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ON ORTHOSIMILAR SYSTEMS IN A SPACE OF ANALYTICAL
FUNCTIONS AND THE PROBLEM OF DESCRIBING THE

DUAL SPACE

V.V. NAPALKOV(JR.)

Abstract. We consider an orthosimilar system with the measure µ in the space of analytical
functions H on the domain G ⊂ C. Let KH(ξ, t), ξ, t ∈ G be a reproduction kernel in the
space H. We claim that a system {KH(ξ, t)}t∈G is the orthosimilar system with the measure
µ in the space H if and only if the space H coincides with the space B2(G,µ). A problem
of describing the dual space in terms of the Hilbert transform is considered. This problem
is reduced to the problem of existence of a special orthosimilar system in B2(G,µ). We
prove that the space B̃2(G,µ) is the only space with a reproduction kernel and it consists
of functions given on the domain C\G with an orthosimilar system { 1

(z−ξ)2 }ξ∈G with the
measure µ.

Keywords: Bergman space, Hilbert spaces, reproducing kernel, orthosimilar system,
Hilbert transform.

1. Introduction

Let us assume that G is a simply connected domain in C, and µ is a nonnegative Borel
measure on G. Let us denote the space of functions holomorphic in G, for which

‖f‖2
B2(G,µ) =

∫
G

|f(z)|2 dµ(z) <∞,

by B2(G, µ).
Let us impose the following condition on the measure µ. The space B2(G, µ) should be a

Hilbert space, i.e. the space B2(G, µ) with the norm ‖ · ‖B2(G,µ) should be complete.
A scalar product in the space B2(G, µ) has the form

(f, g)B2(G,µ) =

∫
G

f(z) · g(z) dµ(z).

In addition, we require that the system of functions { 1
(z−ξ)2 , ξ ∈ C\G} is complete in the space

B2(G, µ).
Remark. We do not require that the space B2(G, µ) is separable. A detailed presentation of

the theory of nonseparable Hilbert spaces can be found in [1], [2].
Let us associate every linear continuous functional f ∗ on B2(G, µ), generated by the function

f ∈ B2(G, µ), to the function

f̃(ξ)
def
= f ∗

(
1

(z−ξ)2

)
= ( 1

(z−ξ)2 , f(z))B2(G,µ) =

∫
G

f(z) · 1

(z − ξ)2
dµ(z), ξ ∈ C\G.

Definition 1. The function f̃ is termed as the Hilbert transform of the functional generated
by f ∈ B2(G, µ).
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Since the system of functions { 1
(z−ξ)2 , ξ ∈ C\G} is complete in the space B2(G, µ), the

mapping f ∗ → f̃ is injective. The family of functions f̃ constructs a space

{f̃ : f̃(ξ) = ( 1
(z−ξ)2 , f(z))B2(G,µ)}

об
= B̃2(G, µ),

where the induced structure of the Hilbert space is considered, i.e.

(f̃ , g̃)B̃2(G,µ)

def
= (g, f)B2(G,µ)

and
‖f̃‖B̃2(G,µ) = ‖f‖B2(G,µ).

The present paper considers the question when a norm of the form

‖f̃‖ν =

√∫
C\G
|f̃(ξ)|2 dν(ξ),

where ν is a nonnegative measure on C\G, equivalent to the induced norm ‖f̃‖B̃2(G,µ), can be
introduced in the space B̃2(G, µ). In more detail, are there a nonnegative Borel measure ν in
C\G and constants A1, A2 > 0 such that the relations

A1‖f̃‖B̃2(G,µ) ≤ ‖f̃‖ ≤ A2‖f̃‖B̃2(G,µ) , ∀f̃ ∈ B̃2(G, µ)

hold. Thus, the problem describing a space dual to B2(G, µ) in terms of the Hilbert transform
is considered.

Problems of describing analytical functions conjugate to various spaces in terms of the
Cauchy, Hilbert, Fourier-Laplace transform were considered in earlier works by numerous
authors. I mention here only the works that are most closely related to the topic of the present
article [3, 4, 5, 6, 7, 8, 9] etc.

