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ON THE GROWTH OF THE MAXIMUM MODULUS OF AN
ENTIRE FUNCTION

DEPENDING ON THE GROWTH OF ITS CENTRAL INDEX

P.V. FILEVYCH

Abstract. Let h be a positive function continuous on (0,+∞), f(z) =
∑∞

n=0 anz
n be

an entire function, and Mf (r) = max{|f(z)| : |z| = r}, µf (r) = max{|an|rn : n ≥ 0}, and
νf (r) = max{n ≥ 0 : |an|rn = µf (r)} be the maximum modulus, the maximal term, and the
central index of the function f, respectively. We establish necessary and sufficient conditions
for the growth of νf (r) under which Mf (r) = O(µf (r)h(lnµf (r))), r → +∞.

Keywords: entire function, maximum modulus, maximal term, central index, order, lower
order.

1. Introduction

Let us assume that I is a class of functions that are continuous on the right, nondecreasing,
unbounded from above in (0,+∞), and L is a subclass of functions from I, that are continuous
in (0,+∞), and C+ is a class of continuous functions positive in (0,+∞).

Denote by A a class of transcendent entire functions

f(z) =
∞∑
n=0

anz
n. (1)

Determine the maximum of the modulus Mf (r) = max{|f(z)| : |z| = r}, maximum term
µf (r) = max{|an|rn : n ≥ 0}, and the central index of the function f νf (r) = max{n ≥ 0 :
|an|rn = µf (r)} for the entire function (1) and any r > 0. Let

ρf := lim
r→+∞

ln lnMf (r)

ln r
, λf := lim

r→+∞

ln lnMf (r)

ln r

be the order and the lower order of the function f, respectively. As it is known (see, e.g., [1],
chapter IV), one has µf (r) ≤ Mf (r), νf ∈ I, νf (r) = r(lnµf (r))

′
+ for any function f ∈ A, and

in the definition of both orders lnMf (r) can be substituted by lnµf (r) or νf (r). Suppose that
A(α) = {f ∈ A : νf (r) ∼ α(r), r → +∞}, if α ∈ I.

According to the classical Borel theorem, the following relation holds for any f ∈ A such
that ρf < +∞ :

lnMf (r) ∼ lnµf (r), r → +∞. (2)
Using the Cauchy-Hadamard formula

ρf = lim
n→∞

n lnn

− ln |an|
for calculating the order of the entire function f via coefficients of its expansion into power
series, one can reformulate the Borel theorem as follows. If ψ ∈ L, and

lnx = O(ψ(x)), x→ +∞, (3)
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then the relation (2) holds for any function f ∈ A of the form (1) such that

|an| ≤ exp{−nψ(n)}, n ≥ n0(f). (4)

It follows from results of the work [2] by M.N. Sheremeta, that the condition (3) in the latter
statement is also a necessary one: if ψ ∈ L and (3) are not satisfied, then there is an entire
function f ∈ A of the form (1), satisfying (4), for which the relation (2) does not hold. Thus,
there are entire functions of an infinite order with coefficients tending to zero as rapidly as
desired (i. e. functions, growing as slowly as desired) for which (2) does not hold.

Nevertheless, the class of entire functions for which (2) holds, is much broader than the class
of entire functions of a finite order. J. Clunie [3] proved that for any function l(r), convex with
respect to ln r on (0,+∞) such that ln r = o(l(r)), r → +∞, there exists an entire function
f ∈ A, for which lnMf (r) ∼ lnµf (r) ∼ l(r), r → +∞. Hence, there are entire functions f with
an arbitrary prescribed growth for lnMf (r), satisfying (2). In this connection, the problem of
finding conditions of growth for an entire function, more flexible than the condition ρf < +∞,
that guarantee validity of the relation (2) is considered in [4].

Theorem A [4]. If the condition

ln νf (r) = o(lnµf (r)), r → +∞ (5)

holds for an entire function f ∈ A, then the relation (2) holds for it as well.

