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SOLVABILITY OF NONLINEAR BOUNDARY VALUE

PROBLEMS FOR NON-SLOPING TIMOSHENKO-TYPE

ISOTROPIC SHELLS OF ZERO PRINCIPAL CURVATURE

S.N. TIMERGALIEV

Abstract. We study the solvability of boundary value problem for a system of second order
partial differential equations under boundary given conditions describing the equilibrium of
elastic non-sloping isotropic inhomogeneous shells with free boundary in the framework of
the Timoshenko shear model. The base of the study method are the integral represen-
tations for generalized motions involving arbitrary functions, which also involve arbitrary
holomorphic functions. The arbitrary functions ate determined so that the generalized mo-
tions satisfy a linear system of equations and linear boundary conditions extracted from
the original boundary value problem. The holomorphic functions are sought as Cauchy
type integrals with real densities. The integral representations allow us to reduce the initial
boundary value problem to a nonlinear operator equations for generalized motions in the
Sobolev space. While studying the solvability of this operator equation, the most essential
point is to invert it with respect to the linear part. As a result, the work is reduced to
an equation, the solvability of which is established on the base of the contracting mapping
principle.

Keywords: non-sloping isotropic inhomogeneous Timoshenko-type shell of zero principal
curvature, nonlinear boundary value problem, partial differential equations, generalized
solution, holomorphic function, operator equation, existence theorem.
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1. Introduction

At present the solvability of nonlinear boundary value problems of equilibria of elastic non-
sloping shells is studied rather completely in the framework of the simplest Kirchoff–Love, see
[1]–[5] and the references therein. At the same time a topical problem is to study similar
boundary value problems in the framework of more complicated models in the shell theory
not relying on the Kirchoff–Love assumptions [1]. Nowadays there is a series of works [6]–
[12], in which in the framework of the Timoshenko shear model the solvability of nonlinear
boundary value problems for sloping shells was studied. The base of the studies in [6]–[12]
were integral representations for generalized displacements involving arbitrary holomorphic
functions. The latter are defined so that the generalized displacement satisfy given boundary
conditions. In the present work the method of works [6]–[12] is developed for the case of non-
sloping inhomogeneous isotropic Timoshenko type shells of zero principal curvature referred to
the Euclidean coordinate systems. The passage to non-sloping shells complicates essentially
the study of the boundary value problem.
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2. Formulation of problem

In a planar simply connected bounded domain Ω we consider a system of nonlinear differential
equations of form

𝑇 𝑗𝜆
𝛼𝜆 −𝐵𝑗𝜆𝑇

𝜆𝜇𝜔𝜇 −𝐵𝑗𝜆𝑇
𝜆3 +𝑅𝑗 = 0, 𝑗 = 1, 2,

(𝑇 𝜆𝜇𝜔𝜇)𝛼𝜆 + 𝑇 𝜆3
𝛼𝜆 +𝐵𝜆𝜇𝑇

𝜆𝜇 +𝑅3 = 0,

𝑀 𝑗𝜆
𝛼𝜆 − 𝑇 𝑗3 + 𝐿𝑗 = 0, 𝑗 = 1, 2,

(2.1)

with the following conditions on the boundary Γ of the domain Ω

𝑇 𝑗1𝑑𝛼2/𝑑𝑠− 𝑇 𝑗2𝑑𝛼1/𝑑𝑠 = 𝑃 𝑗(𝑠), 𝑗 = 1, 2,

𝑇 13𝑑𝛼2/𝑑𝑠− 𝑇 23𝑑𝛼1/𝑑𝑠+ (𝑇 1𝜆𝑑𝛼2/𝑑𝑠− 𝑇 2𝜆𝑑𝛼1/𝑑𝑠)𝜔𝜆 = 𝑃 3(𝑠),

𝑀 𝑗1𝑑𝛼2/𝑑𝑠−𝑀 𝑗2𝑑𝛼1/𝑑𝑠 = 𝑁 𝑗(𝑠), 𝑗 = 1, 2.

(2.2)

In (2.1), (2.2) and below we use the following notations:

𝑇 𝑖𝑗 ≡ 𝑇 𝑖𝑗(𝛾) = 𝐷𝑖𝑗𝑘𝑛
𝜆−1𝛾

𝜆−1
𝑘𝑛 ,

𝑀 𝑖𝑗 ≡𝑀 𝑖𝑗(𝛾) = 𝐷𝑖𝑗𝑘𝑛
𝜆 𝛾𝜆−1

𝑘𝑛 ,

𝛾 = (𝛾0, 𝛾1), 𝛾𝑘 = (𝛾𝑘11, 𝛾
𝑘
12, 𝛾

𝑘
13, 𝛾

𝑘
22, 𝛾

𝑘
23, 𝛾

𝑘
33), 𝑘 = 0, 1;

𝐷𝑖𝑗𝑘𝑛
𝑚 = 𝐷𝑖𝑗𝑘𝑛

𝑚 (𝛼1, 𝛼2) =

ℎ0/2∫︁
−ℎ0/2

𝐵𝑖𝑗𝑘𝑛(𝛼1, 𝛼2, 𝛼3)(𝛼3)𝑚𝑑𝛼3, 𝑚 = 0, 2, 𝑖, 𝑗, 𝑘, 𝑛 = 1, 3;

𝐵1111 = 𝐵2222 = 𝐸/(1− 𝜈2),

𝐵1212 = 𝐸/(2(1 + 𝜈)), 𝐵1122 = 𝜈𝐸/(1− 𝜈2),

𝐵1313 = 𝐵2323 = 𝐸𝜅2/(2(1 + 𝜈));

𝜔𝑗 = 𝑤3𝛼𝑗 +𝐵𝑗1𝑤1 +𝐵𝑗2𝑤2, 𝑗 = 1, 2;

𝛾0𝑗𝑗 = 𝑤𝑗𝛼𝑗 −𝐵𝑗𝑗𝑤3 + 𝜔2
𝑗/2, 𝑗 = 1, 2,

𝛾012 = 𝑤1𝛼2 + 𝑤2𝛼1 − 2𝐵12𝑤3 + 𝜔1𝜔2,

𝛾1𝑗𝑗 = 𝜓𝑗𝛼𝑗 , 𝑗 = 1, 2,

𝛾112 = 𝜓1𝛼2 + 𝜓2𝛼1 ,

𝛾0𝑗3 = 𝜔𝑗 + 𝜓𝑗, 𝑗 = 1, 2,

𝛾033 = 𝛾1𝑘3 ≡ 0, 𝑘 = 1, 3;

(2.3)

other 𝐵𝑖𝑗𝑘𝑛 are zero, 𝛼𝑗 = 𝛼𝑗(𝑠), 𝑗 = 1, 2, is the equation of the curve Γ and 𝑠 is the arc length
on the curve Γ. The subscript 𝛼𝜆 in (2.1)–(2.3) and later denotes the differentiation in 𝛼𝜆,
𝜆 = 1, 2.
System (2.1) with boundary conditions (2.2) describe the equilibrium of an elastic non-sloping

isotropic inhomogeneous shell with free boundary in the framework of Timoshenko shear model
[13] referred to the Euclidean coordinate system. Here 𝑇 𝑖𝑗 are forces, 𝑀 𝑖𝑗 are momenta 𝛾𝑘𝑖𝑗,

𝑖, 𝑗 = 1, 3, 𝑘 = 0, 1, are the components of the deformation of thee middle surface 𝑆0 of the
shell identified with the domain Ω; 𝑤𝑗, 𝑗 = 1, 2, and 𝑤3 are respectively tangential and normal
displacement of the points 𝑆0; 𝜓𝑖, 𝑖 = 1, 2, are the rotation angles of normal sections 𝑆0; 𝐵𝑖𝑗,
𝑖, 𝑗 = 1, 2, are the entries of the curvature tensor for the surface 𝑆0; 𝑅

𝑗, 𝑃 𝑗, 𝑗 = 1, 3, 𝐿𝑘, 𝑁𝑘,
𝑘 = 1, 2, are the components of external forces acting on the shell; 𝜈 is the Poisson coefficient,
𝐸 is the Young’s module, 𝜅2 is the translation coefficient, ℎ0 = 𝑐𝑜𝑛𝑠𝑡 is the width of the shell;
𝛼1, 𝛼2 are Cartesian coordinates of the points in the domain Ω.



