k ) + b(vl, vl, u

±
k ) = (f, u±k ), 0 < |k|2 6 l. (61)

Here, the brackets (·, ·) indicate scalar products in L2(Q). The functions

pl(x, t) = p0(t) +
l∑

|k|2=1

pk,l(t)e
ikx (62)

are derived from equations

(L(vl) +∇pl − f,
_
uk) = 0, 0 < |k|2 6 l. (63)

Manifestly, Equations (60) coincide with equations
∂v0

∂t
= f0(t) и v0(0) = g0 (64)

for the vector function v0(t) = (v1
0, v

2
0, v

3
0).

Taking into account that vl(t, x) are smooth in x, one concludes that Equations (61) coincide
with equations

(L(vl) +∇pl − f, u±k ) = 0, 0 < |k|2 6 l. (65)
Let us write them out in more detail. Note that the vector function

∇pl(x, t) = i

l∑
|k|2=1

pk,l(t)ke
ik·x = i

l∑
|k|2=1

|k|pk,l(t)
_

k e
ik·x (66)

is orthogonal to basis vector functions u±k of V 0, i.e. (∇pl, u±k ) = 0.
The operator L(v) in Equations (1) is a sum of the linear and nonlinear operators:

Sv = ∂tv − ν4v and N(v, v) = (v · ∇)v.
Calculate the values of the operators in the sum (58).

Svl = ∂tv0 +
l∑

|k|2=1

(
( ∂t + ν|k|2)γ+

k,l(t)c
+
k + ( ∂t + ν|k|2)γ−k,l(t)c

−
k

)
eikx. (67)

Denoting the vector γ+
k,l(t)c

+
k + γ−k,l(t)c

−
k by wk, one has N(wne

inx, wme
imx) = ieikx(wn,m)wm

when n+m = k. Hence,

N(vl, vl) = (v0 · ∇)vl + i

ρl∑
|k|2=1

eikx
∑

n+m=k

(wn,m)wm, (68)

where ρl = max|n+m|2 if |n|2 6 l and |m|2 6 l,

(v0 · ∇)vl = i
l∑

|k|2=1

(
(v0, k)γ+

k,l(t)c
+
k + (v0, k)γ−k,l(t)c

−
k

)
eikx. (69)
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The vector wm for k 6= m is decomposed in basis vectors
_

k , c+k , c
−
k :

wm = (wm,
_

k )
_

k +(wm, c
+
k )c+k + (wm, c

−
k )c−k . (70)

Substituting the expressions (69), (70) into (68), and using the formula (67), one readily obtains
the explicit form of Equations (65):

∂γ+
k,l

∂t
+ (ν|k|2 + i(v0, k))γ+

k,l+ (71)

+i
l∑

m2=1

[γ+
k−m,l(c

+
k−m,m) + γ−k−m,l(c

−
k−m,m)][γ+

m,l(c
+
m, c

+
k ) + γ−m,l(c

−
m, c

+
k )] = φ+

k (t),

∂γ−k,l
∂t

+ (ν|k|2 + i(v0, k))γ−k,l+ (72)

+i
l∑

m2=1

[γ+
k−m,l(c

+
k−m,m) + γ−k−m,l(c

−
k−m,m)][γ+

m,l(c
+
m, c

−
k ) + γ−m,l(c

−
m, c

−
k )] = φ−k (t),

0 < |k−m|2 6 l, with respect to unknown functions γ+
k,l and γ

−
k,l, satisfying the initial conditions

γ±k,l(0) = ψ±k , 0 < |k|2 6 l. (73)

Equations (63) are reduced to algebraic equations and according to (66), functions pk,l(t) are
determined via γ±k,l :

pk,l(t) = −i |k|−1 (φk(t)− (74)
l∑

m2=1

[γ+
k−m,l(c

+
k−m,m) + γ−k−m,l(c

−
k−m,m)][γ+

m,l(c
+
m,

_

k ) + γ−m,l(c
−
m,

_

k )]).

The function p0(t) is not defined and not taken into account in Equations (1), because
∇p0(t) = 0. In order to determine the pressure p(x, t) uniquely, assume that p0(t) =
$−2

∫
Q
p(x, t)dx = 0, as usually.

In statement of Problem 2 in section 1.3, we made an assumption that f(t, x) ∈ L2(0, T ;V 0),
g ∈ V 1. In this case S0f = f0(t) = 0 and S0g = g0 = 0. Problem (64) has only a trivial solution
v0(t) ≡ 0, and Equations (71), (72) are reduced.

The system of equations (71), (72) with resect to unknown γ+
k,l(t) and γ

−
k,l(t) is denoted by RSl

(from "reduced system"). Note, that the system RS1 is linear and is integrated elementarily,
and the systems RSl are nonlinear when l ≥ 2. They compose a complex Galerkin system of
equations on the basis of eigenfunctions of the Stokes operator.