Note that one has ln νf (r) < 2ρf ln r = o(lnµf (r)), r → +∞ for an entire function f ∈ A of
a finite order. On the other hand, if, e.g., νf (r) ∼ rer, r → +∞ then f is of an infinite order,
but we have (5) and hence, (2) holds as well since lnµf (r) ∼ er, r → +∞ due to the L’Hospital
rule.

Let us assume that α ∈ I, and α̂ is any fixed function for which α(r) = rα̂′+(r) (i. e. α̂(r)
is α(r) transformed with respect to ln r). If νf (r) ∼ α(r), r → +∞, then lnµf (r) ∼ α̂(r),
r → +∞. The following theorem demonstrates that the condition (5) of Theorem A is
unimprovable in a sense.

Theorem B [4]. Let α ∈ L. If lnα(r) 6= o(α̂(r)), r → +∞, then there is an entire function
f ∈ A(h), for which the relation (2) does not hold.

The aim of the present work is finding conditions of growth for the central index of an entire
function such that relations more general than (2) hold for the function.

Theorem 1. Let α ∈ I, h ∈ C+. The following relations are equivalent:
a) ∃δ ∈ (0, 1): α(r) = O(h(δα̂(r))), r → +∞;
b) ∃K0 > 0 ∀f ∈ A(α): Mf (r) ≤ K0µf (r)h(lnµf (r)), r ≥ r0(f);
c) ∀f ∈ A(α): Mf (r) = O(µf (r)h(lnµf (r))), r → +∞.

Remark 1. Let α ∈ I, l ∈ L, h ∈ C+ and h̃(x) := inf{h(t) : t ≥ x}. The inequality

α(r) ≤ h(l(r)), r ≥ r0, (6)

holds if and only if
α(r) ≤ h̃(l(r)), r ≥ r0. (7)

Indeed, it is manifest that (6) follows from (7), because h̃(x) ≤ h(x). If (6) holds, then h(x)→
+∞, x→ +∞ and therefore, one can substitute inf by min in definition of h̃. Whence, due to
continuity and monotony of the function l, it follows that for any r ≥ r0 there exists r′ ≥ r
such that h̃(l(r)) = h(l(r′)). Hence, α(r) ≤ α(r′) ≤ h(l(r′)) = h̃(l(r)), i. e. (7) holds.

Remark 2. If β, α ∈ I and β(r) ∼ α(r), r → +∞ then, according to the L’Hospital rule,
β̂(r) ∼ α̂(r), r → +∞. In view of this and Remark 1, one can readily demonstrate that the
statement a) of Theorem 1 remains valid if α is substituted by β in it.
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The following theorems are corollaries of Theorem 1. They indicate conditions for realization
of the generalized Borel relation

ϕ(lnMf (r)) ∼ ϕ(lnµf (r)), r → +∞. (8)

Theorem 2. Let α ∈ I, ϕ ∈ L, and
ϕ(x+ 1) ∼ ϕ(x), x→ +∞. (9)

For the relation (8) to hold for any entire function f ∈ A(α), it is necessary and sufficient that
the following condition be fulfilled:

∀ε > 0 ∃δ ∈ (0, 1) : ϕ(δα̂(r) + lnα(r)) ≤ (1 + ε)ϕ(δα̂(r)), r ≥ r0(ε). (10)

Theorem 3. Let ϕ ∈ L. For the function α ∈ I to be such that the relation (8) is valid for
any entire function f ∈ A(α), it is necessary and sufficient that the condition (9) hold.

Remark 3. Theorem 3 indicates the the condition (9) is essential in Theorem 2.

As for Theorem 1, let us make the following observations. Firstly, the theorem allows one
to obtain necessary and sufficient conditions of growth of the central index νf (r) that provide
the prescribed relation between Mf (r) and µf (r), e.g., as in Theorem 2. Secondly, Theorem 1
provides exact relations between Mf (r) and µf (r) in a class of all entire functions f , satisfying
the conditions, when conditions of growth νf (r) are given. In particular, the following theorem
holds for entire functions f such that 0 < λf ≤ ρf < +∞.