2. Auxiliary information

Definition 2. (see [10]) Let us assume that H is a Hilbert space over a field R or C, and Ω
is a space with a countably additive measure µ (see [15], p.109–116). The system of elements
{eω}ω∈Ω is called an orthosimilar system (similar to orthogonal) in H with the measure µ, if
any element y ∈ H can be represented in the form

y =

∫
Ω

(y, eω)Heω dµ(ω).

Here the integral is interpreted as a proper or improper Lebesgue integral of a function with
values in H. In the latter case there is such an exhaustion {Ωk}∞k=1 of the space Ω possibly
depending on y and called suitable for y, that the function (y, eω)H · eω is Lebesgue integrable
on Ωk and

y =

∫
Ω

(y, eω)Heω dµ(ω) = lim
k→∞

(L)

∫
Ωk

(y, eω)Heω dµ(ω).

Note that all Ωk are measurable by µ, Ωk ⊂ Ωk+1 for k ∈ N and
⋃∞
k=1 ΩK = Ω.
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Examples:
1. Any orthogonal basis {ek}∞k=1 ⊂ H in an arbitrary Hilbert space H is an orthosimilar

system; any element y ∈ H can be represented in the form

y =
∞∑
k=1

(y, ek)ek.

Here one can take a set N as Ω, and in the capacity of the measure µ, one can take a
countable measure, i.e. a set measure from N is the amount of different natural numbers
entering the set.

2. Let us assume that H is a Hilbert space, H1 is a subspace of H, and P is the operator
of orthogonal projection of elements from H onto H1. Let {ek}∞k=1 ⊂ H be an orthogonal
basis in H. Then, the system of elements {P (ek)}∞k=1 ⊂ H1 is an orthosimilar system in
H1. (see [10], Theorem 9). Note, that if {ek}∞k=1 is an orthogonal basis in H, then the
system {P (ek)}∞k=1, generally speaking, is not an orthogonal basis in H1.

3. Let H = L2(R). The function ψ ∈ L2(R), ‖ψ‖L2(R) = 1. A system of Morlet wavelets
ψa,b(x) = 1√

|a|
ψ
(
t−b
a

)
, a ∈ R\{0}, b ∈ R is an orthosimilar system in the space L2(R);

any function f ∈ L2(R) can be represented in the form

f(x) =

∫
R\0

∫
R
(f(τ), ψa,b(τ))L2(R)ψa,b(x)

dbda

Cψ|a|2
,

where Cψ > 0 is a constant. The set (R\{0})×R with the measure dbda
Cψ |a|2

is taken as the
space Ω here. (see [11],[10]).

Expansion of elements of the Hilbert space with respect to orthosimilar systems can be not
the only one. At the same time, orthosimilar systems possess many properties of orthogonal
ones, e.g., an analogue of the Parseval identity holds for them and they have the extremal
property of coefficients for orthosimilar systems.

Definition 3. ( [10]) An orthosimilar system is said to be nonnegative if the measure µ is
nonnegative.

We will need the following two theorems from the work [10], Theorems 1 and 3.
Theorem A. (An analogue of the Parseval identity) Let {eω}ω∈Ω ⊂ H be a nonnegative

orthosimilar system with the measure µ in H.
Then, for any element y ∈ H one has

‖y‖2
H =

∫
Ω

|(y, eω)|2 dµ(ω),

and for any two elements x, y ∈ H one has

(x, y)H =

∫
Ω

(x, eω) · (y, eω) dµ(ω).