3.2. Expansion of the curl operator in terms of real eigenfunctions. Let us assume
that the vector functions f ∈ L2(0, T ;V 0) and g ∈ V 1 are real and

Slf(t, x) = 2$Re
∑
k∈Ml

(φ+
k (t)u+

k + φ−k (t)u−k ), (75)

Slg(x) = 2$Re
∑
k∈Ml

(ψ+
k u

+
k + ψ−k u

−
k ). (76)

Then, the Galerkin approximations are obtained in the form

vl = Revl(x, t) = 2$Re
∑
k∈Ml

(γ+
k,l(t)u

+
k + γ−k,l(t)u

−
k ), (77)

where the complex functions γ±k,l and their conjugates satisfy the equations (71), (72), where
k ∈ Ml and v0(t) = 0. The set Ml is an intersection of the set M with a sphere of the radius
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√
l, it contains Nl/2 points. The remaining Nl equations are complex conjugate to the previous

ones. This can be readily verified via the explicit form of Equations (71), (72), since due to
section 3.10

c±−k = −c±k , φ±−k = −φ±k , k ∈M. (78)

Suppose that γ±k,l = α±k,l+ iβ
±
k,l and change to the real variables α, β. Then, upon calculating the

real and the imaginary part of complex equations, one obtains the system 2Nl of real equations
with 2Nl real unknown variables. Denote it by GSl. It is a real form of the Galerkin equations.

One the other hand, it can be easily verified that using an orthonormal basis of real
eigenfunctions of the curl operator in the space V 0, one arrives at the same equations GSl :

√
2Reu±k (x) and

√
2Imu±k (x), k ∈M. (79)

Let us write out analogues of Equations (61).

d

dt
(vl, Re u

±
k ) + ν(∇vl,∇Reu±k ) + b(vl, vl, Re u

±
k ) = (f,Re u±k ), (80)

d

dt
(vl, Imu±k ) + ν(∇vl,∇Imu±k ) + b(vl, vl, Imu±k ) = (f, Imu±k ), (81)

where k ∈Ml. Note, that in this basis

vl = 2$
∑
k∈Ml

(α+
k,lReu

+
k − β

+
k,lImu+

k + α−k,lReu
−
k − β

−
k,lImu−k ), (82)

‖vl(t, ·)‖2V 0 = 2
∑
k∈Ml

((α+
k,l)

2 + (β+
k,l)

2 + (α−k,l)
2 + (β−k,l)

2). (83)

In practice, it is more convenient to work with the complex equations RSl. If the functions
f and g are real, one automatically obtains a real solution vl and according to Lemma 2, it has
the form (77).

3.3. Basic relations between vl(t, x), vl(0, x) and f(t, x) [5, 6, 7]. Multiplying Equations
(80) by 2$α±k,l, and Equations (81) by −2$β±k,l, and adding them together, one obtains the
basic relation

(
dvl
dt
, vl) + ν‖∇vl‖2V 0 + b(vl, vl, vl) = (f, vl), (84)

where b(vl, vl, vl) = 0 because the vector vl is periodic and solenoidal. Indeed, omitting the
index l temporally, one obtains b(v, v, v) ≡

3∑
i,j=1

∫
Q

vi(∂ivj)vjdx =
1

2

3∑
i,j=1

∫
Q

∂i(viv
2
j )dx−

1

2

3∑
j=1

∫
Q

v2
j (

3∑
i=1

∂ivi)dx = 0.

Furthermore, invoking the formlae (82), (83), one has

(
dvl
dt
, vl) =

1

2

d

dt
‖vl‖2V 0 and ‖∇vl‖2V 0 = ‖vl‖2V 1 .

Therefore, the formula (84) takes the form

1

2

d

dt
‖vl‖2V 0 + ν‖vl‖2V 1 = (f, vl). (85)
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3.4. Two a priori estimates. Multiply the equality (85) by 2 and note that the right-hand
side of the resulting equations is bounded by

2|(f, vl)| 6 2‖vl‖V 1‖f‖V −1 6 ν‖vl‖2V 1 + ν−1‖f‖2V −1 . (86)

Therefore,
d

dt
‖vl‖2V 0 + ν‖vl‖2V 1 6 ν−1‖f‖V −1 . (87)

Integrating (87) from 0 to s, 0 < s < T , and invoking that ‖vl(0, ·)‖2V 0 6 ‖g‖2V 0 , one obtains

‖vl(s, ·)‖2V 0 6 ‖vl(0, ·)‖2V 0 +
1

ν

∫ s

0

‖f(t, ·)‖2V −1dt 6 ‖g‖2V 0 +
1

ν

∫ T

0

‖f(t, ·)‖2V −1dt.

Hence,
sup
s∈[0,T ]

‖vl(s, ·)‖2V 0 6 ‖g‖2V 0 + ν−1‖f‖2L2(0,T ;V −1). (88)

The right-hand part is finite and independent of l. Therefore, the sequence of vector functions
vl(t, x) is bounded in the space L∞(0, T ;V 0).

Upon integration of (87) from 0 to T , one has

‖vl(T, ·)‖2V 0 + ν

∫ T

0

‖vl(t, ·)‖2V 1dt 6 ‖vl(0, ·)‖2V 0 +
1

ν

∫ T

0

‖f(t, ·)‖2V −1dt.

Then,
ν‖vl‖2L2(0,T ;V 1) 6 ‖g‖2V 0 + ν−1‖f‖2L2(0,T ;V −1). (89)

Hence, the sequence of vector functions vl(t, x) is bounded in the space L2(0, T ;V 1) as well.
The nonlinear system GSl with boundary value conditions has a solution, defined in some

maximal interval [0, tl].
If tl < T , then the norm ‖vl(t, ·)‖V 0 (see (83)) should tend to +∞ when t→ tl. However, the

first a priori estimate (88) demonstrates that this is impossible and therefore, tl = T .
An assumption was made that f(t, x) ∈ L2(0, T ;V 0), g(x) ∈ V 1, and solution to Problem 2

is sought in the space

W 1,2(0) = {v(t, x) ∈ L2(0, T ;V 2) : ∂tv(t, x) ∈ L2(0, T ;V 0)}. (90)

Therefore, the right-hand parts in the system GSl, belong, generally speaking, only to the space
L2(0, T ), and the derivatives are interpreted as generalized ones.