Theorem 4. The following statements hold.
a) For any entire function f , satisfying the conditions 0 < λf ≤ ρf < +∞, there is a function

ε ∈ C+ such that ε(x)→ 0, x→ +∞, and

Mf (r) ≤ µf (r)(lnµf (r))
ρf
λf

+ε(lnµf (r))
, r ≥ r0. (11)

b) If 0 < λ ≤ ρ < +∞, ε ∈ C+, lim
x→+∞

ε(x) = 0, then there exists an entire function f and a

sequence (rn)
∞
n=0 increasing to +∞ such that λf = λ, ρf = ρ and

Mf (rn) > µf (rn)(lnµf (rn))
ρ
λ
+ε(lnµf (rn)), n ≥ 0. (12)

2. Proof of Theorem 1

Let us prove that b) follows from a). Let K1 > 0 and δ ∈ (0, 1) be arbitrary constants such
that α(r) ≤ K1h(δα̂(r)), r ≥ r1 according to a). Manifestly, h(x)→ +∞, x→ +∞. Therefore,
the function h̃(x) = min{h(t) : t ≥ x} is defined for all x ≥ 0, while (see Remark 1) h̃ ∈ L and

α(r) ≤ K1h̃(δα̂(r)), r ≥ r1. (13)

Let f ∈ A(α), and (ck)
∞
k=0 be an increasing sequence of all discontinuity points νf (r) in

(0,+∞). Then, if nk = νf (ck − 0), one has νf (r) = n0 for r ∈ (0, c0), and νf (r) = nk+1 for
r ∈ [ck, ck+1) and k ≥ 0.

Since lnµf (r) ∼ α̂(r), r → +∞, then (13) provides

νf (r) ≤ K1h̃(δ
′ lnµf (r)), r ≥ r2 (14)

when δ′ ∈ (δ, 1) is fixed. Consider the sequence (dk) such that d0 ∈ (0, c0), dk+1 ∈ (ck, ck+1),

nk+1(ln ck − ln dk) <
1

2k
, k ≥ 0. (15)

Assume that γ(r) = νf (r) for r > 0 if r /∈ ∪∞k=0(dk, ck). If r ∈ (dk, ck) for some k ≥ 0, then
assume that

γ(r) = min

{
K1h̃(δ

′ lnµf (r)), nk+1 − (ck − r)
nk+1 − nk
ck − dk

}
.
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Since γ(dk + 0) = nk = νf (dk) = γ(dk), γ(ck − 0) = nk+1 = νf (ck) = γ(ck), then γ ∈ L.
Moreover, it follows from (14) that

νf (r) ≤ γ(r) ≤ K1h̃(δ
′ lnµf (r)), r ≥ r2. (16)

Let γ̂(r) =
∫ r

1
γ(t)
t
dt, r > 0. According to (15)

0 ≤
∫ r

1

γ(t)

t
dt−

∫ r

1

νf (t)

t
dt ≤

∞∑
k=0

∫ dk

ck

γ(t)− νf (t)
t

dt ≤

≤
∞∑
k=0

(nk+1 − nk)(ln ck − ln dk) ≤
∞∑
k=0

1

2k
= 2

for r ≥ 1. Then,
γ̂(r) ∼ lnµf (r), r → +∞. (17)

Let us fix any r ≥ r2 such that γ(r) > 0, and consider the function ξ(x) = γ(r(1+x)), x > 0.
Manifestly, ξ is a positive function from the class L. Therefore, the equation ξ(x) = 1

x
has a

unique solution x = x(r) > 0, and

0 ≤ γ̂(r(1 + x(r)))− γ̂(r) =

∫ r(1+x(r))

r

γ(t)

t
dt ≤

≤ γ(r(1 + x(r))) ln(1 + x(r)) ≤ γ(r(1 + x(r)))x(r) = 1.