Theorem B. (Extremal property of expansion coefficients) Let {eω}ω∈Ω be a nonnegative
orthosimilar system in H, and c(ω) be a function on Ω with the value in R or C (depending on
the field over which H is considered and

y =

∫
Ω

c(ω)eω dµ(ω),

where the integral is interpreted as a proper or improper Lebesgue integral of a function with
the value in H. In the latter case there is an exhaustion {Ωk}∞k=1 of the space Ω (all Ωk are
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measurable by µ, Ωk ⊂ Ωk+1 for k ∈ N and
⋃∞
k=1 ΩK = Ω) such that the function c(ω) · eω is

Lebesgue integrable on Ωk and

y =

∫
Ω

c(ω) · eω dµ(ω) = lim
k→∞

(L)

∫
Ωk

c(ω) · eω dµ(ω).

Then,

‖y‖2
H ≤

∫
Ω

|c(ω)|2 dµ(ω),

and the equality holds only if c(ω) = (y, eω)H almost everywhere on Ω by the measure µ.
In the present paper, functional Hilbert spaces, consisting of functions in a domain G ⊂ C

are considered.

Definition 4. A Hilbert space H, consisting of functions f(z) : E → C, given on a set E, is
said to be functional if the functional δz0 : f → f(z0) is linear and continuous over H for any
z0 ∈ E.

According to the Riesz-Fisher theorem, any linear continuous functional overH is constructed
by an element from H. Whence, there is a function KH(z, z0) ∈ H such that the identity
f(z0) = (f(z), KH(z, z0))H holds.

Thus, the function KH(z, ξ), z, ξ ∈ E, which is called a reproducing kernel of the space H
is defined (see, e.g., [12]). Basic properties of functional spaces and reproducing kernels are
described in [12].

3. basic results

The following statement is proved in the present paper.

Theorem 1. Let H be a functional Hilbert space of functions on the domain G ⊂ C. A norm
has an integral form

‖f‖H =

√∫
G

|f(ξ)|2 dν(ξ) (1)

in the space H if and only if the system of functions {KH(ξ, t)}t∈G is a nonnegative orthosimilar
system with the measure ν in the space H.

Remark. Obviously, if a norm in the space H is determined as in (1), then

(f, g)H =

∫
G

f(ξ) · g(ξ) dν(ξ).

Proof. Sufficiency. Let us assume that a system of functions {KH(ξ, t)}t∈G is a nonnegative
orthosimilar system with the measure ν in the space H. It means that any element f ∈ H can
be represented in the form

f(ξ) =

∫
G

(f(τ), KH(τ, t))HKH(ξ, t) dν(t), ξ ∈ G.

By virtue of Theorem A,

‖f‖2
H =

∫
G

|(f(τ), KH(τ, t))H |2 dv(t) =

∫
G

|f(t)|2 dν(t).

Necessity. Let us assume that the equation

‖f‖2
H =

∫
G

|f(ξ)|2 dν(ξ)
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holds for any f ∈ H. Then,

f(ξ) = (f(t), KH(t, ξ))H =

∫
G

f(t) ·KH(t, ξ) dν(t).

By the property of reproducing kernels KH(t, ξ) = KH(ξ, t) (see [12]). Therefore,

f(ξ) =

∫
G

f(t) ·KH(ξ, t) dν(t) =

=

∫
G

(f(τ), KH(τ, t))H ·KH(ξ, t) dν(t), ξ ∈ G. (2)

Thus, the system of functions {KH(ξ, t)}t∈G is a nonnegative orthosimilar system in the space
H with the measure ν.

The theorem is proved.
Corollary. A functional Hilbert space H, consisting of functions analytical on the domain G,

coincides with the space B2(G, µ) for a measure µ if and only if the family of reproducing kernels
{KH(ξ, t)}t∈G of the space H is a nonnegative orthosimilar system in H with the measure µ,
i.e. any function g ∈ H can be represented in the form

g(ξ) =

∫
G

(g(τ), KH(τ, t))HKH(ξ, t) dµ(t), ξ ∈ G.

