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ON SOLVABILITY OF A CLASS OF HIGHER-ORDER
NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS WITH A

NONCOMPACT INTEGRAL OPERATOR OF THE
HAMMERSTEIN TYPE

KH.A. KHACHATRYAN

Abstract. In the present paper we investigate the question of solvability of one class of
Hammerstein type Nth order nonlinear integro-differential equations with a noncompact
integral operator on the semi-axis in the Sobolev space WN

∞(0, +∞). The existence of a
positive solution in WN

∞(0, +∞) is proved, and the limit of this solution at infinity is found.
The obtained results are generalized for nonlinear equations with sum-difference kernels.
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1. Problem statement and introduction

The following class of nonlinear integro-differential equations in considered in the present
paper with respect to the unknown real function f(x) :

dNf

dxN
+

N∑
j=1

aj
dN−jf

dxN−j
+ λ(x)

∞∫
0

K(x− t)G(f(t))dt = 0, x ∈ R+, N ≥ 2. (1)

Here aj(j = 1, 2, 3, . . . , N) are real coefficients, and

aN < 0, (2)

and the corresponding polynomial P (x) ≡ xN +
N∑
j=1

ajx
N−j has only real rots.

In (1), λ(x) and K(x) are measurable functions on sets (0,+∞) and (−∞,+∞), respectively
and

a) λ(x) ↑ over x in (0,+∞), 0 6 λ(x) 6 1, x ∈ (0,+∞),
1− λ ∈ L1(0,+∞), λ ∈ WN

∞(0,+∞)
(3)

b) K(x) ≥ 0, x ∈ (−∞,+∞), aN +

+∞∫
−∞

K(τ)dτ = 0,

K ∈ C(R),

+∞∫
−∞

|τ |K(τ)dτ < +∞.

(4)

The function G(x) is measurable and is defined on (−∞,+∞). At the same time it is assumed
that there is a number η > 0, such that

c) G ∈ C[0, η], G ↑ over x in the interval [0, η],
G(x) ≥ x, x ∈ [0, η], G(η) = η.

(5)
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The unknown solution to Equation (1) satisfies the following boundary-value conditions:

f(0) = 0, f ∈ WN
∞(0,+∞) = {ϕ(x) : ϕ(k) ∈ L∞(0,+∞), k = 0, 1, . . . , N}, (6)

where ϕ(k) denotes the k-th derivative of the function ϕ(x).
First results in the study of nonlinear integral equations with compact Urysohn and

Hammerstein operators were obtained in works of M.A. Krasnoselskii and his disciples ([1-
5]). The works provide various necessary and sufficient conditions ensuring complete continuity
of the Urysohn and Hammerstein operators. In [6-8], existence theorems for solution with
assumption of complete continuity of the corresponding nonlinear integral operator were proved.

Equation (1) was investigated in the particular case when G(x) ≡ x, λ(x) ≡ 1, N = 2
earlier in [9]. Recently, I proved structural theorems of existence for the case when N = 2,
λ(x) ≡ 1, and G(x) satisfies the conditions (5) (see [10,12]).

In the present paper, methods of the classical theory of functions of a complex variable, and
some results from the theory of linear integral equations of convolution type make it possible
to prove existence of a nontrivial solution to the problem (1),(6) and to describe its structure.
Moreover, the limit of the constructed solution at infinity is calculated. The results obtained
are generalized for the following class of nonlinear integro-differential equations:

dNf

dxN
+

N∑
j=1

aj
dN−jf

dxN−j
+ λ(x)

∞∫
0

K(x− t)G(f(t))dt+

∞∫
0

◦
K(x+ t)G0(f(t))dt = 0, N ≥ 2, (7)

where

0 6
◦
K ∈ L1(0,+∞) and

∞∫
x

◦
K(τ)dτ 6

∞∫
x

K(τ)dτ, x ∈ R+, (8)

and G0 is a measurable function defined in (−∞,+∞) and

G0 ∈ C[0, η], G0(x) ≥ 0, x ∈ [0, η], G0 ↑ over x in [0, η]
G0(η) = η.

