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AN ANALOGUE OF THE PALEY-WIENER THEOREM AND
ITS APPLICATIONS TO THE OPTIMAL RECOVERY OF

ENTIRE FUNCTIONS

L.S. MAERGOIZ, N.N. TARKHANOV

Abstract. Full analogues of the Paley-Wiener theorem and, in a multidimensional case, of
the Plancherel-Pólya theorem on the structure of the Fourier transform of any entire function
f ∈ W 2 are found in a fundamentally new form in terms of the language of distributions.
The analogue of the Paley-Wiener theorem is formulated for the Wiener class W p of entire
functions of the exponential type in Cn with traces in a real subspace Rn belonging to the
space Lp(Rn), where 1 < p <∞. The results are applied to the problem of the best analytic
continuation from a finite set of functions of the Wiener class. Of special interest is the
description of the existence conditions for constructive algebraic formulae of characteristics
for the optimal recovery of linear functionals.

Key words: Wiener class of entire functions, Fourier transform, distributions, optimal
linear algorithm, Chebyshev polynomial.

1. Introduction

The main object of scientific inquiry in the given paper is the Wiener class of entire functions
in Cn of the exponential type with traces on a real subspace belonging to Lp(Rn), where
1 < p <∞. In a one-dimensional case, it is the classW p

σ of such functions of the type 6 σ,where
σ > 0. The Paley-Wiener theorem describing the Fourier transform for functions of the classW 2

σ

[1], and its multi-dimensional version by M. Plancherel and D. Pólya [2] are well-known results
of the theory of Fourier integrals and have numerous applications. The given paper provides
an analogue of the Paley-Wiener theorem for functions of W p

σ class (1 < p < ∞) admitting a
multidimensional generalization. Moreover, basic characteristics for the optimal recovery from
a finite set of functions of the Wiener class are investigated in applications. The paper is closely
related to the works [3], where similar issues are considered for the class W p

σ , 1 < p < 2, and
[4], where estimate of the best analytic continuation for the case p = 2, n > 1 is investigated.
It is a revised version of the preprint [5] by the same authors.

2. Analogue of the Paley-Wiener theorem

1◦. Preliminaries. Let σ > 0. The classical Paley-Wiener theorem states that a space
W 2
σ is equivalent to a space F−1L2[−σ, σ], where L2[−σ, σ] is considered as a subspace L2(R),

consisting of all functions with a support in [−σ, σ], and F−1 is an inverse Fourier transform

f(x) := F−1F (x) =
1√
2π

∫
R

eıxξF (ξ)dξ, x ∈ R; F ∈ L2[−σ, σ].
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The element F = f̂ := Ff is uniquely defined by the function f , with analytic continuation in
C belonging to W 2

σ . Moreover, due to the Plancherel theorem, the norm f in W 2
σ , i.e. in L2(R),

coincides with the norm F in L2[−σ, σ].
According to the Hausdorff-Young theorem, the Fourier transform of the function f ∈ Lp(R)

belongs to Lq(R), if 1 6 p 6 2. Here 1/p+ 1/q = 1. Moreover,

‖f̂‖Lq(R) 6 (2π)1/q−1/2‖f‖Lp(R).

When p > 2, the Fourier transform f̂ of the function f in Lp(R) can appear to be a distribution
of a positive order. In particular, if p > 2 and the integer o satisfies the inequality o > 1/2−1/p,

then f̂ is a distribution in R of the order 6 o (see [6], Theorem 7.6.6).
Thus, we conclude that any function f ∈ W p

σ , 1 < p <∞ admits the integral representation

f = F−1f̂ , (1)

where f̂ ∈ E ′[−σ,σ] is a Fourier transform of f, and E ′[−σ,σ] is a standard space of distributions with
supports in [−σ, σ]. However, the set F [W p

σ ], or the space of Fourier transforms for functions
of the Wiener class W p

σ , is characterized by the space E ′[−σ,σ] only partially. As it has been
demonstrated in [3], F [W p

σ ], 1 < p < 2, is a proper subspace Lq[−σ, σ] if 1/p+ 1/q = 1.

2◦. Distributions associated with elements lp(Z). In order to characterize the space
F [W p

σ ], p > 1, consider the Banach space lp(Z), i.e. the set of all bilateral sequences c = (cn)n∈Z
of complex numbers such that

‖c‖lp(Z) :=
(∑
n∈Z

|cn|p
)1/p

<∞.

One can assume without loss of generality that σ = π, because f(z) ∈ W p
σ if and only

if f(πz/σ) ∈ W p
π . The following lemma is necessary to motivate a definition of the Fourier

transform for Wiener class functions, other than the traditional one.
Lemma 1. Let f be an entire function of an exponential type 6 π such that

f̂ = Ff ∈ Lq[−π, π], where 1 < q <∞. Then,

〈Ff, ϕ〉 :=

π∫
−π

Ff(t)ϕ(t)dt =
∑
k∈Z

f(k)ϕ̂(k), ϕ̂(x) =
1√
2π

π∫
−π

e−ıtxϕ(t)dt, x ∈ R (2)

holds for any smooth function ϕ ∈ C∞(R).
J Using notation of the above lemma, one obtains

〈Ff, ϕ〉 =
∑
k∈Z

ckϕ̂(k) (3)

from the generalized Parseval identity (See, e.g., [7], p. 255). Here c := {ck =
√

2πd−k, k ∈ Z},
{dk, k ∈ Z} are Fourier coefficients for the function f̂ . In order to prove (2), one has to apply
the inversion formula of the Fourier transform. I
Remark. 1. A result close to Lemma 1 can be found in [8, p. 115].
2. In particular, equalities (2), (3) hold for f ∈ W p

π provided that 1/p+ 1/q = 1, 1 < p < 2.
In this case, c ∈ lp(Z) (see [3]).