Hence, γ̂(r(1+x(r))) ∼ γ̂(r), r → +∞. Invoking (16), (17) and the latter relation, one obtains

γ(r(1 + x(r))) ≤ K1h̃(δ
′ lnµf (r(1 + x(r)))) ≤ K1h̃(lnµf (r)), r ≥ r3. (18)

Now let us estimate the maximum of the module of the function f , considering it to be given
in the form (1). Definitions νf (r) and µf (r) for any r > 0 and x > 0 yield

|an|(r(1 + x))n ≤ |aνf (r(1+x))|(r(1 + x))νf (r(1+x)) ≤ µf (r)(1 + x)νf (r(1+x)).

Whence, |an|rn ≤ µf (r)(1 + x)νf (r(1+x))−n. Using the latter inequality with x = x(r), as well as
(16) and (18), one obtains

Mf (r) ≤
∑

n<νf (r(1+x))

|an|rn +
∑

n≥νf (r(1+x))

|an|rn ≤

≤ µf (r)νf (r(1 + x)) + µf (r)
∑

n≥νf (r(1+x))

(1 + x)νf (r(1+x))−n =

= µf (r)

(
νf (r(1 + x)) +

1

x
+ 1

)
≤ µf (r)

(
γ(r(1 + x)) +

1

x
+ 1

)
≤

≤ 3µf (r)γ(r(1 + x)) ≤ 3K1µf (r)h̃(lnµf (r)) ≤ 3K1µf (r)h(lnµf (r))

for all r ≥ r0. Statement b) is proved.
The implication b)⇒ c) is manifest.
Let us prove that a) follows from b). To this end, suppose that a) does not hold, i. e.

∀δ ∈ (0, 1) : lim
r→+∞

α(r)

h(δα̂(r))
= +∞, (19)

and prove that there is an entire function f ∈ A(α) such that

lim
r→+∞

Mf (r)

µf (r)h(lnµf (r))
= +∞. (20)

Without loss of generality, one can assume that α(r) = 0 for r ∈ [0, 1) and α̂(r) =
∫ r

0
α(t)
t
dt

for all r ≥ 0 (see Remark 2).
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Let δp = 1− 1
2p+1 , p ≥ 0. Formula (19) yields

lim
r→+∞

[δp+1α(r)]− [δpα(r)]− 2

h(δpα̂(r))
= +∞,

when p ≥ 0 is fixed. Therefore, there exists a sequence (dp) increasing to +∞ such that d0 = 1,
and

[δp+1α(dp)]− [δpα(dp)]− 2 > ph(δpα̂(dp)), ln
dp+1

dp
> α̂(dp) (21)

for all p ≥ 0. Note that if γ ∈ I, then [γ] ∈ I as well, and +∞ is the only condensation point
for the set of discontinuity points of the function [γ] in the interval (0,+∞).

Consider the function

ηp(x) = δpα̂(dp) +

∫ x

dp

[δp+1α(t)]

t
dt+

∫ dp+1

x

[δp+1α(t)] + 2

t
dt, x > 0 (22)

for any p ≥ 0.Manifestly, the function ηp is continuous in [dp, dp+1]. Using the second inequality
(21), one obtains

ηp(dp) = δpα̂(dp) +

∫ dp+1

dp

[δp+1α(t)] + 2

t
dt ≥ δpα̂(dp) +

∫ dp+1

dp

δp+1α(t) + 1

t
dt =

= δp+1α̂(dp+1) + ln
dp+1

dp
− (δp+1 − δp)α̂(dp) > δp+1α̂(dp+1).

On the other hand,

ηp(dp+1) ≤ δpα̂(dp) +

∫ dp+1

dp

δp+1α(t)

t
dt =

= δp+1α̂(dp+1)− (δp+1 − δp)α̂(dp) ≤ δp+1α̂(dp+1).

Hence, there is a point xp in the half-interval (dp, dp+1] such that

ηp(xp) = δp+1α̂(dp+1). (23)

Consider the function β such that β(r) = 0 for r ∈ (0, 1) and

β(r) =

{
[δp+1α(r)], dp ≤ r < xp;

[δp+1α(r)] + 2, xp ≤ r < dp+1

for all p ≥ 0. Equations (22) and (23) provide

δpα̂(dp) +

∫ dp+1

dp

β(t)

t
dt = δp+1α̂(dp+1). (24)

Let us use the following lemma.