(8′)

2. Factorization problem. Reduction to the basic nonlinear integral
equation

Let us introduce the class of nonlinear integral operators KG ∈ Ω, if there exists a measurable
function K∗(x, t), ((x, t) ∈ R+ × R+), such that

(KGf)(x) =

∞∫
0

K∗(x, t)G(f(t))dt, f ∈ L∞(R+),

G : L∞(R+)→ L∞(R+),

(9)

and the kernel K∗(x, t) ≥ 0 satisfies the following estimates. There are functions
0 6 K ∈ L1(R), 0 6 λ(x) 6 1, such that

K∗(x, t) ≥ λ(x)K(x− t), (x, t) ∈ R+ × R+. (9′)

sup
x>0

∞∫
0

K∗(x, t)dt < +∞. (9′′)

The conditions (9), (9′′) provide KG : L∞(R+) → L∞(R+). Let α1, α2, . . . , αn (n ∈ N) be
positive roots of the polynomial P (x). The condition (2), in view of the Vieta theorem, entails
that n is an odd number. Denote by −β1,−β2, . . . ,−βm negative roots P (x) (m+ n = N).

Let us introduce the differential operators

P (D) = DN + a1D
N−1 + a2D

N−2 + . . .+ aN−1D + aNI,
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acting from the space WN
∞(0,+∞) in L∞(0,+∞), where D is a differential operator, and I is

a unit operator.
It follows from the above that

P (D) = (D − α1I)(D − α2I) . . . (D − αnI)(D + β1I)(D + β2I) . . . (D + βmI). (10)

Denote by Jαj
(j = 1, 2, . . . , n) the operators inverse to the operators (αjI − D) in the

space W 1
∞(0,+∞).

Then, one can readily verify that

(Jαj
f)(x) =

∞∫
x

e−αj(t−x)f(t)dt, f ∈ L∞(R+),

j = 1, 2, . . . , n.

(11)

The following lemma holds.

Lemma 1. If KG ∈ Ω and λ(x) ↑ with respect to x, then Jαj
KG ∈ Ω, j = 1, 2, . . . , n.

Proof. Let f ∈ L∞(R+) be an arbitrary function. Then, one has

(Jαj
KGf)(x) =

∞∫
x

e−αj(t−x)

∞∫
0

K∗(t, τ)G(f(τ))dτdt =

=

∞∫
0

 ∞∫
x

e−αj(t−x)K∗(t, τ)dt

G(f(τ))dt =

∞∫
0

T ∗(x, τ)G(f(τ))dτ,

where T ∗(x, τ) =
∞∫
0

e−αjzK∗(x+ z, τ)dz.

Note also that
∞∫
0

T ∗(x, τ)dτ 6 1
αj

sup
x>0

∞∫
0

K∗(x, τ)dτ < +∞. The estimate (9′) and the

monotonous function λ provide

T ∗(x, τ) ≥
∞∫

0

e−αjzλ(x+ z)K(x+ z − τ)dz ≥ λ(x)

∞∫
0

e−αjzK(x+ z − τ)dz ≡ λ(x)T (x− τ),

while T ∈ L1(R) and
+∞∫
−∞

T (x)dx 6 1
αj

+∞∫
−∞

K(x)dx. The lemma is proved.

Let us write Equation (1) in the operator form

(P (D) +KG)f = 0, (12)

where

(KGf)(x) = λ(x)

∞∫
0

K(x− t)G(f(t))dt,

and the functions λ, K and G satisfy the conditions a), b), c).
Consider the following factorization problem. Given operators P (D) and KG ∈ Ω. Find an

integral operator TG ∈ Ω such that

P (D) +KG =
n∏
j=1

(D − αjI)

(
m∏
j=1

(D + βjI)− TG

)
. (13)

In order to solve the problem, first consider the product of the operators Jα1 and
KG : T1,G ≡ Jα1KG.
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One has

(T1,Gf)(x) =

∞∫
x

e−α1(t−x)λ(t)

∞∫
0

K(t− τ)G(f(τ))dτdt =

=

∞∫
0

G(f(τ))

∞∫
0

e−α1z1K(x+ z1 − τ)λ(z1 + x)dz1dτ =

∞∫
0

T1(x, τ)G(f(τ))dτ, where

(14)

T1(x, τ) ≡
∞∫

0

e−α1z1K(x+ z1 − τ)λ(x+ z1)dz1 ≥

≥ λ(x)

∞∫
0

e−α1z1K(x+ z1 − τ)dz1 ≡ λ(x)T ∗1 (x− τ),

(15)

T ∗1 (x) =

∞∫
0

K(x+ z1)e
−α1z1dz1. (16)