82 S.N. TIMERGALIEV

In (2.1)–(2.3) and later we suppose the summation over the repeating Latin indices from 1
to 3, while the summation over Greek indices is from 1 to 2.
Problem (2.1), (2.2). We need to find a solution to problem (2.1) satisfying boundary

conditions (2.2).
We study boundary value problem (2.1), (2.2) in the generalized setting. We suppose the

following conditions:

(a) 𝐵𝑖𝑗𝑘𝑛(𝛼1, 𝛼2, 𝛼3) ∈ (𝑊
(1)
𝑝 (Ω) ∩ 𝐶𝛽(Ω))× 𝐿1[−ℎ0/2, ℎ0/2], 𝑖, 𝑗, 𝑘, 𝑛 = 1, 3;

(b) 𝐵𝜆𝜇(𝛼
1, 𝛼2) ∈ 𝐶1(Ω), 𝜆, 𝜇 = 1, 2, and at the same time 𝐵11𝐵22 −𝐵2

12 = 0, 𝐵12 ̸= 0 in Ω;
(c) The components of external forces 𝑅𝑗, 𝑗 = 1, 3, and 𝐿𝑘, 𝑘 = 1, 2, belong to the space

𝐿𝑝(Ω), the components 𝑃 𝑗, 𝑗 = 1, 3, 𝑁𝑘, 𝑘 = 1, 2, belong to the space 𝐶𝛽(Γ), and the external
forces are self-balanced;
(d) Ω is an arbitrary simply connected domain with the boundary Γ ∈ 𝐶1

𝛽.
Hereinafter

2 < 𝑝 < 4/(2− 𝛽), 0 < 𝛽 < 1.

Definition 2.1. A vector of generalized displacements 𝑎 = (𝑤1, 𝑤2, 𝑤3, 𝜓1, 𝜓2) is called a

generalized solution of problem (2.1), (2.2) if 𝑎 belongs to the space 𝑊
(2)
𝑝 (Ω), satisfies system

(2.1) almost everywhere and boundary conditions (2.2) pointwise.

Here 𝑊
(𝑗)
𝑝 (Ω), 𝑗 = 1, 2, are the Sobolev spaces. By the embedding theorems for the Sobolev

spaces 𝑊
(2)
𝑝 (Ω) with 𝑝 > 2, the generalized solution 𝑎 belongs to the space 𝐶1

𝛼(Ω). Hereinafter

𝛼 = (𝑝− 2)/𝑝.

We note that as 2 < 𝑝 < 4/(2− 𝛽), the inequality 𝛼 < 𝛽/2 holds.
For the sake of convenience in further study, we write relations for the component of defor-

mations in (2.3) as
𝛾𝑘𝑖𝑗 = 𝑒𝑘𝑠𝑖𝑗 + 𝑒𝑘𝑐𝑖𝑗 + 𝜒𝑘

𝑖𝑗, 𝑖, 𝑗 = 1, 3, 𝑘 = 0, 1, (2.4)

where we have adopted the notations

𝑒0𝑠𝑗𝑗 = 𝑤𝑗𝛼𝑗 , 𝑒0𝑠𝑗3 = 𝑤3𝛼𝑗 + 𝜓𝑗, 𝑒1𝑠𝑗𝑗 = 𝜓𝑗𝛼𝑗 , 𝑗 = 1, 2,

𝑒0𝑠12 = 𝑤1𝛼2 + 𝑤2𝛼1 , 𝑒1𝑠12 = 𝜓1𝛼2 + 𝜓2𝛼1 ,

𝑒0𝑐𝑗𝑗 = −𝐵𝑗𝑗𝑤3, 𝑒1𝑐𝑖𝑗 ≡ 0, 𝑗 = 1, 2,

𝑒0𝑐12 = −2𝐵12𝑤3, 𝑒0𝑐𝑗3 = 𝐵𝑗1𝑤1 +𝐵𝑗2𝑤2, 𝑗 = 1, 2,

𝜒0
𝑗𝑗 = 𝜔2

𝑗/2, 𝑖, 𝑗 = 1, 2, 𝜒0
12 = 𝜔1𝜔2,

𝜒1
𝑖𝑗 = 𝜒0

𝑗3 = 𝑒0𝑠33 = 𝑒1𝑠𝑗3 = 𝑒𝑘𝑐33 ≡ 0, 𝑖, 𝑗 = 1, 3, 𝑘 = 0, 1.

(2.5)

3. Construction of integral representations for generalized displacements

We introduce two complex functions

𝜐𝑗 =𝜐𝑗(𝑧) = 𝐷1111
𝑗−1 (𝑤1𝛼1 + 𝑤2𝛼2) +𝐷1111

𝑗 (𝜓1𝛼1 + 𝜓2𝛼2)

+ 𝑖[𝐷1212
𝑗−1 (𝑤2𝛼1 − 𝑤1𝛼2) +𝐷1212

𝑗 (𝜓2𝛼1 − 𝜓1𝛼2)], 𝑗 = 1, 2, 𝑧 = 𝛼1 + 𝑖𝛼2.
(3.1)

In system (2.1), we replace the forces 𝑇 𝑗𝑘, momenta 𝑀 𝑗𝑘 and the components of the defor-
mations 𝛾𝑛𝑗𝑘 by their expressions from (2.3), (2.4). After that we add the second equation in
(2.1) multiplied by the imaginary unit 𝑖 to the first equation and the fifth equation multiplied
by 𝑖 to the forth equation. In this way, by means of the functions 𝜐𝑗(𝑧) from (3.1), we represent
system in a form convenient for further study:

𝜐𝑗𝑧 + ℎ𝑗(𝑎) = 𝑓 𝑗
𝑐 (𝑎) + 𝑓 𝑗

𝜒(𝑎)− 𝐹 𝑗(𝑧), 𝑗 = 1, 2,

𝐷1313
0 (𝑤3𝛼1𝛼1 + 𝑤3𝛼2𝛼2) + ℎ3(𝑎) = 𝑓 3

𝑐 (𝑎) + 𝑓 3
𝜒(𝑎)− 𝐹 3(𝑧), 𝑧 ∈ Ω,

(3.2)
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where we have adopted the following notations:

𝜐𝑗𝑧 = (𝜐𝑗𝛼1 + 𝑖𝜐𝑗𝛼2)/2, 𝑗 = 1, 2,

ℎ𝑗(𝑎) = (−1)𝜇−1(𝐷1212
𝑗+𝜆−2𝛼3−𝜇𝜈𝜆2𝛼𝜇 + 𝑖𝐷1212

𝑗+𝜆−2𝛼𝜇𝜈𝜆1𝛼3−𝜇)− (𝑗 − 1)𝐷1313
0 (𝑒0𝑠13 + 𝑖𝑒0𝑠23)/2,

𝜈1𝑗 = 𝑤𝑗, 𝜈2𝑗 = 𝜓𝑗, 𝑗 = 1, 2;

ℎ3(𝑎) = 𝐷1313
0𝛼𝜆 𝑤3𝛼𝜆 + (𝐷1313

0 𝜓𝜆)𝛼𝜆 ;

𝑓 𝑗
𝑐 (𝑎) = (𝑓𝑐3𝑗−2 + 𝑖𝑓𝑐3𝑗−1)/2, 𝑗 = 1, 2,

𝑓 𝑗
𝜒(𝑎) = (𝑓𝜒3𝑗−2 + 𝑖𝑓𝜒3𝑗−1)/2, 𝑗 = 1, 2,

𝑓 3
𝑐 (𝑎) = 𝑓𝑐3(𝑎), 𝑓 3

𝜒(𝑎) = 𝑓𝜒3(𝑎),

𝑓𝑐𝑗(𝑎) = −𝑇 𝑗𝜆
𝛼𝜆(𝑒𝑐) +𝐵𝑗𝜆𝑇

𝜆3(𝛾), 𝑗 = 1, 2,

𝑓𝑐3+𝑗(𝑎) = −𝑀 𝑗𝜆
𝛼𝜆(𝑒𝑐) + 𝑇 𝑗3(𝑒𝑐), 𝑗 = 1, 2,

𝑓𝑐3(𝑎) = −𝑇 𝜆3
𝛼𝜆 (𝑒𝑐)−𝐵𝜆𝜇𝑇

𝜆𝜇(𝑒),

𝑓𝜒𝑗(𝑎) = −𝑇 𝑗𝜆
𝛼𝜆(𝜒) +𝐵𝑗𝜆𝑇

𝜆𝜇(𝛾)𝜔𝜇,

𝑓𝜒3+𝑗(𝑎) = −𝑀 𝑗𝜆
𝛼𝜆(𝜒), 𝑗 = 1, 2,

𝑓𝜒3(𝑎) = −(𝑇 𝜆𝜇𝜔𝜇)𝛼𝜆 −𝐵𝜆𝜇𝑇
𝜆𝜇(𝜒),

𝐹 1 = (𝑅1 + 𝑖𝑅2)/2, 𝐹 2 = (𝐿1 + 𝑖𝐿2)/2, 𝐹 3 = 𝑅3;