Every sequence c ∈ lp(Z), 1 < p < ∞ determines a linear functional Tc in the space C∞(R)
by the following formula in the same notation as in (3):

〈Tc, ϕ〉 :=
∑
k∈Z

ckϕ̂(k), ϕ ∈ C∞(R). (4)
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In the meaning of the theory of distributions, Lemma 1 indicates that the Fourier transform of
the trace of an entire function f ∈ W p

π in R with 1 < p < 2 coincides with the functional Tc(f),
where c(f) := {f(k), k ∈ Z}.
Lemma 2. Let 1 < p <∞. The functional Tc, determined by the formula (3), is a distribution

on a real axis with a support in the interval [−π, π] of the order 6 1.1
J Invoking that ϕ ∈ C∞(R), and integrating by parts, one obtains

ϕ̂(k) =
1

−ık
√

2π

[
(−1)k (ϕ(π)− ϕ(−π))−

∫ π

−π
e−ıktϕ′(t)dx.

]
Therefore,

|ϕ̂(k)| 6 [4π sup{|ϕ′(t)|, t ∈ [−π, π]}]/(
√

2π|k|), k ∈ Z\{0}.
The latter, together with (3) and the Hölder inequality, leads to estimation of the module of
the functional Tc:

√
2π|〈Tc, ϕ〉| 6 |c0|

(
2π sup

t∈[−π,π]

|ϕ(t)|
)

+
∑
k 6=0

|ck|
|k|

(
4π sup

t∈[−π,π]

|ϕ′(t)|
)

6 ‖c‖lp(Z)

(
2π sup

t∈[−π,π]

|ϕ(t)|+
(∑
k 6=0

1

|k|q
)1/q

4π sup
t∈[−π,π]

|ϕ′(t)|
)
.

This inequality implies that Tc is a distribution of the order 6 1 in R with the support in
[−π, π]. I

3◦. Analogue of the Paley-Wiener theorem. Let us prove the analogue of the Paley-
Wiener theorem for the Wiener class W p

σ . In contrast to the work [3], we introduce another
support in the space F [W p

σ ] of Fourier transforms of functions of this class. This approach allows
one to obtain the desired result not only in a one-dimensional case with any p ∈ (1,∞), it also
gives a possibility to find its complete analogue in a multi-dimensional case, i.e. the analogue
of the Plancherel-Pólya theorem for W 2

σ in Cn, n > 1 (see [2]).
Let us indicate the space of all distributions of the form Tc in R, where c ∈ lp(Z), and

1 < p < ∞ by E ′p[−π,π] (see (3)). The classical Plancherel-Pólya theorem [8], [9, p. 152] is
necessary for revealing the connection between E ′p[−π,π] and the space F [W p

σ ].

Theorem 1. Let 1 < p <∞.
1) For any sequence {ck, k ∈ Z ∈ lp(Z)}, the series

f(z) =
∞∑

k=−∞

(−1)nck
sinπz

π(z − k)
, z ∈ C (5)

converges in the norm Lp(R) (and uniformly on every compact in C) to the function f ∈ W p
π ,

which is the only solution of the interpolation problem f(k) = ck, k ∈ Z.
2) Conversely, for any function f ∈ W p

π the sequence

c(f) := {f(k), k ∈ Z} (6)

belongs to lp(Z).
3) The norms f 7→ ‖f‖Lp(R) and f 7→ ‖c(f)‖lp(Z), introduced in the space W p

π , are equivalent.
Lemma 3. In notation of the formulae (3), (4), (6) the relation Ff = Tc, with c = c(f), and

f ∈ W p
π , holds and is equivalent to the equation

f = F−1Tc(f). (7)

1We use the terminology of [6, Definition 2.1.1].
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J Lemma 2 states that Tc ∈ E ′[−π,π], therefore the inverse Fourier transform of the functional
Tc is an element of S ′(R). In fact, it is an entire function of the exponential type 6 π, defined
by the formula

F−1Tc =
1

2π
〈Tc, eızξ〉 =

∑
k∈Z

ck
1

2π

∫ π

−π
eı(z−k)ξdξ

=
∑
k∈Z

ck
1

2π

∫ π

−π
cos(z − k)ξ dξ =

∑
k∈Z

ck(−1)k
sin πz

π(z − k)
.

This formula and Theorem 1 lead to (7) I
Theorem 2. If p > 1, the Fourier transform determines the topological isomorphism of

spaces W p
π and E ′p[−π,π].