An important part of justification of the Faedo-Galerkin method is the existence proof of a
converging sequence of the sequence vl in some space. In the monographs [5, 6, 7], devoted
to boundary value initial problems for the Navier-Stokes equations in domains of various
dimensions, this fact follows compact injection of definite Hilbert spaces. Some statements
proved there are extended the Cauchy problem (1), (2) with periodic boundary value conditions.
This matter is to be studied in a separate work.

3.5. Orthogonal projection method. Let Π0 be an orthoprojector of the space L2(T)3 on
V 0 (see section 3.7). Applying it to both parts of the first equation (1), we dispense with the
vector ∇p. This leads to an operator equation in vector functions of t with values in the space
V 0 :

∂tv(t, ·) + νAv +B(v, v) = Π0f with the condition γ0v ≡ v|t=0 = g, (91)
where

A = −Π0∆, B(v, w) = Π0(
3∑
j=1

vj∂jw). (92)

Projections of the equation to orthogonal subspaces R+
k , R

−
k coincide with Equations (71),

(72), where l =∞ and v0(t) = 0.
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Problem (91) corresponds to the operator

(∂t + νA+B, γ0) : W 1,2(s) → L2(0, T ;V s)× V 1+s, (93)

whose invertibility indicates that the problem is solvable.

4. Solution of the Cauchy problem for the Stokes system

4.1. The problem is as follows. Given f and g. Find a vector function (v, p), 2π-periodic
in xj, and satisfying the conditions

∂v

∂t
− ν∆v = −∇p+ f, div v = 0, v(0, x) = g(x). (94)

The classical and generalized statement of the problem are the same as for the nonlinear system
in §1. Operator (93), with B = 0, corresponds to the problem.

The Cauchy problem for the Galerkin system

∂tγ
±
k + ν|k|2γ±k = φ±k (t), γ±k (0) = ψ±k , (95)

splits into separate problems, that can be solved trivially.
When k 6= 0 is fixed,

γ±k (t) = ψ±k e
−ν|k|2t + ρ±k (t), where ρ±k (t) =

∫ t

0

eν|k|
2(τ−t)φ±k (τ)dτ. (96)

The function γ±k (t) ∈ C1[0, T ], if φ±k (t) ∈ C[0, T ].
If φ±k (t) ∈ L2[0, T ], then γ±k (t) ∈ C[0, T ] and has generalized derivatives from L2[0, T ].
First, assume that f = fk, g = gk, where

fk = φ+
k (t) u+

k (x) + φ−k (t) u−k (x), gk = ψ+
k u

+
k +ψ−k u

−
k , (97)

u±k (x) = $−1c±k e
ikx are eigenfunctions of the curl operator and φ±k (t) ∈ C[0, T ]. Then, the

vector function (vk, pk), where

vk = γ+
k (t)u+

k (x) + γ−k (t)u−k (x), ∇pk = 0, (98)

is a classical solution of Problem (94).
If f and g are real and

f = Re
(
φ+
k (t) u+

k (x) + φ−k (t) u−k (x)
)
, g = Re

(
ψ+
k u

+
k +ψ−k u

−
k

)
(99)

then (Re vk, Re pk) is the real solutions of the Problem (94).
Definition. Vector functions (vk, pk), (Re vk, Re pk), and (Imvk, Im pk) are called basis

solutions of the linear problem (94).
Finite sums of basis solutions are also solutions to the problem.

4.2. General case. Let f ∈ L2(0, T ;V s), g ∈ V 1+s, s ≥ −1. Then f and g are represented
by the series

f(x, t) =
∞∑
|k|2=1

(φ+
k (t)u+

k (x) + φ−k (t)u−k (x)), (100)

g(x) =
∞∑
|k|2=1

(ψ+
k u

+
k (x) + ψ−k u

−
k (x)). (101)

Let

v =
∞∑
|k|2=1

(
ψ+
k e
−ν|k|2t + ρ+

k (t)
)
u+
k (x) +

(
ψ−k e

−ν|k|2t + ρ−k (t)
)
u−k (x), (102)
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be a formal series, ∇p = 0. If partial sums Slv of the series (102) converge in the space W 1,2(s),
then the vector function (v, p) is a solution to Problem (94). The nonhomogeneous problem will
be studied in a separate work.

Let us dwell upon a homogeneous problem.
Theorem 1. Let f = 0, g ∈ V 1+s ⊂ V̂ 1+s, s ≥ −1,

vg(t, x) = $−1

∞∑
n=1

e−νnt
∑
|k|2=n

(
ψ+
k c

+
k + ψ−k c

−
k

)
eikx, pg(t, x) = 0. (103)

Then the vector function (vg, pg) is a unique solution to the homogeneous problem (94).
Meanwhile, if t > 0, then ‖∂mt vg‖V q 6 M‖g‖V 0 for any q and m ≥ 0. Partial sums Slvg
and Sl∂mt vg of the series vg and its derivative with respect to t of the order m converge when
l →∞ in a norm of the Sobolev space Hq. If t ≥ 0, then Slvg converge when l →∞ in spaces
W 1,2(s) and L∞(0, T ;V s+1) for any T > 0. Moreover, if t → 0, the norm of the difference
‖vg(t, ·)− g‖V s+1 → 0, and if t→ +∞, the norm ‖vg(t, ·)‖V s+1 → 0.