𝑒 = 𝑒𝑠 + 𝑒𝑐, 𝑒𝑠 = (𝑒0𝑠, 𝑒
1
𝑠), 𝑒𝑐 = (𝑒0𝑐 , 𝑒

1
𝑐),

𝑒𝑘𝑠 = (𝑒𝑘𝑠11, 𝑒
𝑘
𝑠12, 𝑒

𝑘
𝑠13, 𝑒

𝑘
𝑠22, 𝑒

𝑘
𝑠23, 𝑒

𝑘
𝑠33),

𝑒𝑘𝑐 = (𝑒𝑘𝑐11, 𝑒
𝑘
𝑐12, 𝑒

𝑘
𝑐13, 𝑒

𝑘
𝑐22, 𝑒

𝑘
𝑐23, 𝑒

𝑘
𝑐33), 𝑘 = 0, 1;

𝜒 = (𝜒0
11, 𝜒

0
12, 𝜒

0
22);

(3.3)

𝑒𝑘𝑠𝑖𝑗, 𝑒
𝑘
𝑐𝑖𝑗, 𝜒

𝑘
𝑖𝑗 were defined in (2.5). We note that by 𝑒 and 𝜒 we define respectively linear

and nonlinear parts of the components of deformations 𝛾 and this ensures the representation
𝛾 = 𝑒+ 𝜒.
Similarly, we write boundary conditions (2.2) in the form

Re[(−𝑖)𝑗𝑡′𝑣𝑘(𝑡)] + 2(−1)𝑗𝐷1212
𝑘+𝛿−2𝜈𝛿3−𝑗𝛼𝜆𝑑𝛼𝜆/𝑑𝑠

= 𝜙𝑐3(𝑘−1)+𝑗(𝑎)(𝑡) + 𝜙𝜒3(𝑘−1)+𝑗(𝑎)(𝑡)− 𝐹 3𝑘+𝑗(𝑠), 𝑘, 𝑗 = 1, 2,

𝐷1313
0 [(𝑤3𝛼2 + 𝜓2)𝑑𝛼

1/𝑑𝑠− (𝑤3𝛼1 + 𝜓1)𝑑𝛼
2/𝑑𝑠] = 𝜙𝑐3(𝑎)(𝑡) + 𝜙𝜒3(𝑎)(𝑡)− 𝐹 6(𝑠),

(3.4)

where

𝜙𝑐𝑗(𝑎)(𝑡) = 𝑇 𝑗2(𝑒𝑐)𝑑𝛼
1/𝑑𝑠− 𝑇 𝑗1(𝑒𝑐)𝑑𝛼

2/𝑑𝑠,

𝜙𝑐3+𝑗(𝑎)(𝑡) =𝑀 𝑗2(𝑒𝑐)𝑑𝛼
1/𝑑𝑠−𝑀 𝑗1(𝑒𝑐)𝑑𝛼

2/𝑑𝑠,

𝜙𝑐3(𝑎)(𝑡) = 𝑇 13(𝑒𝑐)𝑑𝛼
2/𝑑𝑠− 𝑇 23(𝑒𝑐)𝑑𝛼

1/𝑑𝑠;

𝜙𝜒𝑗(𝑎)(𝑡) = 𝑇 𝑗2(𝜒)𝑑𝛼1/𝑑𝑠− 𝑇 𝑗1(𝜒)𝑑𝛼2/𝑑𝑠,

𝜙𝜒3+𝑗(𝑎)(𝑡) =𝑀 𝑗2(𝜒)𝑑𝛼1/𝑑𝑠−𝑀 𝑗1(𝜒)𝑑𝛼2/𝑑𝑠, 𝑗 = 1, 2,

𝜙𝜒3(𝑎)(𝑡) = [(𝑇 11(𝛾)𝜔1 + 𝑇 12(𝛾)𝜔2]𝑑𝛼
2/𝑑𝑠− [𝑇 22(𝛾)𝜔2 + 𝑇 12(𝛾)𝜔1]𝑑𝛼

1/𝑑𝑠;

𝐹 3+𝑗 = −𝑃 𝑗, 𝑗 = 1, 2,

𝐹 6(𝑠) = 𝑃 3(𝑠), 𝐹 6+𝑘 = −𝑁𝑘, 𝑘 = 1, 2;

(3.5)

the forces 𝑇 𝑗𝑘 and the moments 𝑀 𝑗𝑘 wrre defined in (2.3).
The base for studying system of equations (3.2) with boundary conditions (3.4) is integral

representations for the generalized displacements 𝑤𝑗, 𝑗 = 1, 3, 𝜓𝑘, 𝑘 = 1, 2. In order to derive
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them, we introduce the equations

𝜐𝑗𝑧 = 𝜌𝑗 (𝑗 = 1, 2), 𝐷1313
0 (𝑤3𝛼1𝛼1 + 𝑤3𝛼2𝛼2) = 𝜌3, (3.6)

where
𝜌1 = 𝜌1 + 𝑖𝜌2, 𝜌2 = 𝜌4 + 𝑖𝜌5, 𝜌3 = 𝜌3

are arbitrary fixed functions belongs to the space 𝐿𝑝(Ω).
The first two equations in (3.6) are inhomogeneous Cauchy–Riemann equations. Their gen-

eral solutions are given by the formulas [14]

𝜐𝑗(𝑧) = Φ𝑗(𝑧) + 𝑇𝜌𝑗(𝑧) ≡ 𝜐𝑗(Φ𝑗; 𝜌
𝑗)(𝑧),

𝑇𝜌𝑗(𝑧) = − 1

𝜋

∫︁∫︁
Ω

𝜌𝑗(𝜁)

𝜁 − 𝑧
𝑑𝜉𝑑𝜂, 𝑗 = 1, 2, 𝜁 = 𝜉 + 𝑖𝜂,

(3.7)

where Φ𝑗(𝑧) are arbitrary holomorphic functions belonging to the space 𝐶𝛼(Ω).
It is known [14] that 𝑇 is a completely continuous operator in the spaces 𝐿𝑝(Ω) and 𝐶

𝑘
𝛼(Ω),

which maps these spaces into the spaces 𝐶𝛼(Ω) and 𝐶𝑘+1
𝛼 (Ω), respectively. Moreover, there

exist generalized derivatives

𝜕𝑇𝑓

𝜕𝑧
= 𝑓,

𝜕𝑇𝑓

𝜕𝑧
≡ 𝑆𝑓 = − 1

𝜋

∫︁∫︁
Ω

𝑓(𝜁)

(𝜁 − 𝑧)2
𝑑𝜉 𝑑𝜂,

(3.8)

where 𝑆 is a bounded linear operator in 𝐿𝑝(Ω), 𝑝 > 1, and 𝐶𝑘
𝛼(Ω).

By means of the functions 𝜐01 = 𝑤2 + 𝑖𝑤1, 𝜐
0
2 = 𝜓2 + 𝑖𝜓1 we rewrite representations (3.7) as

inhomogeneous Cauchy–Riemann equations

𝜐0𝑗𝑧 = 𝑖(𝑑2𝑗−1[𝜐1] + 𝑑2𝑗[𝜐2]) ≡ 𝑖𝑇𝑗𝜐, 𝑗 = 1, 2, 𝜐 = (𝜐1, 𝜐2), (3.9)

the general solutions of which read as

𝜐0𝑗 (𝑧) = Ψ𝑗(𝑧) + 𝑖𝑇𝑇𝑗𝜐(𝑧) ≡ 𝜐0𝑗 (Ψ𝑗; 𝜐)(𝑧), 𝑗 = 1, 2. (3.10)

In (3.9), (3.10) we have adopted the notations

𝑑2𝑗+𝜆−2[𝜐𝜆] = 𝑑12𝑗+𝜆−2𝜐𝜆 + (−1)𝑗+𝜆𝑑22𝑗+𝜆−2𝜐𝜆, 𝑗, 𝜆 = 1, 2,

𝑑𝑗3𝑘−2 =
1

4

(︂
𝐷1111

4−2𝑘

𝛿0
+ (−1)𝑗

𝐷1212
4−2𝑘

𝛿1

)︂
,

𝑑𝑗2 = 𝑑𝑗3 =
1

4

(︂
𝐷1212

1

𝛿1
+ (−1)𝑗

𝐷1111
1

𝛿0

)︂
, 𝑘, 𝑗 = 1, 2,

𝛿0 = 𝐷1111
0 𝐷1111

2 −
(︀
𝐷1111

1

)︀2
,

𝛿1 = 𝐷1212
0 𝐷1212

2 −
(︀
𝐷1212

1

)︀2
;

(3.11)

Ψ𝑗(𝑧) ∈ 𝐶1
𝛼(Ω) are arbitrary holomorphic functions.