J Theorem 1 entails that if f ∈ W p
π , then the sequence c(f) (see (6)) belongs to lp(Z),

and the function f admits the representation (5). Whence, invoking Lemma 3, one concludes
that Ff = Tc(f) is an element of E ′p[−π,π], i.e. the Fourier transform maps W p

π into E ′p[−π,π]. Since
W p
π ↪→ S ′(R),1 this mapping is injective. One has only to prove that it is surjective. Let us fix

the mapping Tc ∈ E ′p[−π,π], where c ∈ lp(Z). Let us determine f by the formula (5). Then, by
virtue of Theorem 1, f ∈ W p

π and c(f) = c (see (6)). Equation (7) provides Ff = Tc. Hence,
there exists an algebraic isomorphism of the space W p

π onto E ′p[−π,π].
According to Theorem 1, two equivalent norms can be introduced into W p

π (p > 1); one of the
norms is determined by injection into Lp(R), the other is induced from lp(Z). They turn W p

π

into a Banach space. Due to the algebraic isomorphism f 7→ Ff = Tc(f), this is equivalent to
the statement on topological isomorphism of spaces W p

π and E ′p[−π,π] I
Theorem 2 is close to the Paley-Wiener-Schwartz theorem (see [6], Theorem 7.3.1) and its

generalizations [10].
4◦. Counterexample. If 1 < p 6 2, then distributions E ′p[−π,π] are functions of the class

Lq[−π, π] provided that 1/p + 1/q = 1, and if 1 < p < 2 they do not exhaust the space
Lq[−π, π] (see [3]). When p > 2, distributions E ′p[−π,π] can be not only functionals and even not
only measures given on [−π, π]. Let us demonstrate that the upper estimate of the order of the
distribution Tc given in Lemma 2 is exact for p > 2.

Let us make use of the following well-known theorem (see, e.g., Theorem 6.4, p. 326 in [7]).
Theorem 3. Let

∞∑
k=1

ak cos(nkt) + bk sin(nkt), t ∈ [−π, π],

be a lacunary trigonometric series, where nk+1/nk > q > 1. If it can be summed up by a linear

method of summation 2 on the set of a positive measure, then
∞∑
k=1

a2
k + b2k <∞.

Consider an entire function

f(z) =
∞∑
k=1

(sinπz)/[π
√
k(z − 2k)], z ∈ C.

By virtue of Theorem 3, f ∈ W p
π for every p > 2. It can be readily seen that the Fourier series

of the Fourier transform f̂ for f , given on [−π, π], has the form
∞∑
k=1

1√
2πk

(
cos(2kt)− ı sin(2kt)

)
. (8)

1S ′(R) is a space of distributions of slow growth.
2For instance, the Abel-Poisson method [7, p.135].
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Theorem 3 demonstrates that this series can be summed up by the Abel-Poisson method almost
nowhere on [−π, π]. However, the Fourier series of the measure given in [−π, π] can be summed
up by this method almost everywhere (see, e.g., [11, p. 52]). Therefore, the series (5) can not
be a Fourier series of any measure.

Thus, the sequence c(f) belongs to all spaces lp(Z) when p > 2. However, the distribution
Tc(f) is not a measure.1 Finally, due to Lemma 2, we conclude that the order of Tc(f) equals
to 1.
5◦.Multidimensional generalizations. Let us assume that σj > 0, j = 1, ..., n;W p

σ = {f}
is a space of entire functions of the exponential type satisfying the inequality

|f(z)| 6 Cf (ε) exp{
n∑
j=1

(σj + ε)|zj|} ∀ z ∈ Cn (9)

for any ε > 0, and that f ∈ Lp(Rn), where 1 < p < ∞. Applying Theorem 1 with respect to
every variable by the induction method, one obtains its complete analogue for the class W p

σ in
Cn (see [8]). Multidimensional variants of other results mentioned above are also true. We omit
their evident formulations and proofs.

3. Optimal recovery from a finite
set in the Wiener class W p

σ , 1 < p <∞

1◦. Scheme of the optimal recovery. Theorem 3 will be applied below to obtain
characteristics of the best analytic continuation from a finite set of entire functions from W p

σ

when p > 2. This is a problem of recovery of delta functionals. The scheme for optimal recovery
of a linear functional is known (see, e.e., [12]-[14]). Taking into account the specific character
of the case when the information space is finite-dimensional, we consider a modification of the
scheme used in [3] for optimal extrapolation in W p

σ for 1 < p 6 2.
Let us assume that V is a vector space, T : V → B is an algebraic isomorphism of the space

V into a Banach space B, while both V , and B are considered over one and the same field K,
where K = R or C. Let us determine the norm in V , assuming that ‖f‖V := ‖Tf‖B for f ∈ V ,
and thus turning V into a normed space as well. One can easily verify that ‖L‖V ′ = ‖L◦T−1‖B′

for every continuous linear functional L on V . Here B′ is a conjugate space with respect to the
space B and it is a Banach space in a standard topology defined by a functional norm. Let
U = {f ∈ V : ‖f‖V 6 R}; L1, . . . , LN be linearly independent linear functionals given on
U . Consider the recovery problem for any fixed linear functional L on U proceeding from
information on L1, . . . , LN .

Recall the basic characteristics of optimal recovery. Any mapping of the form A : U → C is
termed as algorithm. We limit our consideration by linear algorithms, i. e. A type algorithms

A(f) = `(a;L1, . . . , LN) :=
N∑
k=1

akLk(f), f ∈ U, a = (a1, . . . , aN) ∈ KN . (10)

The value
E(a;L,U) = sup{|L(f)− A(f)|, f ∈ U}

is called an error of the algorithm A. The value

Ω(L,U) = inf{E(a;L,U), a ∈ KN}2

1This example is a small modification of the example considered in [8, p. 142-143].
2A more general definition can be found in § 4, 2◦
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is called an optimal (unavoidable) recovery error of the functional L. If Ω(L,U) = E(α;L,U)
when a certain a = α ∈ KN , then the algorithm

A0 = `(α;L1, . . . , LN) (11)

(see (10)) is called an optimal linear recovery algorithm of the functional L. An element f0 ∈ U
is said to be extremal, if the following equality holds:

E(α;L,U) = |L(f0)− A0(f0)|.