The proof of the theorem is based on following estimates of the row (103) and its formal
derivatives. Let t > 0. For any q ≥ 0 and an integer m ≥ 0, one has

‖∂mt vg‖2V q = ν2m

∞∑
n=1

n2m+qe−2νnt
∑
|k|2=n

(|ψ+
k |

2 + |ψ−k |
2). (104)

Introduce the notation

M2(ν,m, q, t) = ν2mmaxn∈N(n2m+qe−2νnt). (105)

If t > 0, the constant M <∞ for any ν > 0,m ≥ 0, q ≥ 0. Therefore,

‖∂mt vg‖V q 6 M‖g‖V 0 . (106)

Let m = 1, q = s in (104). Integrating this series term by term and invoking that∫ T

0

e−2νnt dt <

∫ ∞
0

e−2νnt dt = (2νn)−1,

we obtain

‖∂tvg‖2L2(0,T ;V s) =

∫ T

0

‖∂tvg‖2V s dt <
1

2
ν‖g‖2V s+1 . (107)

Since −∆u±k (x) = |k|2u±k (x), then

‖∆vg‖2L2(0,T ;V s) =

∫ T

0

‖∆vg‖2V s dt <
1

2ν
‖g‖2V s+1 . (108)

Hence,

‖vg‖2W 1,2(s) = ‖vg‖2L2(0,T ;V s+2) + ‖∂tvg‖2L2(0,T ;V s) <
1

2
(ν + ν−1)‖g‖2V s+1 . (109)

The exponent e−2νnt 6 1 when t ≥ 0, ν > 0, n ≥ 1 in (104). Therefore,

‖vg‖L∞(0,T ;V s+1) = ess supt∈[0,T ]‖vg(t, ·)‖V s+1 6 ‖g‖V s+1 . (110)

Finally, the inequality
‖vg‖V s+1 6 e−µt‖g‖V s+1 , 0 < µ < ν, (111)

is provided by (104), since 0 < e−2(νn−µ)t < 1 when ν > µ > 0, n ≥ 1, t > 0.
The resulting inequalities yield estimated deviations vg − Slvg and their derivatives via

deviations g − Slg. Thus, when t > 0, one has

‖∂mt vg − Sl∂mt vg‖V q 6 M‖g − Slg‖V 0 for any q,m ≥ 0 и l ≥ 1 (112)
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according to (106). By virtue of (109),(110), if t ≥ 0,

‖vg − Slvg‖2W 1,2(s) <
1

2
(ν + ν−1)‖g − Slg‖2V s+1 , (113)

‖vg − Slvg‖L∞(0,T ;V s+1) < ‖g − Slg‖V s+1 . (114)
The space V q = Hq ∩V 0 by definition, q > 0. By condition of the theorem g ∈ V 1+s, 1 + s ≥ 0
and V 1+s ⊂ V 0. Hence, the sequence Slvg converges to vg when l → ∞ in spaces W 1,2(s) and
L∞(0, T ;V s+1) for any T > 0. According to (112), if t > 0, the sequence Slvg of partial sums
of the series vg (as well as the sequences Sl∂mt vg of its derivatives with respect to t) converge
when l → ∞ to vg (and to ∂mt vg) in the norm of the Sobolev space Hq. If q ≥ 2, the Sobolev
spaces Hq(Q) are embedded in the Hilbert spaces Cq−1,5(Q).

Hence, the series (103) has continuous derivatives with respect to xj and t of any order and
the superposition principles holds when t > 0. According to Section 5.1, the series vg satisfies
the equations (94), where p = 0 and f = 0. Further,

‖g − vg(t, ·)‖2V s+1 =
∞∑
n=1

ns+1(1− e−νnt)2
∑
|k|2=n

(|ψ+
k |

2 + |ψ−k |
2), (115)

therefore ‖g − vg(t, ·)‖2V s+1 → 0 when t → 0. Finally, the estimate (111) entails that
‖vg(t, ·)‖V s+1 → 0 when t→ +∞.

Single valued solvability of the problem follows from the uniqueness of expanding g into a
Fourier series. If g = 0, then g0 = 0 and ψ±k = 0 for all k 6= 0 and hence, vg = 0. The theorem
is proved.

4.3. Theorem 1 holds if t ∈ R+ = (0,+∞). The formulae (104)–(109) reveal interesting
inequalities:

‖vg‖2L2(R+;V s+2) = (2ν)−1‖g‖2V s+1 , (116)

‖∂tvg‖2L2(R+;V s) = 2−1ν‖g‖2V s+1 . (117)
Hence,

‖vg‖2W 1,2(s) = 2−1(ν + ν−1)‖g‖2V s+1 . (118)
If ν = 1

‖vg‖W 1,2(s) = ‖g‖V s+1 . (119)
Recall that isomorphism of Euclidian spaces is a one-to one correspondence that preserves linear
operations defined in the spaces as well as a scalar product.