Lemma 1 provides also T2,G ≡ Jα2KG ∈ Ω. Construct its kernel similarly:

(T2,Gf)(x) =

∞∫
x

e−α2(t−x)

∞∫
0

T1(t, τ)G(f(τ))dτdt =

=

∞∫
0

G(f(τ))

∞∫
x

e−α2(t−x)T1(t, τ)dtdτ =

∞∫
0

T2(x, τ)G(f(τ))dτ, where

T2(x, τ) =

∞∫
0

e−α2z2

∞∫
0

e−α1z1K(x+ z1 + z2 − τ)λ(x+ z1 + z2)dz1dz2 ≥ λ(x)T ∗2 (x− τ),

where

T ∗2 (x) =

∞∫
0

e−α2z2

∞∫
0

e−α1z1K(x+ z1 + z2)dz1dz2.

Induction over n readily verifies that Tn,G ≡ JαnTn−1,G =
n∏
j=1

Jαj
KG ∈ Ω and is given by the

following formulae:

(Tn,Gf)(x) =

∞∫
0

Tn(x, τ)G(f(τ))dτ, f ∈M(R+),

Tn(x, τ) =

∞∫
0

e−αnzn

∞∫
0

e−αn−1zn−1

∞∫
0

. . .

. . .

∞∫
0

e−α1z1K(x+ z1 + . . .+ zn − τ)λ(x+ z1 + . . .+ zn)dz1 . . . dzn ≥

≥ λ(x)T ∗n(x− τ),

(17)

where

T ∗n(x) =

∞∫
0

e−αnzn

∞∫
0

e−αn−1zn−1

∞∫
0

. . .

∞∫
0

e−α1z1K(x+ z1 + . . .+ zn)dz1 . . . dzn. (18)
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Therefore, since n is an odd number, then one can take TG ≡ Tn,G as the operator TG. Thus,
the following lemma is formulated.

Lemma 2. Let the functions λ, K and G satisfy the conditions a), b), c) and
G : L∞(R+)→ L∞(R+). Then, the operator P (D) + KG admits factorization (13), where
TG ≡ Tn,G ∈ Ω is given by the formula (17).

In view of the factorization (13), solution to the problem (1),(6) is equivalent to successive
solution of the following connected equations:

n∏
j=1

(D − αjI)ϕ = 0, (19)

(
m∏
j=1

(D + βjI)− TG

)
f = ϕ. (20)

Consider Equation (19):

(D − α1I)(D − α2I) . . . (D − αnI)ϕ = 0. (21)

Since f ∈ WN
∞(0,+∞), then ϕ ∈ W n

∞(0,+∞). Hence, obviously, ϕ(x) ≡ 0. Thus, solution of
the problem (1), (6) is reduced to the following integro-differential equation:

m∏
j=1

(D + βjI)f −
∞∫

0

Tn(x, τ)G(f(τ))dτ = 0, (22)

with the boundary-value conditions

f(0) = 0, f ∈ WN
∞(0,+∞). (23)

Let use the notation

F (x) ≡ (D + βmI)(D + βm−1I) . . . (D + β1I)f(x).

Then, in view of (23), one can readily verify that

F ∈ W n
∞(0,+∞)

and

f(x) =
x∫
0

e−β1(x−τ1)
τ1∫
0

e−β2(τ1−τ2) . . .
τm−1∫

0

e−βm(τm−1−τm)F (τm)dτm . . . dτ1. (24)

Hence, the equation (22) takes the form

F (x) =

∞∫
0

Tn(x, τ)G

( τ∫
0

e−β1(τ−τ1)

τ1∫
0

e−β2(τ1−τ2) . . .

.

τm−1∫
0

e−βm(τm−1−τm)F (τm)dτmdτm−1 . . . dτ1

)
dτ, x ∈ R+.

(25)

The following section is devoted to the questions of solvability of Equation (25). The limit of
the function F (x) at infinity is also calculated there.
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3. Solution of Equation (25)

Consider the following iterations:

F(p+1)(x) =

∞∫
0

Tn(x, τ)G

( τ∫
0

e−β1(τ−τ1)

τ1∫
0

e−β2(τ1−τ2) . . .

.

τm−1∫
0

e−βm(τm−1−τm)F(p)(τm)dτmdτm−1 . . . dτ1

)
dτ,

F(0)(x) =
m∏
j=1

βjη, p = 0, 1, 2, . . . , x ∈ R+.