We will need the funadamental result of the theory of approximation in normed spaces (see,
e.g., [15], pp. 17–20 ).
Lemma 4. Let {e1, . . . , eN} be a linearly independent system in B′. Then, for every element

v ∈ B′, there exists a vector α = (α1, . . . , αN) in KN such that∥∥∥v − N∑
k=1

αkek

∥∥∥ = inf
a∈KN

∥∥∥v − N∑
k=1

akek

∥∥∥.
If, in addition, B′ is a strictly convex space,1 then, there exists only one vector α ∈ KN with
the above mentioned property.

An element `(α; e1, . . . , eN) =
N∑
k=1

αkek is termed as the element of the linear envelope of

the set {e1, . . . , eN} of least deviation from v, or the Chebyshev polynomial. For the sake of
simplicity, we denote it by `(α), provided that it is clear which element is meant.

Let us assume that L0 ∈ B′ is a nonzero functional. Consider the set

∂‖L0‖B′ = {F ∈ B : ‖F‖B = 1, L0(F ) = ‖L0‖B′},

with a simple geometric meaning. Namely, it is a bound of a closed unit ball S in B, belonging
to its supporting hyperplane {F ∈ B : L0(F ) = ‖L0‖B′}. The set ∂‖L0‖B′ may be empty. It is
impossible if, e.g., the ball S ⊂ B is a weak compact. In particular, it happens if B is a reflexive
Banach space (see, e.g., [16, p. 241]). In this case, the set ∂‖L0‖B′ is termed as a subdifferential
of the norm L 7→ ‖L‖B′ in L0 [17]. Let G be a group of elements in K with every module equal
to 1 in K. In a general case, the set of all extremal elements determines the set

G∂‖L0‖B′ = {λF ∈ B : λ ∈ G, F ∈ ∂‖L0‖B′}

for a certain functional L0, depending on A0.
Theorem 4. Let us assume that in the previous notation

`(α) =
N∑
k=1

αk Lk ◦ T−1 (12)

is an element of the linear envelope of the set {L1 ◦ T−1, . . . , LN ◦ T−1} of the least deviation
from L ◦ T−1. Then,

1) the optimal error Ω(L,U) of recovery of the functional L by means of information on
functionals L1, . . . , LN given on U equals to

Ω(L,U) = R ‖L ◦ T−1 − `(α)‖B′ ; (13)

2) the optimal linear algorithm for recovery of the functional L on U is defined by the formula
A0 = `(α;L1, . . . , LN) (see (11)), and it is unique provided that the space B′ is strictly convex;

3) if L0 = L ◦ T−1 − `(α) is a nonzero functional and ∂ ‖L0‖B′ 6= ∅, then
{RT−1F0 : F0 ∈ G∂‖L0‖B′} is a set of all extremal elements .

1Sometimes, such space is termed as strictly normed.
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J Let us fix a ∈ KN . Consider the difference

∆a(f) = L(f)−
N∑
k=1

akLk(f), f ∈ V.

Applying the formula f = RT−1F , where F = T (f/R) ∈ B, and using the definition of the
norm of a continuous linear functional, we derive

E(a;L,U) = sup
f∈U
|∆a(f)| = R sup

‖F‖B61

∣∣∆a ◦ T−1(F )
∣∣ = R

∥∥∆a ◦ T−1
∥∥
B′ ,

taking into account that f ∈ U if and only if ‖T (f/R)‖B 6 1.
Whence,

Ω(L,U) = R inf
a∈KN

‖L ◦ T−1 − `(a;L1 ◦ T−1, . . . , LN ◦ T−1)‖B′

= R ‖L ◦ T−1 − `(α;L1 ◦ T−1, . . . , LN ◦ T−1)‖B′ , (14)

since the lower bound is reached when α ∈ KN due to Lemma 4. Moreover, this lemma leads
to a conclusion that an optimal linear algorithm A0 is unique if B′ is a strictly convex space.

One obtains from (14) that an optimal error Ω(L,U) equals to 0 if and only if L0 = L◦T−1−
`(α) is a zero functional. Then, L = α1L1 + . . .+αNLN is the element of V ′ sought for. In this
case, the coefficients α1, . . . , αN are defined uniquely by the functional L since L1, . . . , LN is a
system of linearly independent elements V ′.