Lemma [5]. Let (nk) be an increasing sequence of nonnegative entire numbers and (ck) be a
positive sequence increasing to +∞. If a complex sequence (an) is such that a0 = . . . = an0−1 =
0, an0 6= 0 and

|ank+1
| = |an0|

k∏
j=0

1

c
nj+1−nj
j

; (25)

|an| = |ank |c
nk−n
k , if n ∈ (nk, nk+1) (26)

for any k ≥ 0, then the power series (1) with such coefficients an governs an entire function
such that νf (r) = n0 when r ∈ (0, c0) and νf (r) = nk+1 when r ∈ [ck, ck+1) and k ≥ 0.
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Let (ck) be an increasing sequence of all discontinuity points of the function β in the interval
(0,+∞), and nk = β(ck−0). Then, β(r) = n0 = 0 for r ∈ (0, c0) and β(r) = nk+1 if r ∈ [ck, ck+1)
and k ≥ 0. Let us define a positive sequence (an) as follows. Assume that a0 = an0 = 1 and
find an, n ≥ 1 proceeding from the equalities (25) and (26). According to the lemma, the power
series (1) with such coefficients an assigns an entire function f for which νf (r) = β(r), r > 0.
Since β(r) ∼ α(r), r → +∞, then f ∈ A(α). Let us demonstrate that the relation (20) holds
for f.

Since lnµf (0) = ln a0 = 0, then lnµf (r) =
∫ r

0

νf (t)

t
dt =

∫ r
0
β(t)
t
dt. By means of induction

over p and using the latter equalities together with (24), one can easily demonstrate that
lnµf (dp) = δpα̂(dp), p ≥ 0. Therefore, according to the first inequality (21),

β(dp+1)− β(dp+1 − 0) ≥ [δp+2α(dp+1)]− [δp+1α(dp+1)]− 2 > (27)
> (p+ 1)h(δp+1α̂(dp+1)) = (p+ 1)h(lnµf (dp+1)) > 0.

In particular, (27) provides existence of the sequence (kp) such that ckp = dp+1, p ≥ 0.
Furthermore, according to relations (25), (26) and the lemma, one has

Mf (ck) ≥
nk+1∑
n=nk

anc
n
k =

nk+1∑
n=nk

ank+1
c
nk+1

k = (nk+1 − nk + 1)µf (ck).

Therefore, using (27), one obtains

Mf (ckp) ≥ µf (ckp)(nkp+1 − nkp) = µf (ckp)(β(ckp)− β(ckp − 0)) =

= µf (ckp)(β(dp+1)− β(dp+1 − 0)) > (p+ 1)µf (ckp)h(lnµf (ckp))

for all p ≥ 0, whence (20). Theorem 1 is proved.

3. Proof of Theorem 2

Without loss of generality, one can assume that the function ϕ is increasing in (0,+∞). Then,
the function

hε(x) = exp{ϕ−1((1 + ε)ϕ(x))− x} (28)
is defined when ε > 0 is fixed and hε ∈ C+.

Sufficiency. Let us assume that the conditions (10) and (9) hold. Consider an entire function
f ∈ A(α) and demonstrate that the relation (8) holds for this function.

Let us fix any ε > 0. Then, according to (10), there is δ ∈ (0, 1) such that

α(r) ≤ exp{ϕ−1((1 + ε)ϕ(δα̂(r)))− δα̂(r)} = hε(δα̂(r)), r ≥ r0,

i. e. if h = hε, the statement a) of Theorem 1 holds. Therefore, according to the statement b)
of Theorem 1,

Mf (r) ≤ K0µf (r)hε(lnµf (r)), r ≥ r1, (29)
where K0 is a positive constant. Using (28), rewrite (29) in the form

ϕ(lnMf (r)− lnK0) ≤ (1 + ε)ϕ(lnµf (r)), r ≥ r1.