We represent the third equation in (3.6) as

𝑤3𝑧𝑧 = ̃︀𝜌3/4, ̃︀𝜌3 = 𝜌3/𝐷
1313
0 , 𝑤3𝑧 = (𝑤3𝛼1 − 𝑖𝑤3𝛼2)/2,

which yields

𝑤3(𝑧) = ReΨ3(𝑧)− ̃︀𝑇 ̃︀𝜌3 ≡ 𝑤3(Ψ3; 𝜌3)(𝑧),̃︀𝑇 ̃︀𝜌3 = − 1

2𝜋

∫︁∫︁
Ω

̃︀𝜌3(𝜁) ln ⃒⃒⃒⃒1− 𝑧

𝜁

⃒⃒⃒⃒
𝑑𝜉 𝑑𝜂,

(3.12)

where Ψ3(𝑧) ∈ 𝐶1
𝛼(Ω) is an arbitrary holomorphic function.
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Relations (3.10), (3.12) are sought integral representations for the generalized displacements.
By means of formulas (3.7)–(3.12) and formula (8.20) in [14] for their partial derivatives of first
and second orders we obtain the representations

𝜈𝑗𝑘𝛼𝑘 = Im[𝜐0𝑗𝑧 − (−1)𝑘𝜐0𝑗𝑧],

𝜈𝑗𝑘𝛼𝑛 = Re[𝜐0𝑗𝑧 + (−1)𝑘𝜐0𝑗𝑧], 𝑘 ̸= 𝑛, 𝑗, 𝑘, 𝑛 = 1, 2;

𝜐0𝑗𝑧 = Ψ′
𝑗(𝑧) + 𝑖𝑆𝑇𝑗𝜐(𝑧),

𝜐0𝑗𝑧 = 𝑖𝑇𝑗𝜐,

𝑤3𝛼𝑗 = 2Re
(︀
𝑖𝑗−1𝑤3𝑧

)︀
, 𝑗 = 1, 2,

𝑤3𝑧 = Ψ′
3(𝑧)/2 + 𝑇 ̃︀𝜌3(𝑧)/4;

𝜈𝑘𝑛𝛼𝑗𝛼𝑗 = −Re{𝑖𝑛[𝜐0𝑘𝑧𝑧 + (−1)𝑗(𝜐0𝑘𝑧𝑧 + 𝜐0𝑘𝑧𝑧)]},
𝜈𝑘𝑛𝛼1𝛼2 = Re{𝑖𝑛−1(𝜐0𝑘𝑧𝑧 − 𝜐0𝑘𝑧𝑧)},
𝑤3𝛼𝑗𝛼𝑗 = 2[𝑤3𝑧𝑧 + (−1)𝑗−1Re𝑤3𝑧𝑧], 𝑘, 𝑛, 𝑗 = 1, 2,

𝑤3𝛼1𝛼2 = −2 Im𝑤3𝑧𝑧;

𝜐0𝑘𝑧𝑧 = 𝑇𝑘1𝜐 + 𝑆𝑘1(Φ
′
0; 𝜌0),

𝜐0𝑘𝑧𝑧 = 𝑇𝑘2𝜐 + 𝑆𝑘2(Φ
′
0; 𝜌0),

𝜐0𝑘𝑧𝑧 = Ψ′′
𝑘(𝑧) + 𝑆𝜐0

𝑘𝜁𝜁
(𝑧)− 1

2𝜋

∫︁
Γ

𝑇𝑘𝜐(𝜏)

(𝜏 − 𝑧)2
𝑑𝜏 , 𝑘 = 1, 2,

Φ′
0 = (Φ′

1,Φ
′
2), 𝜌0 = (𝜌1, 𝜌2),

𝑤3𝑧𝑧 = Ψ′′
3(𝑧)/2 + 𝑆̃︀𝜌3/4,

𝑤3𝑧𝑧 = ̃︀𝜌3/4,
𝑇𝑗𝑘𝜐 = 𝑖[𝑑12𝑗+𝜇−2,𝑘𝜐𝜇 + (−1)𝑗+𝜇𝑑22𝑗+𝜇−2,𝑘𝜐𝜇], 𝑗, 𝑘 = 1, 2,

𝑆𝑗𝑘(Φ
′
0; 𝜌0) = 𝑖[𝑑12𝑗+𝜇−2𝜐𝜇,𝑘 + (−1)𝑗+𝜇𝑑22𝑗+𝜇−2𝜐𝜇,3−𝑘], 𝑗, 𝑘 = 1, 2,

𝜐𝑗,1 ≡ 𝜐𝑗𝑧 = Φ′
𝑗(𝑧) + 𝑆𝜌𝑗(𝑧), 𝑗 = 1, 2,

𝜐𝑗,2 ≡ 𝜐𝑗𝑧 = 𝜌𝑗, 𝑗 = 1, 2,

𝑑𝑗𝑚,1 ≡ 𝑑𝑗𝑚𝑧, 𝑑𝑗𝑚,2 ≡ 𝑑𝑗𝑚𝑧, 𝑗, 𝑘 = 1, 2, 𝑚 = 1, 4.

(3.13)

4. Solution of problem (2.1), (2.2)

Integral representations (3.10), (3.12) for generalized displacements 𝑎 = (𝑤1, 𝑤2, 𝑤3, 𝜓1, 𝜓2)
involve arbitrary holomorphic functions Φ𝑗(𝑧), 𝑗 = 1, 2, Ψ𝑘(𝑧), 𝑘 = 1, 3 and arbitrary functions
𝜌𝑗(𝑧), 𝑗 = 1, 3. We find them so that the generalized displacements satisfy system (3.2) and
boundary conditions (3.4) assuming temporarily that the right hand sides of equations (3.2)
and boundary conditions (3.4) are known. In order to do this, we substitute relations (3.10),
(3.12), (3.13) into the left hand sides of system (3.2) and boundary conditions (3.4). Then
system of equations (3.2) is written as

𝜌𝑗(𝑧) + ℎ𝑗1(𝜌)(𝑧) + ℎ𝑗2(Φ)(𝑧) = 𝑓 𝑗
𝑐 (𝑎)(𝑧) + 𝑓 𝑗

𝜒(𝑎)(𝑧)− 𝐹 𝑗(𝑧), 𝑗 = 1, 3, 𝑧 ∈ Ω, (4.1)

where ℎ𝑗1(𝜌)(𝑧) and ℎ𝑗2(Φ)(𝑧) we denote the parts of the expression for the operator ℎ𝑗(𝑎) in
(3.3), which involve the functions 𝜌 = (𝜌1, 𝜌2, 𝜌3) and Φ = (Φ1,Φ2,Ψ1,Ψ2,Ψ3), respectively.
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The representations

𝑆(𝑇𝑗Φ0)
+(𝑡) = −(𝑡

′
)2[𝑑12𝑗−1(𝑡)Φ1(𝑡) + 𝑑12𝑗(𝑡)Φ2(𝑡)] +𝐾0𝑗(Φ0)(𝑡), Φ0 = (Φ1,Φ2),

𝐾0𝑗(Φ0)(𝑡) = −
𝑑12𝑗+𝜇−2(𝑡)

2𝜋𝑖

∫︁
Γ

𝜓(𝜏, 𝑡)− 𝜓(𝑡, 𝑡)

𝜏 − 𝑡
Φ𝜇(𝜏)𝑑𝜏

− (−1)𝑗+𝜇
𝑑22𝑗+𝜇−2(𝑡)

2𝜋𝑖

∫︁
Γ

𝜓(𝜏, 𝑡)− 𝜓(𝑡, 𝑡)

𝜏 − 𝑡
Φ𝜇(𝜏)𝑑𝜏

− 1

𝜋

∫︁∫︁
Ω

𝑑12𝑗+𝜇−2(𝜁)− 𝑑12𝑗+𝜇−2(𝑡)

(𝜁 − 𝑡)2
Φ𝜇(𝜁)𝑑𝜉𝑑𝜂

− (−1)𝑗+𝜇

𝜋

∫︁∫︁
Ω

𝑑22𝑗+𝜇−2(𝜁)− 𝑑22𝑗+𝜇−2(𝑡)

(𝜁 − 𝑡)2
Φ𝜇(𝜁)𝑑𝜉𝑑𝜂, 𝑗 = 1, 2,

𝜓(𝜏, 𝑡) = (𝜏 − 𝑡)/(𝜏 − 𝑡), 𝜓(𝑡, 𝑡) = (𝑡
′
)2,

(4.2)

obtained by means of relations (3.7)–(3.9), formulas (4.7), (4.9) from [14] and Sokhotskii for-
mulas [15] allow us to rewrite boundary conditions (3.4) in the form