Thus, the statements 1) and 2) of the theorem are true. It remains only to consider the case,
when L0 is a nonzero functional. If ∂‖L0‖B′ 6= ∅, then definition of a subdifferential of a norm
provides Ω(L,U) = R ‖L0‖B′ = |L0(RF )| for all F ∈ G∂‖L0‖B′ . Let us use the symbol E to
designate the set of all elements f ∈ U such that f = RT−1F for an element F ∈ G∂‖L0‖B′ .
Then, Ω(L,U) = |L(f)−A0 ◦ I(f)|, f ∈ E , i.e. E is the set of all extremal elements belonging
to U . Therefore, the statement 3) of the theorem is proved I

2◦. An example of realization of the optimal recovery scheme. Theorem 4 plays
the role of the scheme to be followed for finding characteristics of the optimal recovery of
linear functionals. In this case, one comes across difficulties both in calculating coefficients
of the Chebyshev polynomial with the least deviation from the desired linear functional and
in describing the general form of such functionals, as well as in determining the structure of
subdifferential of the considered norm. As it is demonstrated in the following example, these
difficulties can be overcome to a great extent for a wide class of spaces of entire functions
containing, in particular, the Wiener class W p

σ , where 1 < p < 2.
Let B = Bq = Lq[−σ, σ], where 1 < q <∞ and σ > 0. Let us identify Bq with a subspace of

the space Lq(R), consisting of all functions with the support in [−σ, σ]. Let us designate a vector
space of distributions of slow growth on R by V = Vq. Fourier transform of each distribution
belongs to Vq. This vector space is equivalent to the space of all entire functions {f} of the
exponential type 6 σ such that

f(z) =
1√
2π

σ∫
−σ

eitzF (t)dt, z ∈ C, (15)

where F is an arbitrarily fixed element Lq[−σ, σ]. Note that here

F (t) = f̂(t) :=
1√
2π

∫
R
e−itxf(x)dx, t ∈ [−σ, σ] (16)

is a Fourier transform of the function f |R. Therefore, the Fourier transform T = F of the
trace f |R of every function f ∈ Vq on R defines an algebraic isomorphism Vq onto Bq. Let us
introduce a topology in the space Vq by means of the norm ‖f‖V := ‖f̃‖B, where f̂ is a Fourier
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transform of the function f |R. Then, Vq becomes a Banach space. According to the Hausdorff-
Young theorem, the space Vq contains W p

σ provided that 1/p + 1/q = 1, 1 < p < 2. The
topology in W p

σ , induced by the norm of the space Vq, is weaker than the topology induced by
the injectionW p

σ into Lp(R). On the contrary, the Hausdorff-Young theorem providesW p
σ ⊃ Vq,

if 2 < p <∞.
Let us turn to the problem of the best analytic continuation (or optimal extrapolation) of

functions f ∈ U , where U = {f ∈ Vq : ‖f‖ 6 R}, from a finite set S = {z1, . . . , zN} ⊂ C into
the point z0 ∈ C \ S. In the given case, linear functionals are delta-like

Lk(f) = f(zk), f ∈ U, k = 0, 1, ..., N. (17)

Invoking that the spaces {Lq(R), 1 < q <∞} are strictly convex (see [15]), applying Theorem
4, in whose notation L = L0, and using the plan for proving Theorem 5 from [3], we verify that
all its statements are true for the space under consideration Vq with any q ∈ (1,∞) as well.
Namely, the following theorem holds.
Theorem 5. Let q ∈ (1,∞). Assume that in the notation mentioned above

PN(t;α) =
N∑
k=1

αke
izkt, t ∈ [−σ, σ] (18)

is an element of the linear envelope of the set {eizjt, j = 1, ..., N}, with the least deviation from
eiz0t in the metric Lp(−σ, σ) provided that 1/p+ 1/q = 1. Then,

1) an optimal error of extrapolation of any function f ∈ U into the point z0 equals to (see
(13), (17), (18))

ΩN(z0) := Ω(L0, U) =
R√
2π
||eiz0t − PN(t;α)||p,

where ‖ · ‖p is a standard norm in Lp(−σ, σ);
2) there exists a unique optimal linear algorithm of analytic continuation of the set S into

the point z0, determined by the equality

ω(f) := [`(α)](f) =
n∑
j=1

αjf(zj), f ∈ U (19)

in notation of the formulae (12), (17);
3) any extremal function {f0} ⊂ U , i. e. a function satisfying the condition ΩN(z0) =

|f0(z0) − w(f0)| (see (19), (15), (16)), has the following property: its Fourier transform f̂0 ∈
Lq(−σ, σ) has the form

f̂0(t) =
Reiθ|h(t)|p−1

exp{i arg h(t)}||h||p−1
p

, t ∈ [−σ, σ], θ ∈ R, h(t) =
eiz0t − PN(t;α)√

2π
.

3◦. Modification of Theorem 4 for the Wiener class W p
σ , 1 < p < ∞. Let us

apply the scheme represented in Theorem 4 to the problem of optimal extrapolation from a
finite set in the Wiener class W p

σ , 1 < p < ∞. It appears that it is much easier (see [3]) to
solve the problem if we introduce a topology in the space by means of a norm f 7→ ‖c(f)‖lp(Z),
equivalent to the standard norm in W p

σ (see the proof of Theorem 2). Meanwhile, it is possible
to obtain the desired result not only for a one-dimensional case with any p ∈ (1,∞), but also
to find its complete analogue in a multidimensional case (see (9), [4]). Taking into account
considerations in § 2, 2◦, 5◦, for the sake of simplicity, we limit our consideration to the space
W p
σ in a one-dimensional case and when σ = π.
Let us consider a finite set S = {z1, . . . , zN} of pairwise different points in C and a point

z0 ∈ C \S. Using the terminology of 7◦, consider the problem of the best analytic continuation
of the function f ∈ W p

π from the set S into the point z0. Such problem is equivalent to the
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question of optimal recovery of the functional L0(f) = f(z0), f ∈ W p
π , based on information

about functionals {Lk(f) = f(zk), f ∈ W p
π ; k = 1, ..., N} (cp. (17)).