If s ≥ −1, ν = 1, the following theorem is true.
Theorem 2 a. A linear operator g 7→ vg, defined by the series (103), realizes its isomorphism

of the spaces V s+1 and W 1,2(s) ∩Ker(∂t + A).
Indeed, every element g of V s+1 with g0 = 0 corresponds to a unique element vg of W 1,2(s)

such that (∂t + A)vg = 0, γ0vg = g. Conversely, the series v determines the series g, equal to
v|t=0, and according to (119) the lengths of these vector functions coincide. Thus, g ↔ v. Let
h,w be another pair such that h↔ w, h0 = 0 and φ±k are Fourier coefficients h. The relations
αg ↔ αv and g+h↔ v+w follow from linearity of the operator. The scalar product of vector
functions g and h in V s+1 has the form

(g, h)V s+1 =
∞∑
n=1

ns+1
∑
|k|2=n

((ψ+
k , φ

+
k ) + (ψ−k , φ

−
k )). (120)

Whence, one can readily see that if ν = 1

(v, w)W 1,2(s) = (g, h)V s+1 . (121)
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The theorem is proved. It can be formulated differently.
Theorem 2. A linear operator (∂t + A, γ0)v → (0, γ0v) realizes the isomorphism of spaces

W 1,2(s) ∩Ker(∂t + A) and V s+1.
Using the theorem and following the work [9], one can prove local solvability of a nonlinear

problem in the class W 1,2(0) with the initial conditions from an unbounded ellipsoid El
1/2
ρ =

{g ∈ V 1 : ‖g‖V 1/2 < ρ} when ρ is sufficiently small.
Boundary value problems for equations rot u + λu = h with λ 6= 0, Stokes and Sobolev

equations (in a stationary case), their Fredholm solvability in a domain with a smooth boundary
have been studied by me earlier in [29, 30, 31].

In what follows, we provide families of explicit solutions to the nonlinear problem that are
used in testing a program of numerical solution.

5. Explicit global solutions to the nonlinear problem

5.1. Basis solutions. Basis solutions are solutions (vk, pk) to the nonlinear problem with
the data fk, gk, that correspond to eigenfunctions of the curls operator u±k (x) = $−1c±k e

ikx with
eigenfunctions ±|k| for any k 6= 0:

fk = φ+
k (t) u+

k (x) + φ−k (t) u−k (x), gk = ψ+
k u

+
k +ψ−k u

−
k , (122)

vk = γ+
k (t)u+

k (x) + γ−k (t)u−k (x), ∇pk = 0, (123)

where

γ±k (t) = ψ±k e
−ν|k|2t +

∫ t

0

eν|k|
2(τ−t)φ±k (τ)dτ, and φ±k (t) ∈ C[0, T ], (124)

for example. Let us fix the vector k 6= 0.
Theorem 3. Any basis solution (vk, pk) (corr., (Re vk, Re pk)) to the linear problem (94)

with the data (122) (corr., (99)) is a classical solution to the nonlinear problem (1), (2) with
the same data.

Proof. The pair (vk, pk) is a solution to the linear problem∇pk = 0. It remains to demonstrate
that N(vk, vk) = 0. Obviously, ∂jvk = ikjvk and (vk, k) = 0, since (c±k , k) = 0. Therefore,

N(vk, vk) ≡
3∑
j=1

vk,j∂jvk = i(vk, k)vk = 0. (125)

Let (wk, qk) = (Re vk, Re pk). Since ∂jwk = kjRe (ivk) and (wk, k) = 0, then N(wk, wk) =
(wk, k)Re(ivk) = 0.

Then, the pair (Re vk, Re pk) is also a solution to the nonlinear problem.
Let us single out an important particular case. Let
φ±k (t) = β±k e

−σ±k t, ψ±k = 0, then

γ±k (t) =

{
β±k t e

−ν|k|2t when σ±k = ν|k|2,
β±k

ν|k|2−σ±k
(e−σ

±
k t − e−ν|k|2t) when σ±k 6= ν|k|2. (126)

This formula shows that if t→ +∞, the velocity modulus
∣∣v±k (x, t)

∣∣ tends to zero, if Reσ±k >
0, ∣∣v±k (x, t)

∣∣→ ∣∣β±k ∣∣∣∣νk2 − σ±k
∣∣ , if Re σ±k = 0

and
∣∣v±k (x, t)

∣∣→ +∞ exponentially, if Re σ±k < 0.
The resonance occurs when σ±k = ν|k|2.
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5.2. Let Λk be a ray, given by the vector k. The points k and λk ∈ Λk, if λ is a natural
number. In this case, basis solutions can be summed up. For example,
Theorem 4. Let f = 0, g = g(k) ∈ V 1+s, s ≥ −1, where

g(k) =
∞∑
λ=1

(ψ+
λku

+
λk(x) + ψ−λku

−
λk(x)). (127)

Suppose that

v(k) = $−1

∞∑
λ=1

(
ψ+
λkc

+
λk + ψ−λkc

−
λk

)
eiλkx−νλ

2|k|2t, p = 0. (128)

Then the pair (v(k), 0), is a solution to the problem (1), (2) with f = 0, g = g(k).
Proof. The data of the problem satisfy the conditions of Theorem 1. Therefore, the pair

(v(k), 0) is a solution to the linear problem. It remans to demonstrate that N(v(k), v(k)) = 0.
Since c±λk = c±k for λ ∈ N, then

v(k) = α+
k c

+
k + α−k c

−
k , where α±k (t, x) =

∞∑
λ=1

ψ±λke
iλkx−νλ2|k|2t, (129)

and the series α±k (t, x) and their derivatives with respect to xj converge when t > 0, g ∈ V 0.
One has

∇α±k = ikα±k,1, where α±k,1(t, x) =
∞∑
λ=1

λψ±λke
iλkx−νλ2|k|2t. (130)

N(v(k), v(k)) = α+
kN(c+k , α

+
k )c+k + ...+ α−kN(c−k , α

−
k )c−k = 0, (131)

since every addend of the sum equals to zero. Indeed, invoking that (c±k , k) = 0, one obtains for
the first one

N(α+
k c

+
k , α

+
k c

+
k ) = α+

k (c+k · ∇)α+
k c

+
k = iα+

k (c+k , k)α+
k,1c

+
k = 0, (132)

which was to be proved.