Whence, in view of the Cauchy inequality µf (r) ≤Mf (r) and the relation (9), one obtains

1 ≤ lim
r→+∞

ϕ(lnMf (r))

ϕ(lnµf (r))
≤ lim

r→+∞

ϕ(lnMf (r))

ϕ(lnµf (r))
≤ 1 + ε. (30)

Since ε is arbitrary, (30) provides (8). Sufficiency is proved.
Necessity. Let us assume that (9) holds and the relation (8) is true for any entire function

f ∈ A(α). Let us prove that in this case (10) holds.
Let us fix an arbitrary ε > 0 and let ε1 = ε

2
. Then,

∀f ∈ A(α) : ϕ(lnMf (r)) ≤ (1 + ε1)ϕ(lnµf (r)), r ≥ r0(f). (31)
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Using (28), one rewrites (31) in the form

∀f ∈ A(α) : Mf (r) ≤ µf (r)hε1(lnµf (r)), r ≥ r0(f).

According to Theorem 1, there are constants K1 > 0 and δ ∈ (0, 1), for which

α(r) ≤ K1hε1(δα̂(r)), r ≥ r1. (32)

The formula (32) provides ϕ(δα̂(r) + lnα(r) − lnK1) ≤ (1 + ε1)ϕ(δα̂(r)), r ≥ r1, whence,
according to (9), ϕ(δα̂(r) + lnα(r)) ≤ (1 + ε)ϕ(δα̂(r)), r ≥ r2, which was to be proved.
Theorem 2 is proved.

4. Proof of Theorem 3

Necessity. Similarly to the above, the function ϕ can be considered to be increasing in
(0,+∞).

Let us suppose that there is a function α ∈ I such that (8) holds for any f ∈ A(α), and
prove that (9) is true.

Indeed, if the condition (9) is not met, then there is a number ε > 0 and a sequence (xn)
∞
n=0

increasing to +∞ such that ϕ(xn + 1) > (1 + ε)ϕ(xn), n ≥ 0. However, in this case e > h(xn),
n ≥ 0 according to (28). Hence, the statement a) of Theorem 1 is not valid and therefore,
the statement b) of the same theorem is not true as well. Thus, there exist an entire function
f ∈ A(α) and a sequence (rn)

∞
n=0 increasing to +∞ such that

Mf (rn) > µf (rn)hε(lnµf (rn)), n ≥ 0.

Whence, using (28) one readily obtains

ϕ(lnMf (rn)) > (1 + ε)ϕ(lnµf (rn)), n ≥ 0,

i. e. the relation (8) does not hold for f. This contradicts the assumption made above. Necessity
is proved.

Sufficiency. Let us assume that the condition (9) holds. Then, as one can readily notice, there
is a function l ∈ L such that

ϕ(x+ l(x)) ∼ ϕ(x), x→ +∞. (33)

Consider a function α ∈ I, for which α(r) ≤ exp{l(ln r)}, r ≥ r0. Since ln r = o(α̂(r)), r → +∞,
then

lnα(r) ≤ l(ln r) ≤ l

(
1

2
α̂(r)

)
, r ≥ r1. (34)

Using (33) with x = 1
2
α̂(r) and (34), one obtains

ϕ

(
1

2
α̂(r) + lnα(r)

)
∼ ϕ

(
1

2
α̂(r)

)
, r → +∞.

Whence, it follows that the condition (10) of Theorem 2 holds for the function α. According to
this theorem, the relation (8) holds for any f ∈ A(α). Thus, Theorem 3 is proved completely.