In order to proceed, we need the following statement known from the functional analysis (see,
e.g., [16]).
Lemma 5. Let 1 < p < ∞. A linear continuous functional L on the space lp(Z) has the

form
L(c) =

∑
n∈Z

cnδn, c ∈ lp(Z),

where δ = {δn, n ∈ Z} ∈ lq(Z) и 1/p+ 1/q = 1. Moreover, the inequality

|L(c)| 6 ‖δ‖lq(Z) · ‖c‖lp(Z) ∀ c ∈ lp(Z),

holds and equality is possible if and only if

cn = λe−ı arg δn
( |δn|
‖δ‖lq(Z)

)q−1

∀ n ∈ Z, λ ∈ C, |λ| = 1.

Note that the lemma allows one to find subdifferentials of the norm ‖ · ‖lq(Z) at the point δ.
The following result generalizes Theorem 5.
Theorem 6. Let 1 < p <∞. We assume that

sn(z) = (−1)n
sin πz

π(z − n)
, n ∈ Z; s(zk) = {sn(zk), n ∈ Z}, k = 0, 1, ..., N ; (20)

`(α) = {`n(α), n ∈ Z} =
N∑
k=1

αk s(zk)

is a sequence with the least deviation from the sequence s(z0) in the metric lq(Z), where 1/p+
1/q = 1 (see Lemma 3 and the remark to it). In notation of Theorem 5, the following statements
hold for U = {f ∈ W p

π : ‖c(f)‖lp(Z) 6 R} when R > 0 :
1) an unavoidable error ΩN(z0) of optimal extrapolation of any functionf ∈ U from a finite

set S = {z1, . . . , zN} into the point z0 equals to

ΩN(z0) = R ‖s(z0)− `(α)‖lq(Z);

2) there exists the only optimal linear algorithm of analytic continuation of the function f ∈ U

from the set S into the point z0, determined by the relations ω(f) =
N∑
k=1

αk f(zk);

3) any extremal function f0 ∈ U has the following property: its values in integral lattice points
are determined by the formula

f0(n) = λe−ı arg δn
( |δn|
‖δ‖lq(Z)

)q−1

, n ∈ Z, δn = sn(z0)− `n(α), λ ∈ C, |λ| = R.

J Consider a linear operator (see (6)) T : W p
π → lp(Z), T f = c(f). Due to Theorems

1, 2, it defines a topological isomorphism. Therefore, the choice of the norm f 7→ ‖c(f)‖lp(Z)

in the space W p
π indicates the transition from the standard topology in W p

π to the equivalent
one. Representation (5) for any function f ∈ U allows to describe the general form of linear
functionals under consideration:

Lk(f) = f(zk) =
∑
n∈Z

cnsn(zk), f ∈ U ; k = 0, 1, ..., N.

Indeed, by means of the Hölder inequality, one obtains from (5) the following estimate:

|f(z)| 6
(∑
n∈Z

|sn(z)|q
)1/q

· ‖c(f)‖lp(Z), z ∈ C.
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Whence, together with Lemma 5, one concludes that the mentioned functionals are
continuous. Thus, all conditions of Theorem 4 hold. Invoking that spaces{lq(Z), 1 < q < ∞}
are strictly convex (see [15]), one verifies the statements 1) and 2) of Theorem 6 directly from
Theorem 4. The statement 3) follows from the statement 3) of Theorem 3 and Lemma 5 I

4. Constructive development of optimal
linear algorithm and Chebyshev polynomials

Theorem 6 (as well as Theorem 4) claims only that the optimal linear algorithm exists
when extrapolation from a finite set in W p

π takes place. As one can see from Theorem 1 in
[4], the exception is the case p = 2. The latter provides quite simple algebraic formulae of all
characteristics of the best analytic continuation of functions of the Wiener class W 2

σ . Let us
demonstrate that such formulae are true for a certain class of subsets {U} of a linear space V
over the field K , where K = R or K = C. In particular, there is a constructively definable linear
algorithm

A0 = α1L1 + . . .+ αNLN (21)
among optimal algorithms. Here, {L1, . . . , LN} is a linearly independent system of linear
functionals on V .
1◦. Some algebraic properties of linear functionals {L1, . . . , LN}. Assume that

Z := kerL1 ∩ . . . ∩ kerLN . (22)

It is a linear space of codimension N in V with a cofactor S such that V = S ⊕ Z (see, e.g.,
[18], pp. 16–17).

The following elementary fact of linear algebra will be of use.
Lemma 6. Let {f1, . . . , fN} be a basis in S. The Gramian matrix

G =

 L1(f1) . . . LN(f1)
. . .

L1(fN) . . . LN(fN)


is invertible, i.e. the determinant of the matrix G is other than 0.