Theorem 2. A functional Hilbert space H, consisting of functions of a variable ξ ∈ C\G,
coincides with the space B̃2(G, µ) if and only if the family of functions { 1

(ξ−t)2}t∈G is an
orthosimilar system in H with a measure µ, i.e. any function g ∈ H can be represented in
the form

g(ξ) =

∫
G

(g(τ), 1
(τ−t)2 )H

1
(ξ−t)2 dµ(t), ξ ∈ C\G. (3)

Necessity. Let the space H coincide with B̃2(G, µ). The space B̃2(G, µ) consists of functions,
that can be represented in the form

f̃(ξ) = ( 1
(ξ−t)2 , f(t))B2(G,µ) =

∫
G

f(t) 1
(ξ−t)2 dµ(t), f ∈ B2(G, µ). (4)

Meanwhile, an induced structure of the Hilbert space

(f̃ , g̃)B̃2(G,µ) = (g, f)B2(G,µ)

is considered in B̃2(G, µ). Let us consider a function KB2(G,µ)(ξ, t) of ξ when t is fixed. In our
notation

K̃B2(G,µ)(ξ, t) = ( 1
(τ−t)2 , KB2(G,µ)(τ, ξ))B2(G,µ) =

1

(ξ − t)2
·

Therefore, for any f ∈ B2(G, µ)

f(t) = (f(τ), KB2(G,µ)(τ, t))B2(G,µ)
=

= (KB2(G,µ)(τ, t), f(τ))B2(G,µ) = (f̃(τ), 1
(τ−t)2 )B̃2(G,µ).

This equation, together with (4), entails that

g(ξ) =

∫
G

(g(τ), 1
(τ−t)2 )B̃2(G,µ)

1
(ξ−t)2 dµ(t), ξ ∈ C\G, g ∈ B̃2(G, µ)

for any g ∈ B̃2(G, µ). Thus, the system of functions { 1
(ξ−t)2}t∈G is an orthosimilar system with

the measure µ in the space B̃2(G, µ).
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Sufficiency. Let the system of functions { 1
(ξ−t)2}t∈G be an orthosimilar system in the space

H with the measure µ. It means that any element of the space H can be represented in the
form

f(ξ) =

∫
G

(f(τ), 1
(τ−t)2 )H

1
(ξ−t)2 dµ(t), ξ ∈ C\G.

Let us calculate the reproducing kernel of the space H:

KH(ξ, η) =

∫
G

(KH(τ, η), 1
(τ−t)2 )H

1
(ξ−t)2 dµ(t) =

=

∫
G

1
(η−t)2 ·

1
(ξ−t)2 dµ(t) = ( 1

(ξ−t)2 ,
1

(η−t)2 )B2(G,µ), ξ ∈ C\G. (5)

On the other hand, it follows from (3) that

KB̃2(G,µ)(ξ, η) = ( 1
(ξ−t)2 ,

1
(η−t)2 )B2(G,µ) = KH(ξ, η).

According to the Moore-Aronszajn theorem (see [13],[12]), the space H coincides with B̃2(G, µ).
Theorem 2 is proved.

Definition 5. ([14], p. 280) A linearly continuous operator A, acting in the Hilbert space
H, is said to be positive if the value (x,Ax)H is positive for any x ∈ H, x 6= 0.

Definition 6. ([14], p. 281). The numbers

C1 = inf
x∈H
x 6=0

(x,Ax)

‖x‖2
, C2 = sup

x∈H
x6=0

(x,Ax)

‖x‖2

are termed as the lower and the upper bound of a self-adjoint operator A.

Manifestly, the identities

C1‖x‖2 ≤ (x,Ax) ≤ C2‖x‖2,∀x ∈ H
hold.

Lemma 1. Let us assume that H is a Hilbert space with a scalar product (x, y) and that
another scalar product (x, y)1 is defined in H.

The following conditions are equivalent:
1. The norms, determined by scalar products (x, y), (x, y)1, are equivalent, i.e. there are such

constants C1, C2 > 0 that for any element x ∈ H the inequalities

C1‖x‖ ≤ ‖x‖1 ≤ C2‖x‖
hold.