(26)

First, let us verify by means of induction over p that

F(p)(x) ↓ over p (27)

If p = 1 one has

F(1)(x) =

∞∫
0

Tn(x, τ)G

 τ∫
0

e−β1(τ−τ1)

τ1∫
0

e−β2(τ1−τ2) . . .

τm−1∫
0

e−βm(τm−1−τm)η
m∏
j=1

βjdτmdτm−1 . . . dτ1

 dτ 6

6

∞∫
0

Tn(x, τ)G

m−1∏
j=1

βj

τ∫
0

e−β1(τ−τ1)

τ1∫
0

e−β2(τ1−τ2) . . .

τm−2∫
0

e−βm−1(τm−2−τm−1)ηdτm−1dτm−2 . . . dτ1

 dτ 6

6

∞∫
0

Tn(x, τ)G(η)dτ = η

∞∫
0

Tn(x, τ)dτ 6 η

+∞∫
−∞

T ∗n(z)dz = − aNη
n∏
j=1

αj

≡ æ (28)

The Vieta theorem immediately provides that

(−1)N−mα1α2 . . . αnβ1β2 . . . βm = aN < 0,

or
n∏
j=1

αj

m∏
j=1

βj = −aN ,

hence,

æ ≡ η
m∏
j=1

βj ≡ F(0)(x), i.e. F(1)(x) 6 F(0)(x).

Further, assuming that
F(p)(x) 6 F(p−1)(x)

and using properties of the function G, one obtains

F(p+1)(x) 6 F(p)(x).

Thus, (27) is proved.
Consider the following linear integral equation together with Equation (25):

S(x) = λ(x)

∞∫
0

T ∗n(x− τ)

τ∫
0

e−β1(τ−τ1)

τ1∫
0

e−β2(τ1−τ2) . . .

. . .

τm−1∫
0

e−βm(τm−1−τm)S(τm)dτmdτm−1 . . . dτ1dτ, x ∈ R+.

(29)
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This equation is readily reduced to the following integral equation:

S(x) = λ(x)

∞∫
0

Wm(x− τm)S(τm)dτm, x ∈ R+, (30)

where

0 6 Wm ∈ L1(R),

+∞∫
−∞

Wm(τ)dτ =
1

m∏
j=1

βj

+∞∫
−∞

T ∗n(z)dz = 1 (31)

(see the chain of inequalities (28)).
The form of the kernels Wj(x), (j = 1, 2, . . . ,m) is provided by the following recurrent

relations with the use of Fubini’s theorem:

Wj(x) =

∞∫
0

Wj−1(x− zj)e−βjzjdzj, j = 2, 3, . . . ,m,

W1(x) =

∞∫
0

T ∗n(x− z1)e
−β1z1dz1.

(32)

Suppose that

ν(Wm) ≡
+∞∫
−∞

τWm(τ)dτ < 0. (33)

Absolute convergence of the latter integral is provided by (4) and by Fubini’s theorem.
It follows from results of the works [11, 12] that if conditions (31) and (33) are satisfied,

Equation (30) has a monotone increasing nontrivial bounded solution 0 6 S(x). Let us introduce
the notation

S∗(x) =

m∏
j=1

βjηS(x)

c
, c = sup

x>0
S(x). (34)

Let us prove by induction that the sequence {F(p)(x)}∞0 satisfies the following estimate :

F(p)(x) ≥ S∗(x), p = 0, 1, 2, . . . (35)

In the case p = 0, it is obvious, since

F(0)(x) = η

m∏
j=1

βj = sup
x>0

S∗(x) ≥ S∗(x) ≥ 0. (36)

Suppose that
F(p−1)(x) ≥ S∗(x).

In view of (29), (30), (34), (5), (17), the relations (26) provides:

F(p)(x) ≥
∞∫

0

Tn(x, τ)G

( τ∫
0

e−β1(τ−τ1)

τ1∫
0

e−β2(τ1−τ2) . . .

. . .

τm−1∫
0

e−βm(τm−1−τm)S∗(τm)dτmdτm−1 . . . dτ1

)
dτ ≥

≥ λ(x)

∞∫
0

T ∗n(x− τ)

τ∫
0

e−β1(τ−τ1)

τ1∫
0

e−β2(τ1−τ2) . . .