The following formulae give us a possibility to make the expansion V = C⊕Z explicit. They
are known for the case of Hilbert space [19, p.228].
Lemma 7. Let {f1, . . . , fN} be a basis in S. Then, in notation of Lemma 6, any element

f ∈ V admits the only representation in the form

f =
−1

detG
det


0 L1(f) . . . LN(f)
f1

. . . G
fN

+ πZ(f), (23)

where πZ(f) ∈ Z, and the following equality holds:

πZ(f) =
1

detG
det


f L1(f) . . . LN(f)
f1

. . . G
fN

 ∀ f ∈ V. (24)

J Indeed, there is a unique set of constants c1, . . . , cN ∈ K and an element πZ(f) ∈ Z such
that f = c1f1 + . . . + cNfN + πZ(f). Applying the functionals L1, . . . , LN to this equality, we
obtain a linear system of equations defining unknown coefficients c1, . . . , cN . In particular,

Lj(f) = c1Lj(f1) + . . .+ cNLj(fN), j = 1, ..., N.

Solving the system by the Cramer rule and using the expansion theorem for determinants, one
obtains (23). Whence, one readily obtains (24) I
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2◦. Development of optimal linear algorithms. By analogy to the works [12]-[13], [4],
consider another approach to the problem of optimal recovery of a linear functional L on a
subset U ⊂ V according to information on L1, . . . , LN . Let us designate a set of all algorithms
A : KN → K recovering L on U via L1, . . . , LN by the symbol A. Error E(A;L,U) of the
algorithm A is a supremum of the functional |L(f)− A ◦ I(f)| for all f ∈ U , where

I(f) = (L1(f), . . . , LN(f)).

The value
Ω(L,U) = inf{E(A;L,U), A ∈ A}

is an optimal recovery error for the functional L. As it is known [13], this measure coincides
with a similar characteristics of optimal recovery. The latter has been considered, in particular,
in §3, 1◦ for the case when U is a convex and circular set, i.e. it has the following property:
the element λf ∈ U for all λ ∈ K, |λ| = 1 for any f ∈ U. These quantities do not require a
topology to be introduced in the space V . Such operation is necessary in application of methods
of functional analysis.

The dual problem for the above mentioned problem of recovery of a fixed linear functional
L on U is the problem of calculating the value (see (22)) of sup{|L(f)|, f ∈ U ∩ Z} provided
that L is limited on U . Let us investigate this problem for a set of circular sets invariant with
respect to the mapping πZ : V → Z (see (22)-(24)).1 There is a constructively definable
algorithm (Chebyshev polynomial) of the form (21) among optimal algorithms. A similar
problem was considered in [12] with additional assumption about existence of an extremal
element. Investigations on existence of such algorithms can be found in the monograph [13].
Theorem 7. Let us assume that U is a circular set invariant with respect to the mapping

πZ, and G is the Gramian matrix (Lj(fi)) i=1,...,N
j=1,...,N

, considered in Lemma 6. Then, the following
statements hold:

1) an optimal recovery error Ω(L,U) for a linear functional L by means of linear functionals
L1, . . . , LN is determined by the formula

Ω(L,U) = sup
f∈U∩Z

|L(f)| = sup
f∈U
|L(πZ(f))|;

2) a linear algorithm A0 = `(α;L1, . . . , LN) (see (21)) given by the equality

A0 ◦ I(f) =
−1

detG
det


0 L1(f) . . . LN(f)

L(f1)
. . . G

L(fN)

 , (25)

is optimal and the inequality

|L(f)− A0 ◦ I(f)| 6 Ω(L,U) ∀ f ∈ U
holds.

J 1. First, let us prove that
M := sup

f∈U∩Z
|L(f)| = inf

c∈K
sup

f∈U∩Z
|L(f)− c|. (26)

Designate the right-hand side of the equality by B. Obviously, B 6 M . In order to prove the
inverse inequality, fix f ∈ U ∩ Z such that L(f) 6= 0 and the number c ∈ K is other than zero.
Since L1, . . . , LN are linear functionals, then the set U ∩ Z is also circular. Hence, the element

fc = −f exp ı(arg c− argL(f))

belongs to U ∩ Z. Upon elementary transformations, one obtains
|L(f)− c| 6 |L(f)|+ |c| = |L(fc)− c|.

1I. e. πZ(f) ∈ U for all f ∈ U .
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Whence,
sup{|L(f)− c|, f ∈ U ∩ Z} = sup{|L(f)|+ |c|, f ∈ U ∩ Z}.

Therefore, M 6 B, i.e. the formula (26) holds.
2. If A : KN → K is an algorithm recovering L on U according to information on L1, . . . , LN ,

then

|L(f)− A ◦ I(f)| = |L(f)− A(L1(f), . . . , LN(f))| = |L(f)− A(0, . . . , 0)|
for all f ∈ U ∩ Z. Whence, and from (26), one obtains

Ω(L,U) > inf
A∈A

sup
f∈U∩Z

|L(f)− A(0, . . . , 0)| = inf
c∈K

sup
f∈U∩Z

|L(f)− c| = sup
f∈U∩Z

|L(f)|,

where Ω(L,U) is an optimal recovery error (see § 3, 1◦). The first equality here is explained by
the fact that among all elements of A there exists an algorithm A such that A(0, . . . , 0) = c for
any given c ∈ K.