2. There exists a linear continuous self-adjoint operator A, which is an automorphism of the
Banach space H with a norm ‖ · ‖, such that

‖x‖2
1 = (x,Ax), ∀x ∈ H. (6)

Proof. Let us prove that 2 follows from 1. Consider a linear functional

h→ (h, x)1, ∀h ∈ H
for an element x ∈ H in the Hilbert space H.

Since
|(h, x)1| ≤ ‖h‖1 · ‖x‖1 ≤ C2 · ‖h‖1 · ‖x‖,

the functional h → (h, x)1 is a linear and continuous functional in the Hilbert space H.
According to the Riesz-Fischer theorem, there exists only one element yx ∈ H such that the
identity

(h, x)1 = (h, yx), ∀h ∈ H (7)
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holds. Let us determine the mapping A : H → H by the formula A(x) = yx. Evidently, A is a
linear operator. Moreover,

‖yx‖ = sup
h∈H
h 6=0

(h, yx)

‖h‖
≤ C2 sup

h∈H
h 6=0

(h, x)1

‖h‖1

= C2‖x‖1 ≤ C2
2‖x‖.

Likewise,

‖yx‖ = sup
h∈H
h 6=0

(h, yx)

‖h‖
≥ C1 sup

h∈H
h 6=0

(h, x)1

‖h‖1

= C1‖x‖1 ≥ C2
1‖x‖.

It follows from the latter two estimates that

C2
1‖x‖ ≤ ‖Ax‖ ≤ C2

2‖x‖.

In particular, A is an injective linear bounded operator. The norms ‖ · ‖, ‖ · ‖1 are equivalent in
our considerations, therefore the operator A is surjective. Thus, A is an automorphism of the
Banach space H (as well as of the space H with the norm ‖ · ‖1).

Then, Definition (7) entails that

(h, x)1 = (h,Ax)

and
C2

1‖x‖2 ≤ ‖x‖2
1 = (x, x)1 = (x,Ax).

Hence, the operator A has a positive lower bound and thus, A is a positive self-adjoint operator
(see [14], стр. 247).

Let us prove that the condition 1 follows from the condition 2. If A is a self-adjoint operator
such that the equality (6) holds, then A is a positive operator and there exists a unique positive
square root of the operator A, i.e. such an operator S, that A = S ◦ S ( see, e.g., [14], p. 282).
The operator S is one-to-one and conjugate as well (see [14], p. 247). Let us use the theorem
on page 285 of [14].
Theorem C. The necessary and sufficient condition for a linear operator T in a Hilbert

space to have an inverse operator is that there be such a constant C1 > 0 that the following
inequalities hold:

(T ∗ ◦ Tx, x) ≥ C1‖x‖2, (T ◦ T ∗x, x) ≥ C1‖x‖2,

where T ∗ is an operator conjugate to T .
Let us apply Theorem C to the operator S. Let us take the self-adjoint linear continuous

one-to-one operator S as operator T. Applying Theorem C and invoking that the operator A
is bounded, one concludes that the operator S ◦ S∗ = S ◦ S = A has positive lower and upper
bounds, i.e. there are constants C1, C2 > 0 such that the inequalities

C1‖x‖2 ≤ (x, x)1 = (x,Ax) ≤ ‖A‖‖x‖2 = C2‖x‖2, ∀x ∈ H

hold. The latter indicates that the condition 1 is met. This proves the Lemma.
The following theorem specifies Theorem 1 in the case when the Hilbert space H is a space

B̃2(G, µ).

Theorem 3. In order to introduce into the space B̃2(G, µ) a norm equivalent to the original
one

‖f̃‖ν =

√∫
C\G
|f̃(ξ)|2 dν(ξ),

where ν is a nonnegative Borel measure on C\G, it is necessary and sufficient that there exist a
linear continuous operator S, governing an automorphism of the Banach space B2(G, µ), such
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that the system {S
(

1
(z−ξ)2

)
}ξ∈C\G is an orthosimilar system with the measure ν in the space

B2(G, µ), i.e. any element f ∈ B2(G, µ) can be represented in the form

f(z) =

∫
C\G

(f(τ), Sτ
1

(τ−ξ)2 )B2(G,µ)Sz
1

(z−ξ)2 dν(ξ), z ∈ C\G.