(−1)𝑗𝑑𝑘𝜆(𝑡) Re[𝑖
𝑗𝑡′Φ𝜆(𝑡)]− 2𝐷1212

𝜆+𝑘−2(𝑡) Re[𝑖
𝑗−1𝑡′Ψ′

𝜆(𝑡)]− 2𝐷1212
𝜆+𝑘−2(𝑡) Re[𝑖

𝑗𝑡′𝐾0𝜆(Φ0)(𝑡)]

+𝐻3(𝑘−1)+𝑗𝜌(𝑡) = 𝜙𝑐3(𝑘−1)+𝑗(𝑎)(𝑡) + 𝜙𝜒3(𝑘−1)+𝑗(𝑎)(𝑡)− 𝐹 3𝑘+𝑗(𝑠), 𝑘, 𝑗 = 1, 2,

𝐷1313
0 (𝑡) Re[𝑖𝑡′Ψ′

3(𝑡)] +𝐾03(Φ)(𝑡) +𝐻3𝜌(𝑡) = 𝜙𝑐3(𝑎)(𝑡) + 𝜙𝜒3(𝑎)(𝑡)− 𝐹 6(𝑠),

(4.3)

where we have adopted the following notations

𝐻3(𝑘−1)+𝑗𝜌(𝑡) = Re[(−𝑖)𝑗𝑡′𝑇𝜌𝑘(𝑡)]
− 2𝐷1212

𝑘+𝜆−2(𝑡) Re{𝑖𝑗𝑡′(𝐼 + 𝑆)(𝑇𝜆𝑇𝜌0)
+(𝑡)}, 𝑘, 𝑗 = 1, 2,

𝐻3𝜌(𝑡) = 𝐷1313
0 (𝑡) Re[𝑖𝑡′(𝑇 ̃︀𝜌3(𝑡)/2 + 𝑇𝑇2𝑇𝜌0(𝑡))],

𝐾03(Φ)(𝑡) = 𝐷1313
0 (𝑡) Re{𝑡′[Ψ2(𝑡) + 𝑖𝑇𝑇2Φ0(𝑡)]};

𝑑𝑘𝑗(𝑡) = (−1)𝑗−1[2(−1)𝜆𝐷1212
𝜆+𝑘−2(𝑡)𝑑

2
2𝜆+𝑗−2(𝑡) + 3− 𝑘 − 𝑗], 𝑘, 𝑗 = 1, 2,

(4.4)

𝐼 is the identity mappings, the operators 𝑇, 𝑆, 𝑇𝜆 and the functions 𝑑𝑘𝑗 (𝑡) are defined in (3.7),

(3.8), (3.9), (3.11), respectively; Φ𝜆(𝑡) ≡ Φ+
𝜆 (𝑡), 𝑡 ∈ Γ. Hereinafter the symbol Φ+

𝜆 (𝑡) denotes
the limit of the function Φ𝜆(𝑧) as 𝑧 → 𝑡 ∈ Γ inside the domain Ω.
Thus, to determine the functions

𝜌𝑗 ∈ 𝐿𝑝(Ω), 𝑗 = 1, 3), Φ𝑘(𝑧) ∈ 𝐶𝛼(Ω), 𝑘 = 1, 2,

Ψ𝑗(𝑧) ∈ 𝐶1
𝛼(Ω), 𝑗 = 1, 3,

we have obtained system of equations (4.1), (4.3). We seek holomorphic functions as Cauchy
type integrals with real densities

Φ𝑘(𝑧) = Θ(𝜇2𝑘)(𝑧) ≡ Φ𝑘(𝜇2𝑘)(𝑧), 𝑘 = 1, 2,

Ψ′
𝑗(𝑧) = 𝑖(𝑗−1)(𝑗−2)/2Θ(𝜇2𝑗−1)(𝑧) ≡ Ψ′

𝑗(𝜇2𝑗−1)(𝑧), 𝑗 = 1, 3,

Θ(𝑓)(𝑧) =
1

2𝜋𝑖

∫︁
Γ

𝑓(𝜏) 𝑑𝜏

𝜏 ′(𝜏 − 𝑧)
,

(4.5)

where 𝜇𝑗(𝑡) ∈ 𝐶𝛼(Γ), 𝑗 = 1, 5, are arbitrary real functions, 𝜏 ′ = 𝑑𝜏/𝑑𝜎, 𝑑𝜎 is a differential of
the arc length of the curve Γ.
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For the functions Ψ𝑗(𝑧), 𝑗 = 1, 3, we have the representations

Ψ𝑗(𝑧) = 𝑖(𝑗−1)(𝑗−2)/2Θ0(𝜇2𝑗−1)(𝑧) + 𝑐2𝑗−1 + 𝑖𝑐2𝑗 ≡ Ψ𝑗(𝜇2𝑗−1)(𝑧) + 𝑐2𝑗−1 + 𝑖𝑐2𝑗, 𝑗 = 1, 3,

Θ0(𝑓)(𝑧) = − 1

2𝜋𝑖

∫︁
Γ

𝑓(𝜏)

𝜏 ′
𝑙𝑛

(︁
1− 𝑧

𝜏

)︁
𝑑𝜏,

(4.6)

where 𝑐𝑗, 𝑗 = 1, 6, are arbitrary real constants, while by ln(1−𝑧/𝜏) we mean a univalent branch
vanishing as 𝑧 = 0.
Using the Sokhotskii formulas [15], we find Φ𝑘(𝑡) (𝑘 = 1, 2), Ψ′

𝑗(𝑡), 𝑗 = 1, 3, 𝑡 ∈ Γ. Substi-
tuting their expressions and representations (4.6) into system (4.1), (4.3), after simple trans-
formations we arrive at the following system of equations for the functions 𝜌 ∈ 𝐿𝑝(Ω) and
𝜇 = (𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5) ∈ 𝐶𝛼(Γ) :

𝜌𝑗(𝑧) + ℎ𝑗1(𝜌)(𝑧) + ℎ𝑗2(𝜇)(𝑧) = 𝑓 𝑗
𝑐 (𝑎)(𝑧) + 𝑓 𝑗

𝜒(𝑎)(𝑧) + 𝑔𝑗𝑐(𝑧)− 𝐹 𝑗(𝑧), 𝑧 ∈ Ω, 𝑗 = 1, 3,

5∑︁
𝑛=1

⎡⎣𝑎𝑗𝑛(𝑡)𝜇𝑛(𝑡) + 𝑏𝑗𝑛(𝑡)

∫︁
Γ

𝜇𝑛(𝜏)

𝜏 − 𝑡
𝑑𝜏

⎤⎦+𝐾𝑗𝜇(𝑡) +𝐻𝑗𝜌(𝑡)

= 𝜙𝑐𝑗(𝑎)(𝑡) + 𝜙𝜒𝑗(𝑎)(𝑡) + 𝑔3+𝑗
𝑐 (𝑡)− 𝐹 3+𝑗(𝑡), 𝑡 ∈ Γ, 𝑗 = 1, 5,

(4.7)

in which we have adopted the notations

𝐾3(𝑛−1)+𝑗𝜇(𝑡) = (−1)𝑗𝑑𝑛𝜆(𝑡){Re[𝑖𝑗𝑡′Θ(𝜇2𝜆)(𝑡)]− 𝑖Re(𝑖𝑗−1)Θ(𝜏 ′𝜇2𝜆)(𝑡)}
+ 2𝐷1212

𝜆+𝑛−2(𝑡){Re[𝑖𝑗+1𝑡′Θ(𝜇2𝜆−1)(𝑡)]− 𝑖Re(𝑖𝑗)Θ(𝜏 ′𝜇2𝜆−1)(𝑡)

− Re[𝑖𝑗𝑡′𝐾0𝜆(𝜇0)(𝑡)]}, 𝑛, 𝑗 = 1, 2,

𝐾3𝜇(𝑡) = 𝐾03(𝜇)(𝑡)−𝐷1313
0 (𝑡) Re[𝑡′Θ(𝜇5)(𝑡)];

𝑔2𝑐 (𝑧) = 𝐷1313
0 (𝑐4 + 𝑖𝑐3)/2,

𝑔3𝑐 (𝑧) = −𝑐4𝐷1313
0𝛼1 − 𝑐3𝐷

1313
0𝛼2 ,

𝑔6𝑐 (𝑡) = 𝐷1313
0 (𝑡)(𝑐4𝑑𝛼

2/𝑑𝑠− 𝑐3𝑑𝛼
1/𝑑𝑠),

𝑔1𝑐 (𝑧) = 𝑔3+𝑗
𝑐 (𝑡) ≡ 0, 𝑗 = 1, 2, 4, 5;