5.3. Let q be a plane given by vectors m and n. Some solutions to the linear problem
(vk, pk) when k ∈ q, can be summed up. For example,
Theorem 5. Let f = 0, g = gq ∈ V 1+s, s ≥ −1, where

gq =
∑
k∈q

ψke
ikx m× n. (133)

Assume that
vq =

∑
k∈q

ψke
ikx−ν|k|2t m× n, p = 0. (134)

Then, the pair (vq, 0) is a solution to the problem (1), (2) with f = 0, g = gq.
Proof. Let us expand the vector m× n in terms of the basis k̂, c+k , c

−
k and take into account

that any vector k ∈ q is orthogonal to the vector product m× n. Then,
m× n = (c+k ,m× n)c+k + (c−k ,m× n)c−k . (135)

Substituting this expression to the formulae (133), (134), one obtains the expansion gq and vq
in terms of eigenfunctions of the curls operator.

The series (133) satisfies conditions of Theorem 1. It remans to demonstrate that N(vq, vq) =
0. This can be achieved similarly to the previous theorem:

vq = α m× n, where α(t, x) =
∑
k∈q

ψke
ikx−ν|k|2t. (136)

N(vq, vq) = iα(t, x)
∑
k∈q

(m× n, k)ψke
ikx−ν|k|2t m× n = 0. (137)
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5.4. Let σ be a sphere of the radius
√
n and n = |k0|2. The sum of solutions of the linear

problem (vk, pk) for k ∈ σ is not a solution to the nonlinear problem. However, the following
theorem holds for eigenfunctions with the same eigenvalues.
Theorem 6. Let φ+

k (t) ∈ C[0, T ],

f+
σ =

∑
|k|2=n

φ+
k (t) u+

k (x), g+
σ =

∑
|k|2=n

ψ+
k u

+
k . (138)

Assume that

γ+
k (t) = ψ+

k e
−ν|k|2t +

∫ t

0

eν|k|
2(τ−t)φ+

k (τ)dτ, (139)

v+
σ =

∑
|k|2=n

γ+
k (t)u+

k (x), p+
σ =

∑
|k|2=n

p+
k −

1

2
(v+
σ )2, ∇p+

k = 0. (140)

Then, the pair (v+
σ , p

+
σ ) is a classical solution to the nonlinear problem (1), (2) with

f = f+
σ , g = g+

σ .
Proof. By construction, one has

Sv+
σ = f+

σ −∇
∑
|k|2=n

p+
k (141)

for the linear operator S. While calculating the nonlinear operator N from v+
σ , let us use the

correlation N(v, v) = (rot v)× v +∇1
2
v2 and take into account that rot v+

σ =
√
nv+

σ . Then,

N(v+
σ , v

+
σ ) = (rot v+

σ )× v+
σ +∇1

2
(v+
σ ) = ∇1

2
(v+
σ ). (142)

Hence,

Sv+
σ +N(v+

σ , v
+
σ ) = f+

σ −∇
∑
|k|2=n

p+
k +∇1

2
(v+
σ ) = f+

σ −∇p+
σ , (143)

which was to be proved.
Note that a similar theorem holds for eigenvalues with negative eigenvalues −

√
n. Generally

speaking, it is not true for eigenfunctions with various eigenvalues ±
√
n.

Families of global solutions to the Cauchy problem for the nonlinear Navier-Stokes system in
a uniformly rotating space with the angular velocity Ω are published in my work [25]. Assuming
that Ω = 0, one can easily write out other families of exact global solutions to the nonlinear
problem.

6. Numerical solution of model problems

A model problem is the Cauchy problem for the Galerkin system RSl.

6.1. Standard form of the Galerkin equations. A program for enumerating nonzero
points of the lattice is developed

k → ϑ(k) : 1(−1, 0, 0), 2(0,−1, 0), 3(0, 0,−1), ..., 18(1, 1, 0), ...,

where the point (−1, 0, 0) is the first one, the point (1, 1, 0) is the eighteenth one and so on. Using
this numbering, let us introduce the numbering ϑ(k) for the known and unknown functions
γ±k (t). Thus, e.g., γ+

1(−1,0,0) indicates that the element γ+
(−1,0,0) is the first one in the numbering

system and so on. If |k|2 6 l, the last element has the number Nl, equal to the number of
nonzero points of the lattice in the sphere with the radius

√
l.