Proof. Necessity. Suppose that one can introduce an equivalent integral norm of the form

‖f̃‖ν =

√∫
C\G
|f̃(ξ)|2 dν(ξ),

in the space B̃2(G, µ), i.e. the Banach spaces B̃2(G, µ) and B2(C\G, ν) are isomorphic. Consider
the following operator on functions f ∈ B2(G, µ) :

Tf(ξ)
def
= (f(z), 1

(z−ξ)2 )B2(G,µ).

Let us introduce the notation

J2(C\G, ν) = {f, f ∈ B2(C\G, ν)},
where the bar over f indicates complex conjugation.

A Hilbert space J2(C\G, ν) can be considered as a Banach space with the norm ‖ · ‖ν .
The function f̃(ξ) = ( 1

(ξ−z)2 , f(z))B2(G,µ) belongs to the space B̃2(G, µ). By condition of the
norm, ‖ · ‖B2(G,µ) and ‖ · ‖ν are equivalent, therefore the spaces B̃2(G, µ) and B2(C\G, ν) are

isomorphic. It means that f̃(ξ) belongs to the space B2(C\G, ν) and hence, f̃(ξ) belongs to the
space J2(C\G, ν).

The equality

Tf(ξ) = (f(z), 1
(z−ξ)2 )B2(G,µ) = ( 1

(z−ξ)2 , f(z))
B2(G,µ)

= f̃(ξ),

implies that the operator T acts from the space B2(G, µ) into the space J2(C\G, ν) and that it
is a linear continuous one-to-one operator.

The operator T ∗, conjugate to the operator T, is determined by the equality

(Tf(ξ), h(ξ))ν = (f(z), T ∗h(z))B2(G,µ), f ∈ B2(G, µ), h ∈ J2(C\G, ν).

Let us find the explicit form of the operator T ∗

(Tf(ξ), h(ξ))ν =

∫
C\G

Tf(ξ) · h(ξ) dν(ξ) =

=

∫
C\G

∫
G

f(z)
1

(z − ξ)2
dµ(z) · h(ξ) dν(ξ) =

=

∫
G

f(z)

∫
C\G

1

(z − ξ)2
· h(ξ) dν(ξ) dµ(z) =

=

∫
G

f(z)

∫
C\G

1

(z − ξ)2
· h(ξ) dν(ξ) dµ(z) =

=

∫
G

f(z) · T ∗h(z), dµ(z) = (f(z), T ∗h(z))B2(G,µ). (8)

Thus, the operator T ∗ conjugate to T acts from the space J2(C\G, ν) into the space B2(G, µ)
and has the form

T ∗h(z) =

∫
C\G

h(ξ)
1

(z − ξ)2
dν(ξ), h ∈ J2(C\G, ν).
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In particular, it means that the operator T ∗ ◦ T def
= E is a self-adjoint operator (see, e.g., [2],

p. 222), acting in the space B2(G):

Ef(z) =

∫
C\G

(f(τ), 1
(τ−ξ)2 )B2(G,µ)

1
(z−ξ)2 dν(ξ).

Moreover, the operator E is an automorphism of the space B2(G, µ). Operator E being a self-
adjoint operator, has a unique positive square root R : B2(G, µ)→ B2(G, µ) (see, e.g., [14],
pp.281, 282) such that E = R ◦ R. The operator R is an automorphism of the space B2(G, µ)
as well.

Then,

R ◦Rf(z) =

∫
C\G

(f(τ), 1
(τ−ξ)2 )B2(G)

1
(z−ξ)2 dν(ξ).