𝑎3(𝑘−1)+𝑗 2𝜆(𝑡) = (−1)𝑗𝑑𝑘𝜆(𝑡) Re(𝑖
𝑗)/2,

𝑏3(𝑘−1)+𝑗 2𝜆(𝑡) = (−1)𝑗𝑑𝑘𝜆(𝑡) Re(𝑖
𝑗−1)/(2𝜋),

𝑎3(𝑘−1)+𝑗 2𝜆−1(𝑡) = −𝐷1212
𝜆+𝑘−2(𝑡) Re(𝑖

𝑗−1),

𝑏3(𝑘−1)+𝑗 2𝜆−1(𝑡) = 𝐷1212
𝜆+𝑘−2(𝑡) Re(𝑖

𝑗)/𝜋, 𝑘, 𝑗, 𝜆 = 1, 2,

𝑎35(𝑡) = −𝐷1313
0 (𝑡)/2;

(4.8)

other 𝑎𝑗𝑘, 𝑏𝑗𝑘 are zero. Here

ℎ𝑗2(𝜇)(𝑧) ≡ ℎ𝑗2(Φ(𝜇))(𝑧),

𝐾0𝑗(𝜇0)(𝑡) ≡ 𝐾0𝑗(Φ0(𝜇0))(𝑡), 𝑗 = 1, 2;

𝐾03(𝜇)(𝑡) ≡ 𝐾03(Φ(𝜇))(𝑡),

Φ(𝜇) = (Φ1(𝜇2),Φ2(𝜇4),Ψ1(𝜇1),Ψ2(𝜇3),Ψ3(𝜇5)),

𝜇0 = (𝜇2, 𝜇4).

Lemma 4.1. Let Conditions (a), (b), (c), (d) hold true. Then

1) ℎ𝑗1(𝜌), 𝑗 = 1, 3, are linear completely continuous operators in 𝐿𝑝(Ω);

2) ℎ𝑗2(𝜇), 𝑗 = 1, 3, are linear completely continuous operators from 𝐶𝜈(Γ) into 𝐿𝑝(Ω) for all
𝜈 ∈ (0, 1);
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3) 𝐾𝑗 𝜇, 𝑗 = 1, 5, are linear completely continuous operators from 𝐶𝜈(Γ) into 𝐶𝛾(Γ) for all
𝜈 ∈ (0, 1) and 𝛾 < 𝛽/2;

4) 𝐻𝑗 𝜌, 𝑗 = 1, 5), are linear completely continuous operators from 𝐿𝑝(Ω) into 𝐶𝛼′(Γ) for all
𝛼′ < 𝛼 and are bounded operators from 𝐿𝑝(Ω) into 𝐶𝛼(Γ);

5) The belongings hold:

𝑓 𝑗
𝑐 (𝑎)(𝑧), 𝑓

𝑗
𝜒(𝑎)(𝑧), 𝐹

𝑗(𝑧), 𝑔𝑗𝑐(𝑧) ∈ 𝐿𝑝(Ω), 𝑗 = 1, 3;

𝜙𝑐𝑗(𝑎)(𝑡), 𝜙𝜒𝑗(𝑎)(𝑡) ∈ 𝐶𝛼(Γ), 𝐹
3+𝑗(𝑡), 𝑔6𝑐 (𝑡), 𝑎𝑗𝑘(𝑡), 𝑏𝑗𝑘(𝑡) ∈ 𝐶𝛽(Γ), 𝑗, 𝑘 = 1, 5.

Proof. It is known that [14] the Cauchy type integral 𝜃(𝑓) in (4.5) is a bounded operator
from 𝐶𝛼(Γ) into 𝐶𝛼(Ω), and its derivative 𝜃′(𝑓) is a bounded operator from 𝐶𝛼(Γ) into 𝐿𝑞(Ω),
1 < 𝑞 < 2/(1− 𝛼). Moreover, it is easy to show that 𝜃(𝑓) is a completely continuous operator
from 𝐶𝛼(Γ) into 𝐿𝑝(Ω) for all 𝑝 > 1 and into 𝐶𝛼′(Ω) for all 𝛼′ < 𝛼. Taking this fact into
consideration as well as properties of the operators 𝑇 , 𝑆 defined in (3.7), (3.8) and using the
representations for the first derivatives of the generalized displacements in (3.13) and expressions
for the operators ℎ𝑗(𝑎) in (3.3), we conclude that the first two statements of the lemma are
true.
Since 𝜓(𝜏, 𝑡) ∈ 𝐶𝛽(Γ)×𝐶𝛽(Γ) [15], 𝑑𝑘𝜆(𝑡) ∈ 𝐶𝛽(Γ), 𝑑

𝑘
𝑗 (𝑧), 𝐷

1313
0 (𝑧) ∈ 𝐶𝛽(Ω), then taking into

consideration Corollary 4.3 from [16], we easily confirm that first two terms in the right hand
side for the operators 𝐾0𝑗(𝜇0) in (4.2) are completely continuous operators from 𝐶𝜈(Γ) into
𝐶𝛾(Γ) for all 𝜈 ∈ (0, 1) and 𝛾 < 𝛽. It is also easy to show that the third and forth terms of
this representation in (4.2) are completely continuous operators from 𝐶𝜈(Γ) into 𝐶𝛾(Γ) for all
𝜈 ∈ (0, 1) and 𝛾 < 𝛽. We then obtain that 𝐾0𝑗(𝜇0), 𝑗 = 1, 2, are linear completely continuous
operators from 𝐶𝜈(Γ) into 𝐶𝛾(Γ) for all 𝜈 ∈ (0, 1) and 𝛾 < 𝛽. Similarly to the representation of
the operator 𝐾03(𝜇) in (4.4) it follows that 𝐾03(𝜇) is a linear completely continuous operator
from 𝐶𝜈(Γ) into 𝐶𝛽(Γ) for all 𝜈 ∈ (0, 1).
We transform the first two terms in the right hand side of the formula for the operator

𝐾3(𝑛−1)+𝑗𝜇 in (4.8) to the form

(−𝑖)𝑗

2
𝑑𝑛𝜆(𝑡)

⎧⎨⎩(−1)𝑗 − 1

2𝜋𝑖

∫︁
Γ

𝜇2𝜆(𝜏)

𝜏 ′
𝜏 ′ − 𝑡′

𝜏 − 𝑡
𝑑𝜏 +

(−1)𝑗

𝜋

∫︁
Γ

𝜇2𝜆(𝜏)

𝜏 ′
Im

(︂
𝑡′

𝜏 − 𝑡

)︂
𝑑𝜏

⎫⎬⎭ .

Therefore, in view of the belongings 𝜏 ′, 𝑑𝑛𝜆 ∈ 𝐶𝛽(Γ) and the identity

Im[𝑡′/(𝜏 − 𝑡)] = 𝑘*(𝜏, 𝑡)/|𝜏 − 𝑡|1−𝛽/2,

where 𝑘*(𝜏, 𝑡) ∈ 𝐶𝛽/2(Γ)×𝐶𝛽/2(Γ) [15], and also by Corollaries 4.4, 4.5 in [16] we obtain that the
first two terms in the expression for the operator 𝐾3(𝑛−1)+𝑗𝜇 in (4.8) define a linear completely
continuous operator from 𝐶𝜈(Γ) into 𝐶𝛾(Γ) for all 𝜈 ∈ (0, 1) and 𝛾 < 𝛽/2. In the same way
we show that the third and fourth terms in the expression for the operator 𝐾3(𝑛−1)+𝑗𝜇 in (4.8)
possess the same properties. Then the representations for the operators 𝐾𝑗𝜇, 𝑗 = 1, 5, in (4.8)
imply the third statement of the lemma. The validity of its fourth statement is implied by the
representations for the operators 𝐻𝑗𝜌, 𝑗 = 1, 5, in (4.4) due to the properties of the operators
𝑇 , 𝑆, of the Cauchy type integral and the relations

𝑆(𝑇𝜆𝑇𝜌0)
+(𝑡) = 𝑇

(︂
𝜕

𝜕𝜁
𝑇𝜆𝑇𝜌0

)︂
(𝑡)− 1

2
(𝑡

′
)2𝑇𝜆𝑇𝜌0(𝑡)−

1

2𝜋𝑖

∫︁
Γ

𝑇𝜆𝑇𝜌0(𝜏)