τm−1∫
0

e−βm(τm−1−τm)S∗(τm)dτmdτm−1 . . . dτ1dτ =
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= λ(x)

∞∫
0

Wm(x− τm)S∗(τm)dτm = S∗(x).

Thus, (27) and (35) provide that the sequence of functions {F(p)(x)}∞0 has a pointwise limit:

lim
p→∞

F(p)(x) ≡ F (x),

which satisfies Equation (25) due to B.Levy’s theorem (see[13]). Now, prove that F ∈
W n
∞(0,+∞). Indeed, since hj(x, τ) = ∂jTn(x,τ)

∂xj , (j = 1, 2, . . . , n) is continuous in (0,+∞) ×
(0,+∞) and the summand function with every fixed τ ∈ (0,+∞), and integrals

∞∫
0

hj(x, τ)G

( τ∫
0

e−β1(τ−τ1)

τ1∫
0

e−β2(τ1−τ2) . . .

. . .

τm−1∫
0

e−βm(τm−1−τm)F (τm)dτmdτm−1 . . . dτ1

)
dτ, j = 1, 2, . . . , n

converge uniformly, and F ∈ M(R+) then, (25) provides that
djF

dxj
∈ M(0,+∞),

j = 0, 1, 2, . . . , n, i.e.F ∈ W n
∞(0,+∞) in view of the theorem on differentiation under the

integral (see [14]).

On the other hand, since S∗(x) ↑ η
m∏
j=1

βj (see (34) and the work [12]), then it follows

immediately from the following inequality S∗(x) 6 F (x) 6 η
m∏
j=1

βj that ∃ lim
x→∞

F (x) = η
m∏
j=1

βj.

In view of the known convolution operations (see [15]), (24) provides existence of the limit

lim
x→∞

f(x) = η.

Since F ∈ W n
∞(0,+∞), then (24) yields f ∈ WN

∞(0,+∞).
Thus, the following theorem is proved.

Theorem 1. Let us assume that the polynomial P (x) has only real roots and aN < 0.
Then, provided that the conditions (3)-(5) and ν(Wm) < 0 hold, the problem (1), (6) has a
nonvanishing, nonnegative solution with the limit η at infinity.

Reasoning by analogy, one can verify the following theorem.

Theorem 2. Let us assume that all conditions of Theorem 1 hold. Then, if functions K0 and
G0 satisfy the conditions (8) and (8′), the problem (7), (6) has a nonvanishing, nonnegative
solution with the limit lim

x→∞
f(x) = η.

4. Examples of functions G and G0

In what follows, several examples of the function G are given.
a) G(x) = xα, η = 1, 0 < α < 1, x ∈ R+,
b) G(x) = x+ sinx, η = π, x ∈ R+,

c) G(x) =
√
xex−1, η = 1, x ∈ R+.

d) G(x) = x+ sin2x, x ∈ R+, η = πk, k = 1, 2, 3, . . . .

Prove that G(x) =
√
xex−1 satisfies all the requirements of Theorem 1. Indeed,

G(0) = 0, G(1) = 1, G(x) ↑ over x, since

G′(x) =
1

2
√
xex−1

(ex−1 + xex−1) > 0, x > 0.
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On the other hand,
ex−1 ≥ x, x ∈ R+.

Hence,
G(x) ≥ x.

Since conditions imposed on the function G0 are weaker than conditions on G, then one can
take the function G as G0. However, consider several examples G0 as well:
d) G0(x) = xα, α 6= 1, α > 0, η = 1,

e) G0 = η sinx, η =
π

2
,

f) G0(x) = η ln(x+ 1), η = e− 1.

Remark . In the linear case when G(x) ≡ x, one can choose any positive number as G0, and
due to Theorem 1 in this case (due to linearity) one obtains a one-parameter family of positive
solutions fη(x), (η ∈ (0,+∞)) with the limit η from the Sobolev space WN

∞(0,+∞), (N ≥ 2). If
η is not uniquely defined from the condition imposed on the function G (e.g. if G(x) = x+sin2 x,
then η = πk, k = 1, 2, 3, . . .) then, in this nonlinear case we also obtain a one-parameter family
of nonnegative, nonzero solutions and the limit of every function fk(x) from this family equals
to the number πk (k = 1, 2, 3, . . .) correspondingly when x→ +∞.

At the end of the work I would like to express my gratitude to the referee for useful remarks,
and to professor N.B. Engibaryan for discussions.
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