Invoking that the operator E is one-to-one and using the same argumentation as in ([15], p.
128), one can demonstrate that

f(z) =

∫
C\G

(f(τ), 1
(τ−ξ)2 )B2(G,µ)S ◦ S 1

(z−ξ)2 dν(ξ) =

=

∫
C\G

(f(τ), S 1
(τ−ξ)2 )B2(G,µ)S

1
(z−ξ)2 dν(ξ), (9)

where operator S is an inverse operator to the operator R, i.e. R−1 об
= S. The necessity is proved.

Sufficiency. Let the system {S 1
(z−ξ)2}ξ∈C\G be an orthosimilar system in the space B2(G, µ).

It means that any element f ∈ B2(G, µ) can be written in the form

f(z) =

∫
C\G

(f(τ), Sτ
1

(τ−ξ)2 )B2(G,µ)Sz
1

(z−ξ)2 dν(ξ), z ∈ G.

Using ([15], p 128), one can demonstrate that

f(z) =

∫
C\G

(f(τ), Sτ
1

(τ−ξ)2 )B2(G,µ)Sz
1

(z−ξ)2 dν(ξ) =

=

∫
C\G

(S ◦ Sf(τ), 1
(τ−ξ)2 )B2(G,µ)

1
(z−ξ)2 dν(ξ), z ∈ G. (10)

Let us introduce the notation S ◦S об
= A. Since the operator S has a continuous inverse operator

then, due to Theorem C, the operator A has a positive lower bound and hence, one can introduce
in the space B2(G, µ) an equivalent integral norm

‖f‖1 =
√

(Af, f)B2(G,µ), (11)

which constructs a scalar product

(f, g)1 = (Af, g)B2(G,µ), f, g ∈ B2(G, µ).

Note that
(A−1f, g)1 = (f, g)B2(G,µ).

One has

f(z) =

∫
C\G

(f(τ), 1
(τ−ξ)2 )1

1
(z−ξ)2 dν(ξ), z ∈ G
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for any f ∈ B2(G, µ). That is the system of functions { 1
(τ−ξ)2}ξ∈C\G is an orthosimilar system

with respect the measure ν in the space B2(G, µ) with the norm ‖ ·‖1. According to Theorem A

‖A−1f‖2
1 =

∫
C\G
|(A−1f(τ), 1

(τ−ξ)2 )1|2 dν(ξ) =

=

∫
C\G
|(f(τ), 1

(τ−ξ)2 )B2(G,µ)|2 dν(ξ) =

∫
C\G
|f̃(ξ)|2 dν(ξ) = ‖f̃‖2

ν . (12)

Furthermore, ‖f̃‖B̃2(G,µ) = ‖f‖B2(G,µ). Due to Lemma 1 (see the equality 11), the norms
‖ · ‖B2(G,µ) and ‖ · ‖1 are equivalent. Manifestly, there are such constants C3, C4 > 0 that

C3‖f‖1 ≤ ‖A−1f‖1 ≤ C4‖f‖1, f ∈ B2(G, µ).

Equation (12) entails that the norms ‖ · ‖B̃2(G,µ) and ‖ · ‖ν are equivalent. The theorem is
proved.

Theorem 4. Let us assume that there is an operator S, realizing the automorphism of the
space B2(G, µ), which transforms the family of reproducing kernels {KH(z, t)}t∈G into the family
of Hilbert kernels { 1

(z−τ)2
}τ∈C\G. Then, in the space B̃2(G, µ), one can introduce an equivalent

integral norm of the form

‖f̃‖ν =

√∫
B̃2(G,µ)

|f̃(ξ)|2 dν(ξ),

where the measure ν is determined as follows. The operator S defines the mapping

τ = ρ(t); ρ : G→ C\G
from the equality

SKH(z, t) = 1
(z−ρ(t))2

, t ∈ G.

Let P be a manifold in G. Then Q
def
= ρ(P ) is a manifold in C\G, and the measure

ν(Q)
def
= µ(P ).