𝜏 − 𝑡
𝑑𝜏 , 𝜆 = 1, 2,

which are obtained by using formulas (8.20) from [14] and the Sokhotskii formulas. The validity
of the fifth statement of the lemma follows directly from formulas (3.3), (3.5), (4.8). The proof
is complete.
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We are going to study the solvability of the system of equations (4.7) in the space 𝐿𝑝(Ω) ×
𝐶𝛼′(Γ), 𝛼′ < 𝛼. We observe that each solution (𝜌, 𝜇) ∈ 𝐿𝑝(Ω) × 𝐶𝛼′(Γ) of system (4.7) by
Lemma 4.1 belongs to the space 𝐿𝑝(Ω)×𝐶𝛼(Γ). Using the expressions for 𝑎𝑗𝑘(𝑡), 𝑏𝑗𝑘(𝑡) in (4.8),
we calculate the determinant

det[𝐴(𝑡)− 𝜋𝑖𝐵(𝑡)] = 𝐷1313
0 𝛿1(𝑎

2
1 − 𝑎0𝑎2)/(32𝛿0), 𝑎𝑛 = 𝐷1111

𝑛 +𝐷1122
𝑛 , 𝑛 = 0, 1, 2,

where 𝛿0, 𝛿1 are defined in (3.11), while 𝐴 = (𝑎𝑗𝑘), 𝐵 = (𝑏𝑗𝑘) are square matrices of fifth order.
Thus, det[𝐴(𝑡)− 𝜋𝑖𝐵(𝑡)] ̸= 0 on Γ for the index of system (4.7) we obtain

𝜒 =
1

2𝜋

[︂
arg

det(𝐴− 𝜋𝑖𝐵)

det(𝐴+ 𝜋𝑖𝐵)

]︂
Γ

= 0;

here the symbol [arg𝜙]Γ means the increment of the argument of the function 𝜙 while passing
the curve Γ once in the positive direction. Hence, we can apply the Fredholm alternative to
system (4.7). Let (𝜌, 𝜇) ∈ 𝐿𝑝(Ω) × 𝐶𝛼′(Γ) be a solution of system (4.7) for the zero right
hand side. By formulas (4.5), (4.6) with constants 𝑐𝑗 = 0, 𝑗 = 1, 6, to these solutions, the
holomorphic functions Φ𝑘(𝑧), Ψ𝑗(𝑧) correspond to, which by formulas (3.10), (3.12) determine
the function 𝑤𝑗, 𝑗 = 1, 3, 𝜓𝑘, 𝑘 = 1, 2. As we see easily, these functions satisfy homogeneous
system of linear equations (3.2),

𝑓 𝑗
𝑐 + 𝑓 𝑗

𝜒 − 𝐹 𝑗 ≡ 0, 𝑗 = 1, 3,

and homogeneous linear boundary conditions (3.4),

𝜙𝑐𝑗 + 𝜙𝜒𝑗 − 𝐹 3+𝑗 ≡ 0, 𝑗 = 1, 5.

We multiply the real and imaginary part of the first equation in homogeneous system (3.2)
respectively by 𝑤1 and 𝑤2. For the second equation we make a similar multiplication by
respectively 𝜓1 and 𝜓2, while the third equation is multiplied by 𝑤3. After that we integrate over
the domain Ω and sum the obtained identities. In view of homogeneous boundary conditions
(3.4) we obtain that 𝑤𝑗, 𝑗 = 1, 3, 𝜓𝑘, 𝑘 = 1, 2, satisfy the system

𝜈𝑗1𝛼1 = 0, 𝜈𝑗2𝛼2 = 0, 𝜈𝑗1𝛼2 + 𝜈𝑗2𝛼1 = 0, 𝑤3𝛼𝑗 + 𝜓𝑗 = 0, 𝑗 = 1, 2,

a solution of which reads as

𝑤1 = −𝑐0𝛼2 + 𝑐1, 𝑤2 = 𝑐0𝛼
1 + 𝑐2,

𝑤3 = −𝑐4𝛼1 − 𝑐5𝛼
2 + 𝑐6, 𝜓1 = 𝑐4, 𝜓2 = 𝑐5,

(4.9)

where 𝑐𝑗 are arbitrary real constants.
Since Ψ𝑗(0) = 0, 𝑗 = 1, 3, 𝑤3(0) = 0, by (4.9) we get

𝑤1 = −𝑐0𝛼2 + 𝑐1, 𝑤2 = 𝑐0𝛼
1 + 𝑐2, 𝑤3 = 𝜓1 = 𝜓2 ≡ 0.

Then 𝜐𝑗(𝑧) = 2𝑖𝑐0𝐷
1212
𝑗−1 , 𝑗 = 1, 2 and equations (3.6) imply the identities

𝜌𝑗(𝑧) = 2𝑖𝑐0𝐷
1212
𝑗−1𝑧, 𝑗 = 1, 2, 𝜌3(𝑧) ≡ 0, 𝑧 ∈ Ω. (4.10)

Using formulas (3.7), (3.10), (3.12) and representation for 𝜐0𝑗𝑧 in (3.13), we find Φ𝑘(𝑧), 𝑘 =

1, 2, Ψ′
𝑗(𝑧), 𝑗 = 1, 3. Substituting them into (4.5), we obtain

𝜇1(𝑡)/𝑡
′ − 𝑐0(𝑡

′
)2 = 𝐹−

1 (𝑡),

𝜇2𝑗(𝑡)/𝑡
′ − 2𝑖𝑐0𝐷

1212
𝑗−1 (𝑡) = 𝐹−

2𝑗(𝑡), 𝑗 = 1, 2,

𝜇2𝑗−1(𝑡)/𝑡
′ = 𝐹−

2𝑗−1(𝑡), 𝑗 = 2, 3,
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where 𝐹−
𝑗 (𝑡) are the boundary values of the function 𝐹−

𝑗 (𝑧), which is holomorphic outside Ω
and decays at infinity. Therefore, we obtain the Riemann–Hilbert problem for the function
𝐹−
𝑗 (𝑧) in the exterior of the domain Ω with the boundary condition

Re[𝑖𝑡′ 𝐹−
𝑗 (𝑡)] = 𝑓−

𝑗 (𝑡), 𝑗 = 1, 5,

where

𝑓−
1 (𝑡) = 𝑐0Re(𝑖𝑡

′), 𝑓−
2𝑗(𝑡) = 2𝑐0𝐷

1212
𝑗−1 (𝑡) Re 𝑡

′, 𝑗 = 1, 2, 𝑓−
2𝑗−1(𝑡) = 0, 𝑗 = 2, 3.

Using the solution of this problem [17], we obtain representations for the functions 𝜇𝑗(𝑡):

𝜇𝑗(𝑡) = 𝑐0𝜇
0
𝑗(𝑡) + 𝛽0𝑗𝜇

1
𝑗(𝑡), 𝑗 = 1, 2, 4, 𝜇𝑗(𝑡) = 𝛽0𝑗𝜇

1
𝑗(𝑡), 𝑗 = 3, 5, (4.11)

where 𝜇𝑘
𝑗 (𝑡) are some known real functions belonging to the space 𝐶𝛼(Γ); 𝑐0, 𝛽0𝑗 are arbitrary

real constants.
Solutions (4.10), (4.11) show that homogeneous system of equations (4.7) possesses six lin-

early independent solutions. Then the adjoint system of equations also has six linearly indepen-
dent solutions. In order to derive the adjoint system, we multiply the real and imaginary parts
of the left hand sides of the equations in (4.1) respectively by functions 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 ∈ 𝐿𝑞(Ω),
1/𝑝 + 1/𝑞 = 1, and integrate over the domain Ω, while the left hand sides of the equations
in (4.3) are multiplied by real functions 𝜈1, 𝜈2, 𝜈3, 𝜈4, 𝜈5 ∈ 𝐶𝛼(Γ) and then we integrate over
the curve Γ. After that we sum them up and equate to zero. Replacing the holomorphic func-
tions Φ𝑗(𝑧), Ψ𝑘(𝑧), Ψ

′
𝑘(𝑧) by their expressions in (4.5), (4.6) with constants equalling to zero,

interchanging the integration order in the obtained iterated integrals, by means of traditional
arguing we make simple but rather bulky calculations, and this leads us to the adjoint system

𝑣𝑗(𝑧)− 𝑇3+𝑗𝑣(𝑧) + 2Θ(𝜏 ′𝜈𝑗)(𝑧) = 0, 𝑗 = 1, 2, 𝑧 ∈ Ω,

Re𝑇3𝑣(𝑧) = 0, 𝑧 ∈ Ω,

Re{𝑖[𝑇3+𝑗𝑣(𝑡)− 2Θ−(𝜏 ′𝜈𝑗)(𝑡)]} = 0, 𝑗 = 1, 2,

Re[𝑇𝑔(𝑣)(𝑡) + Θ−(𝜏 ′𝐷1313
0 𝜈3)(𝑡)] = 0,

Re{𝑇 [𝐷1212
𝜆+𝑗−2𝜁

𝑣𝜆](𝑡)− 2Θ−(𝜏 ′𝐷1212
𝜆+𝑗−2𝜈

𝜆)(𝑡)

+ (𝑗 − 1)[𝑖𝑇 0𝑔(𝑣)(𝑡)− 𝑇 0
Γ(𝐷

1313
0 𝜏 ′𝜈3)(𝑡)]} = 0, 𝑡 ∈ Γ, 𝑗 = 1, 2;

𝑣𝑗 = 𝑣3𝑗−2 + 𝑖𝑣3𝑗−1, 𝜈𝑗 = 𝜈3𝑗−2 + 𝑖𝜈3𝑗−1, 𝑗 = 1, 2,

𝑣3 = 𝑣3, 𝜈3 = 𝜈3.