3. Let us prove the inverse inequality. Let A0 be the set of all linear algorithms of the form
A = `(a;L1, . . . , LN) (see (21)), where a ∈ KN . Let us estimate the deviation of the functional
L from an arbitrarily fixed linear algorithm A ∈ A0. Representing any element f ∈ U in the
form (see (22), (24))

f = c1f1 + . . .+ cNfN + πZ(f),

one obtains ∣∣∣L(f)−
N∑
k=1

akLk(f)
∣∣∣ =

∣∣∣ N∑
j=1

cj

(
L(fj)−

N∑
k=1

akLk(fj)
)

+ L(πZ(f))
∣∣∣,

since Lk(πZ(f)) = 0 for any k = 1, . . . , N . Whence,∣∣∣L(f)−
N∑
k=1

akLk(f)
∣∣∣ 6 ∣∣∣ N∑

j=1

cj

(
L(fj)−

N∑
k=1

akLk(fj)
)∣∣∣+ |L(πZ(f))|, f ∈ U. (27)

In order to find the optimal linear algorithm, select a1, . . . , aN so that the effect of the element
f − πZ(f) ∈ S on the estimate of the "residual"functional in (27) is eliminated. Namely, define
α = (α1, . . . , αN) ∈ KN from the system of equations

L(fj)−
N∑
k=1

αkLk(fj) = 0, j = 1, 2, ..., N. (28)

According to Lemma 6, the system has the only solution α ∈ KN . This element corresponds to
a linear algorithm (see (21)) A0 = `(α;L1, . . . , LN). Formulae (27) and (28) provide

Ω(L,U) 6 inf
A∈A0

sup
f∈U
|L(f)− A ◦ I(f)| 6 E(A0;L,U)

= sup
f∈U
|L(f)− A0 ◦ I(f)| 6 sup

f∈U
|L(πZ(f))| 6 sup

f∈U∩Z
|L(f)|, (29)

since πZ(f) ∈ U ∩ Z for all f ∈ U . The inverse inequality is proved in paragraph 2 therefore,
the statement 1) of Theorem 7 holds.

4. Due to inequality in paragraph 2, we conclude that

Ω(L,U) = E(A0;L,U), (30)

i.e. the algorithm A0 = `(α;L1, . . . , LN) (see (21)) is optimal. Its representation (see (25)) is
written upon obtaining the vector α ∈ KN from (28) by the Cramer rule. Finally, the desired
inequality follows from (30) I
Remarks. 1. Formula (25) of optimal linear algorithm is independent of the set U with the

described properties.
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2. If V is a Hilbert space and V = S ⊕ Z is an orthogonal expansion then, according to the
Pythagorean theorem, any closed ball with the center in a null element Θ ∈ V is invariant with
respect to the mapping πZ . This property can be untrue if V is the Banach space. However, the
linear space V can be given a topology by means of an equivalent norm where any closed ball
with the centre in Θ is πZ -invariant. To this end, the norm of any element f = s+z ∈ V = S⊕Z
can be defined as ||f ||V = ‖s‖V +‖z‖V . This norm is equivalent to the original one according to
the open mapping theorem by Banach. Therefore, the requirement that the set U is invariant
with respect to the mapping πZ in Theorem 7 is not too limiting in the given case.
Example. Let V = W p

π , 1 < p <∞. Assume that Lk(f) = f(zk), f ∈ W p
π , k = 0, 1, ..., N

in notation of Theorem 6. Let Z := kerL1∩ . . .∩kerLN , S be its cofactor such that V = S⊕Z.
The set

fk(t) =
sin π(zk − t)
π(zk − t)

=
1

2π

∫ π

−π
eiτ(zk−t)dτ, t ∈ C; k = 1, ..., N (31)

is a linearly independent system of elements in W p
π with any p ∈ (1,∞), since the final system

of exponents with different coefficients is also a linearly independent system of elements. Direct
verification demonstrates that Lk(fk) 6= 0, k = 1, ..., N , therefore F = {fk, k = 1, ..., N} ⊂ S.
Whence, invoking that S is a linear subspace of the dimension N in V , we conclude that the
system F is a basis in S. Formula (25) allows one to find an optimal linear algorithm for the
set U , satisfying the conditions of Theorem 7.
3◦. Construction of Chebyshev polynomials. One can develop the Cherbyshev

polynomials constructively (in terms of §3, 1◦) for a certain class of cases if the optimal linear
algorithm and the Chebyshev polynomial connected with each other are unique. Theorem 7
provides the following addition to Theorem 4.
Theorem 8. Let us use the notation of Theorems 4 and 7. Let T : V → B be an algebraic

isomorphism of a vector space V into a normed space B. Both V, and B are considered over
one and the same filed K, where K = R or C. Moreover, assume that S is a cofactor of
the set Z (see (22)) in the expansion V = S ⊕ Z; {f1, . . . , fN} is a basis in S, and the ball
U = {f ∈ V : ‖f‖V 6 R} is a set, invariant with respect to the mapping πZ (see (23), (24)). If
the conjugate space B′ is strictly convex, then there exists only one optimal linear algorithm A0

of the form (21), definable by the formula (25), and A0 ◦T−1 is the only Chebyshev polynomial.
Theorem 8 provides a criterion for finding constructive formulae of the optimal linear

algorithm and the Chebyshev polynomial, specifically, for the spaces Vq, W p
π , 1 < p < ∞

(see Theorems 5, 6). In the first case, the basis is, e.g., the system of functions (31), and in the
second case it is the system of bilateral interpolating sequences c(fk), k = 1, ..., N of the same
functions (see (6)).

The authors are sincerely grateful to P. Kusik, who supported one of the aims of the article,
namely, to find the complete analogue of the Paley-Wiener theorem for the space W p

σ , p 6= 2.
Our sincere thanks are also due to V.P. Havin and V.L. Levin for their constructive remarks
on some results.
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