Let us introduce a vector-row into our consideration. Let

γ = (γ+, γ−) = (γ+
1 , ... , γ

+
Nl
, γ−1 , ... , γ

−
Nl

) (144)
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and B+
ϑ(k), B

−
ϑ(k) be matrices of quadratic forms. In this notation 2Nl of complex equations RSl

and the initial conditions have the form
d

dt
γ±ϑ(k) = −ν|k|2γ±ϑ(k) − γB

±
ϑ(k)γ

T + φ±ϑ(k), γ
±
ϑ(k)(0) = ψ±ϑ(k), (145)

where ϑ(k) = 1, ..., Nl. Quadratic forms

γB±ϑ(k)γ
T = i

l∑
m2=1

(γ+
k−m(c+k−m,m)(c+m, c

±
k )γ+

m + γ+
k−m(c+k−m,m)(c−m, c

±
k )γ−m+

γ−k−m(c−k−m,m)(c+m, c
±
k )γ+

m + γ−k−m(c−k−m,m)(c−m, c
±
k )γ−m)

split into four similar quadratic forms γ+C++(γ+)T, . . . , γ−C−−(γ−)T. Nonzero elements in
matrices of these forms hold the same positions (k −m,m) and are situated “perpendicularly”
to the main diagonal. These matrices and the matrices B±k are sparse.

A program for calculating the modified Fourier coefficients (32), (33) of vector functions
f(t, x) and g(x), contained in the equations and the initial data of the problem (145) is
developed.

The Sobolev cubature formulae with a regular boundary layer were used in calculating the
integrals with respect to a cube.

Programs for calculating coefficients of the system RSl and numeric solution of the Cauchy
problem by the Runge-Kutta method were developed.

The printout of the system RS2 consists of approximately 20 А4 pages. Therefore, only the
first plus equation from RS2 is represented:

d

dt
γ+

1(−1,0,0) = −νγ+
1(−1,0,0)−

{γ+
2(0,−1,0)(0.603553i)γ+

10(−1,1,0) + γ+
2(0,−1,0)(0.103553i)γ−10(−1,1,0)

+ γ+
3(0,0,−1)(0.603553i)γ+

9(−1,0,1) + γ+
3(0,0,−1)(−0.103553i)γ−9(−1,0,1)

+γ+
4(0,0,1)(−0.603553i)γ+

8(−1,0,−1) + γ+
4(0,0,1)(0.103553i)γ−8(−1,0,−1)

+γ+
5(0,1,0)(−0.603553i)γ+

7(−1,−1,0) + γ+
5(0,1,0)(−0.103553i)γ−7(−1,−1,0)

+γ+
7(−1,−1,0)(0.25i)γ+

5(0,1,0) + γ+
7(−1,−1,0)(0.25i)γ−5(0,1,0)

+γ+
8(−1,0,−1)(0.25i)γ+

4(0,0,1) + γ+
8(−1,0,−1)(0.25i)γ−4(0,0,1)

+γ+
9(−1,0,1)(−0.25i)γ+

3(0,0,−1) + γ+
9(−1,0,1)(−0.25i)γ−3(0,0,−1)

+γ+
10(−1,1,0)(−0.25i)γ+

2(0,−1,0) + γ+
10(−1,1,0)(−0.25i)γ−2(0,−1,0)

+γ−2(0,−1,0)(−0.603553i)γ+
10(−1,1,0) + γ−2(0,−1,0)(−0.103553i)γ−10(−1,1,0)

+γ−3(0,0,−1)(−0.603553i)γ+
9(−1,0,1) + γ−3(0,0,−1)(0.103553i)γ−9(−1,0,1)

+γ−4(0,0,1)(0.603553i)γ+
8(−1,0,−1) + γ−4(0,0,1)(−0.103553i)γ−8(−1,0,−1)

+γ−5(0,1,0)(0.603553i)γ+
7(−1,−1,0) + γ−5(0,1,0)(0.103553i)γ−7(−1,−1,0)

+γ−7(−1,−1,0)(−0.25i)γ+
5(0,1,0) + γ−7(−1,−1,0)(−0.25i)γ−5(0,1,0)

+γ−8(−1,0,−1)(0.25i)γ+
4(0,0,1) + γ−8(−1,0,−1)(0.25i)γ−4(0,0,1)

+γ+
9(0,0,1)(−0.25i)γ+

3(0,0,−1) + γ+
9(−1,0,1)(−0.25i)γ−3(0,0,−1)

+γ−10(−1,1,0)(0.25i)γ+
2(0,−1,0) + γ−10(−1,1,0)(0.25i)γ−2(0,−1,0)}+ φ+

1(−1,0,0)(t).

Its coefficients are calculated with the sixth order of accuracy.

6.2. Solvability of Problem (145). In §4, two a priori estimates

sup
s∈[0,T ]

‖vl(s, ·)‖2V 0 6 ‖g‖2V 0 + ν−1‖f‖2L2(0,T ;V −1) (146)

and
‖vl‖2L2(0,T ;V 1) 6 ν−1‖g‖2V 0 + ν−2‖f‖2L2(0,T ;V −1) (147)
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have been proved assuming that f(t, x) ∈ L2(0, T ;V 0), g(x) ∈ V 1.
Whence, one concludes that Problem (145) is solvable on the whole interval (0, T ), and its

solution vl(t, x) is bounded in spaces L∞(0, T ;V 0) and L2(0, T ;V 1) for any l = 1, 2, .... Note
that vector functions f and g are real, f0(t) = 0, g0 = 0 and Slf(t, x), Slg(x) are their partial
sums:

Slf(t, x) = 2$Re
∑
k∈Ml

(φ+
k (t)u+

k (x) + φ−k (t)u−k (x)), (148)