Proof. The system of elements {KH(z, t)}t∈G is an orthosimilar system in the space B2(G, µ)
with the measure µ (see corollary to Theorem 1). It means that any function f ∈ B2(G, µ) can
be represented in the form

f(z) =

∫
G

(f(τ), KH(τ, t))HKH(z, t) dµ(t), z ∈ G.

By condition of the Theorem, operator S realizes the automorphism of the space B2(G, µ) and
translates the family of reproducing kernels {KH(z, t)}t∈G onto the family of Hilbert kernels
{ 1

(z−τ)2
}τ∈C\G. Then,

KH(z, t) = S−1
z

1
(z−ρ(t))2

, t ∈ G
and

f(z) =

∫
G

(f(τ), S−1
τ

1
(τ−ρ(t))2

)HS
−1
z

1
(z−ρ(t))2

dµ(t), z ∈ G.

Substituting the variable in the latter integral ξ = ρ(t), and invoking that dµ(ρ−1(ξ)) = dν(ξ),
one obtains

f(z) =

∫
G

(f(τ), S−1
τ

1
(τ−ξ)2 )HS

−1
z

1
(z−ξ)2 dν(ξ), z ∈ G.

Whence, according to Theorem 2, one can introduce an equivalent integral norm of the form

‖f̃‖ν =

√∫
B̃2(G,µ)

|f̃(ξ)|2 dν(ξ)
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in the Hilbert space B̃2(G, µ). Theorem 4 is proved.

4. Example

Let us take the upper half-plane U = {z ∈ C : =z > 0} as the domain G and the planar
Lebesgue measure v as the measure µ.

Consider the space B2(U, v), consisting of functions holomorphic in U and summable with a
square of the module over the planar Lebesgue measure, i.e.

‖f‖2
B2(U,v) =

∫
U

|f(z)|2 dv(z) <∞.

The system of functions 1
(z−ξ)2 is complete in the space B2(U, v) (see [7]). It is known (see,

e.g., [16]), that if G is an arbitrary simply connected domain and ϕ : G → D is a conformal
mapping of the domain G onto a unit circleD, then the reproducing kernel of the space B2(G, v)
has the form

KB2(G,v)(z, ξ) =
1

π
· ϕ′(z)ϕ′(ξ)

(1− ϕ(z)ϕ(ξ))2
, z, ξ ∈ G.

The function ϕ(z) = z−i
z+i

maps the upper half-plane U onto a unit circle D conformally. Whence,
one can readily demonstrate that

KB2(U,v)(z, ξ) = − 1

π
· 1

(z − ξ)2
, z, ξ ∈ U. (13)

By virtue of Theorem 1, any function f ∈ B2(U, v) can be represented in the form

f(z) =

∫
G

(f(τ), KB2(U,v)(τ, t))B2(U,v)KB2(U,v)(ξ, t) dv(t), ξ ∈ U.

Consider the operator S
Sf(z) = −π · f(z), z ∈ U

on functions f from B2(U, v). Evidently, S is an automorphism of the space B2(U, v). Then, it
follows from (13), that

SKB2(U,v)(z, ξ) = (−π) ·
(
− 1

π

)
· 1

(z − ξ)2
=

1

(z − ξ)2
, z, ξ ∈ U.

If ξ ∈ U , then ξ ∈ C\U . Thus, the operator S satisfies the condition of Theorem 4; translates
family of functions {KB2(U,v)(z, ξ)}ξ∈U onto a family of functions { 1

(z−τ)2
}τ∈C\U . Obviously,

ρ(ξ) = ξ (see formulation of Theorem 4). By Theorem 4, one can introduce an equivalent
integral norm of the form

‖f̃‖ =

√∫
C\U
|f̃(ξ)|2 dv(ξ) =

√∫
C\U
|f̃(ξ)|2 dv(ξ)

in the space B2(U, v). The latter means that the spaces B∗2(U, v) and B2(C\U, v) are isomorphic.
The author is deeply grateful to R.S. Yulmukhametov for helpful discussions and valuable

comments.
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