5. Proof of Theorem 4

a) Let f be an entire function such that 0 < λf ≤ ρf < +∞. Using the fact that one can
substitute lnMf (r) by lnµf (r) or νf (r) in definition of the order ρ = ρf and the lower order
λ = λf of the function f, one obtains

νf (r) ≤ rρ+η(lnµf (r)), lnµf (r) ≥ rλ−η(lnµf (r))

for some function η ∈ C+ such that η(x)→ 0, x→ +∞ and for all r ≥ r1. Hence,

νf (r) ≤ 2
ρ+η(lnµf (r))

λ−η(lnµf (r))

(
1

2
lnµf (r)

) ρ+η(lnµf (r))

λ−η(lnµf (r))

≤ 4
ρ
λ

(
1

2
lnµf (r)

) ρ+η(lnµf (r))

λ−η(lnµf (r))
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for all r ≥ r2. Then, according to Theorem 1 (when α(r) = νf (r)), there is a constant K0 ≥ 1
such that

Mf (r) ≤ K0µf (r)(lnµf (r))
ρ+η(lnµf (r))

λ−η(lnµf (r)) =

= µf (r)(lnµf (r))
ρ
λ
+

(ρ+λ)η(lnµf (r))

λ(λ−η(lnµf (r)))
+

lnK0
ln lnµf (r) , r ≥ r3,

whence, choosing the function ε ∈ C+ so that

ε(x) =
(ρ+ λ)η(x)

λ(λ− η(x))
+

lnK0

lnx
, x ≥ x0,

one obtains directly (11) and readily verifies that ε(x)→ 0, x→ +∞.
b) Let (εn)

∞
n=0 be a fixed sequence, decreasing to zero. The condition lim

x→+∞
ε(x) = 0 provides

the existence of an increasing sequence (cn)
∞
n=0 such that c0 > 1 and

εn > ε(cλn), cλεnn > n, cn+1 > c
2( ρλ+εn)
n (35)

for all n ≥ 0.

Let dn = c
( ρλ+2εn)
n , n ≥ 0. Using the third inequality (35), one readily obtains cn < dn < cn+1,

n ≥ 0. Assume that α(r) = 0 for all r ∈ [0, c0) and let

α(r) =

{
λcρ+2λεn

n , cn ≤ r ≤ dn;

λrλ, dn ≤ r < cn+1

for every n ≥ 0.
Manifestly, α ∈ I, and

lim
r→+∞

lnα(r)

ln r
= ρ, lim

r→+∞

lnα(r)

ln r
= λ. (36)

Suppose that h(x) = x
ρ
λ
+ε(x). According to the first and the second inequalities (35),

α(cn) = λcρ+2λεn
n = λcλ(2εn−ε(cλn))

n h(cλn) ≥ λcλεnn h(cλn) > λ(n+ 1)h(cλn), n ≥ 0. (37)

Let us consider an antiderivative of α(r) with respect to ln r :

α̂(r) =

∫ r

0

α(t)

t
dt.

One has

α̂(cn+1) =

∫ dn

c0

α(t)

t
dt+ λ

∫ cn+1

dn

tλ−1dt ≤ α(dn) ln dn + cλn+1 = (1 + ηn)c
λ
n+1 (38)

for the function α̂ for any n ≥ 0. Here, according to the third inequality (35),

ηn =
α(dn) ln dn

cλn+1

=
(ρ+ 2λεn)c

ρ+2λεn
n ln cn

cλn+1

→ 0, n→∞. (39)

Let us prove that the statement a) of Theorem 1 is not true for the functions h and α. Indeed,
if the statement holds, then there are constants δ ∈ (0, 1) and K > 0, for which

α(r) ≤ Kh(δα̂(r)), r ≥ 0.

Whence, in view of Remark 1, (38) and (39), one obtains

α(cn) ≤ Kh̃(δα̂(cn)) ≤ Kh̃(δ(1 + ηn−1)c
ρ
n) ≤ Kh̃(cρn) ≤ Kh(cρn)
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for all n ≥ n0. This contradicts (37). Hence, the statement a) of Theorem 1 is not true.
Consequently, the statement c) of the same theorem is not true as well. Therefore, the equality

lim
r→+∞

Mf (r)

µf (r)h(lnµf (r))
= +∞,

holds for an entire function f ∈ A(α). Whence, one immediately concludes that the sequence
(rn)

∞
n=0 is such that (12) holds for f. Moreover, according to (36), λf = λ, ρf = ρ. Thus,

Theorem 4 is proved.
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