Slg(x) = 2$Re
∑
k∈Ml

(ψ+
k u

+
k (x) + ψ−k u

−
k (x)), (149)

and the Galerkin approximations vl, solutions to equations GSl, have the form

vl = Revl(x, t) = 2$Re
∑
k∈Ml

(γ+
k,l(t)u

+
k (x) + γ−k,l(t)u

−
k (x)). (150)

6.3. Visualization. Consider a flow whose velocity is given by a real eigenfunction of the
curl operator in the form

d+
k (t, x) = 2Re(φ+

k (t)c+k e
ikx)

when k 6= 0. It is defined by the complex function φ+
k (t) = |φ+

k (t)| eiθ+k (t).
Let us assume that Pk,δ is a plane given by the equation kx = δ. By construction, the vectors

_

k ,
√

2a+
k ,
√

2b+k generate an orthonormal basis in the space R3, which induces a basis in the
planes Pk,δ. The velocity of the flow on every plane is

v+
k,δ(t) = d+

k |Pk,δ= 2
∣∣φ+
k (t)

∣∣ (cos(δ + θ+
k (t))a+

k − sin(δ + θ+
k (t))b+k

)
, (151)

and it is independent of x ∈ Pk,δ.
Its basis coordinates (

√
2a+

k ,
√

2b+k ) are the same as that of the complex function
φ+
k,δ(t) =

√
2 φ+

k (t) eiδ in the basis (1, i). In other words, the curve φ+
k,δ(t) can be obtained

from the curve φ+
k (t) by means of dilation on

√
2, rotation at the angle α and reflection from

a real axis.
Therefore, the drawing of the curve φ±k (t) on a complex plane gives one a possibility to

imagine the behavior of the velocity vector v+
k,δ(t) in the plane Pk,δ, orthogonal to the vector k.

Let us term it as the c h a r t of the flow d+
k (t, x).

Let us chart every addend of the solution (150). A set of such charts gives an idea of the flow
as a whole.

6.4. Solution to the Cauchy problem for the system RS2. Let us assume that ν = 0.1,
f = 0 and ψ+

k are given when k = (0, 0, 1), k = (0, 1, 1), and ψ−k is given when k = (0, 1, 0), i.e.
the initial flow g consists of three stationary vortex flows:

g = 2Re(ψ+
k c

+
k e

ikx)|k=(0,0,1) + 2Re(ψ+
k c

+
k e

ikx)|k=(0,1,1) + 2Re(ψ−k c
−
k e

ikx)|k=(0,1,0).

As a result of calculating the problem, one obtains 8 nonzero functions γ±k (t) for
k ∈M ′ = {(0, 1, 0), (0, 0, 1), (0,−1, 1), (0, 1, 1)}, and the resulting solution v has the form

v(t, x) = 2Re
∑
k∈M ′

(γ+
k (t)c+k + γ−k (t)c−k )eikx. (152)

Further, the calculations are repeated for ν = 0.01 and one can see the difference of the
curves.
Example. The variable t varies from 0 to 10. The initial data are

ψ+
4(0,0,1) = −3, ψ+

14(0,1,1) = 14i, ψ−5(0,1,0) = 2,
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and by symmetry
ψ+

3(0,0,−1) = 3, ψ+
11(0,−1,−1) = 14i, ψ−2(0,−1,0) = −2.

The figures represent charts of vortex flows, i.e. the curves γ±k (t) in a complex plane that give
an idea of behavior of the velocity vector in the plane orthogonal to the vector k.
ν = 0, 01, γ+

4(0,0,1)(0) = −3. ν = 0, 1, γ+
4(0,0,1)(0) = −3.

Fig.1. Fig.2.
ν = 0, 01, γ+

5(0,1,0)(0) = 0 ν = 0, 1, γ+
5(0,1,0)(0) = 0

Fig.3. Fig.4.
ν = 0, 01, γ+

12(0,−1,1)(0) = 0 ν = 0, 1, γ+
12(0,−1,1)(0) = 0

Fig.5. Fig.6.



CAUCHY PROBLEM FOR NAVIER-STOKES EQUATIONS, FOURIER METHOD 75

ν = 0, 01, γ+
14(0,1,1)(0) = 14i ν = 0, 1, γ+

14(0,1,1)(0) = 14i

Fig.7. Fig.8.
ν = 0, 01, γ−4(0,0,1)(0) = 0 ν = 0, 1, γ−4(0,0,1)(0) = 0

Fig.9. Fig.10.
ν = 0, 01, γ−5(0,1,0)(0) = 2 ν = 0, 1, γ−5(0,1,0)(0) = 2

Fig.11. Fig.12.
ν = 0, 01, γ−12(0,−1,1)(0) = 0 ν = 0, 1, γ−12(0,−1,1)(0) = 0

Fig.13. Fig.14.
ν = 0, 01, γ−14(0,1,1)(0) = 0 ν = 0, 1, γ−14(0,1,1)(0) = 0

Fig.15. Fig.16.
In conclusion, note that the idea of the given method for numerical solution of the

problem belongs to O.A. Ladyzhenskaya, who also suggested calculating model problems and
interpreting the character of solutions breakdown with the decrease of the viscosity coefficient
of the system and with other conditions in a numerical experiment. The issue remains open.
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A.G. Khaibullin did a great job in programming mentioned in the present article.
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