(4.12)

In equations (4.12) we have adopted the notations

𝑇3𝑣(𝑧) = −2𝑇𝑔(𝑣)(𝑧) + 2𝐷1313
0 (𝑧)𝑣3(𝑧)− 2Θ(𝜏 ′𝐷1313

0 𝜈3)(𝑧),

𝑇3+𝑗𝑣(𝑧) = 2𝑇𝑑𝑗+2𝜆−2[𝑆𝜆𝑣](𝑧) + 𝑇𝑑2+𝑗[𝑇3𝑣](𝑧),

𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5),

𝑆𝑗𝑣(𝑧) = 𝑆[𝐷1212
𝑗+𝜆−2𝜁

𝑣𝜆](𝑧)−𝐷1212
𝑗+𝜆−2𝑧𝑣

𝜆(𝑧)− 2Θ′(𝜏 ′𝐷1212
𝑗+𝜆−2𝜈

𝜆)(𝑧), 𝑗 = 1, 2,

𝑔(𝑣)(𝑧) = 𝐷1313
0𝑧 (𝑧)𝑣3(𝑧)−𝐷1313

0 (𝑧)𝑣2(𝑧)/4,

𝑇 0𝑓(𝑧) = − 1

𝜋𝑖

∫︁∫︁
Ω

𝑓(𝜁)𝑙𝑛

(︂
1− 𝜁

𝑧

)︂
𝑑𝜉𝑑𝜂,

𝑇 0
Γ𝑓(𝑧) = − 1

2𝜋𝑖

∫︁
Γ

𝑓(𝜏)𝑙𝑛
(︁
1− 𝜏

𝑧

)︁
𝑑𝜎,

Θ′(𝑓)(𝑧) =
1

2𝜋𝑖

∫︁
Γ

𝑓(𝜏)𝑑𝜏

𝜏 ′(𝜏 − 𝑧)2
;

(4.13)
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Θ−(𝑓)(𝑡) are the boundary values of the function Θ(𝑓)(𝑧) as 𝑧 → 𝑡 ∈ Γ outside Ω; the operators
𝑇𝑓 , 𝑆𝑓 , 𝑑𝑗[𝑓 ], Θ(𝑓) are defined in (3.7), (3.8), (3.11), (4.5), respectively.
As it was noted above, system (4.12) possesses six linearly independent solutions; we are going

to obtain their explicit expressions. Belon in (4.12) by 𝑣 ∈ 𝐿𝑞(Ω), 1/𝑝 + 1/𝑞 = 1, 𝜈 ∈ 𝐶𝛼(Γ),
we mean some its solution.
We observe that the operators 𝑇 , 𝑇 0, 𝑇 0

Γ introduced in (3.7), (4.13), define the functions
𝑇𝑓(𝑧), 𝑇 0𝑓(𝑧), 𝑇 0

Γ , 𝑓(𝑧), which are holomorphic in the exterior of the domain Ω and vanish at
infinity. The function 𝜃(𝑓)(𝑧) possesses the same property. This is why the five latter identities
on the curve Γ in (4.12) are boundary conditions for the Riemann–Liouville problem with the
zero index for the functions holomorphic outside Ω and decaying at infinity. As it is known,
such problem possesses only the zero solution. Therefore, these five identities on the curve Γ
are transformed to the form

𝑇3+𝑗𝑣(𝑧)− 2Θ(𝜏 ′𝜈𝑗)(𝑧) = 0, 𝑗 = 1, 2,

𝑇 𝑔(𝑣)(𝑧) + Θ(𝜏 ′𝐷1313
0 𝜈3)(𝑧) = 0,

𝑇 [𝐷1212
𝜆+𝑗−2𝜁

𝑣𝜆](𝑧)− 2Θ(𝜏 ′𝐷1212
𝜆+𝑗−2𝜈

𝜆)(𝑧)

+ (𝑗 − 1)[𝑖𝑇 0𝑔(𝑣)(𝑧)− 𝑇 0
Γ(𝐷

1313
0 𝜏 ′𝜈3)(𝑧)] = 0, 𝑗 = 1, 2, 𝑧 ∈ Ω1 ≡ C ∖ Ω,

(4.14)

C is the complex plane.
It follows from the first three identities in (4.12) that the functions 𝑣𝑗, 𝑗 = 1, 5, belong to the

space𝑊
(1)
𝑞1 (Ω)∩𝐶𝛼(Ω), 1 < 𝑞1 < 2/(1−𝛼). In these identities we pass to the limit as 𝑧 → 𝑡 ∈ Γ

inside the domain Ω, while in the first three identities in (4.14) we do the same outside the
domain Ω. Then the latter identities are added to the former three identities, respectively.
Taking into consideration the continuity of the functions outside of form 𝑇𝑓(𝑧) as 𝑓 ∈ 𝐿𝑝(Ω)
on C and using the Sokhotskii formulas, we obtain

𝑣𝑗(𝑡) = −2𝜈𝑗(𝑡), 𝑗 = 1, 2, 𝑣3(𝑡) = 𝜈3(𝑡), 𝑡 ∈ Γ. (4.15)

We differentiate first two identities in (4.12) in 𝑧. In view of (3.8) we get the identities

𝑣𝑗𝑧 = 2𝑑𝑗+2𝜆−2[𝑆𝜆𝑣](𝑧) + 𝑑2+𝑗[𝑇3𝑣](𝑧), 𝑗 = 1, 2, 𝑧 ∈ Ω.

Considering them as a system for 𝑋1 = 2𝑆1𝑣, 𝑋2 = 2𝑆2𝑣 + 𝑇3𝑣 and solving it, we have

𝑋𝑗 = (𝐷1111
𝑗+𝜆−2 −𝐷1212

𝑗+𝜆−2)𝑣
𝜆
𝑧 + (𝐷1111

𝑗+𝜆−2 +𝐷1212
𝑗+𝜆−2)𝑣

𝜆
𝑧 , 𝑗 = 1, 2, 𝑧 ∈ Ω. (4.16)

We additionally suppose that the conditions

𝐷1212
𝑗 (𝑗 = 0, 1, 2), 𝐷1313

0 ∈ 𝑊 (2)
𝑝 (Ω) (4.17)

hold true. Using the relations for the functions 𝑇3𝑣(𝑧), 𝑆𝑗𝑣(𝑧), 𝑗 = 1, 2, in (4.13), we find 𝑋𝑗𝑧,
𝑗 = 1, 2, which, as we see easily, belong to the space 𝐿𝑞1(Ω), 1 < 𝑞1 < 2/(1 − 𝛼). Now we
substitute these expressions 𝑋𝑗𝑧, 𝑗 = 1, 2, into the left hand sides of the relations obtained by
differentiating of identities (4.16) with respect to 𝑧. We differentiate the third identity in (4.12)
in 𝑧 and 𝑧. By means of simple transformations of the obtained relations we confirm that the
vector function ̃︀𝑣 = (𝑣1, 𝑣2, 2𝑣3, 𝑣4, 𝑣5) is a solution of system of linear equations (3.2) with zero
right hand side.
Then for the solution (𝑣, 𝜈) of adjoint system of equations (4.12) we require 𝜈(𝑡) ∈ 𝐶1

𝛼(Γ).
Then, as we see easily, 𝑣(𝑧) ∈ 𝐶1

𝛼(Ω). Now we pass to limit as 𝑧 → 𝑡 ∈ Γ inside the domain Ω
in identities (4.16) and the left hand side 𝑋+

𝑗 (𝑡) is replaced by the expression obtained by using
the representations for (𝑆𝑗𝑣)(𝑧), 𝑇3𝑣(𝑧) in (4.13). Then we deduct respectively the identities
obtained by differentiating in 𝑧 of the latter two relations (4.14) followed by the passage to the
limit as 𝑧 → 𝑡 ∈ Γ outside Ω. Then the third identities in (4.12) and (4.14) are differentiated
in 𝑧, in the obtained identities we pass to the limit as 𝑧 → 𝑡 ∈ Γ respectively inside and outside
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the domain Ω and we deduct one from another. By means of the obtained in this way identities
on the curve Γ, using relations (4.15), the formulas

(𝑆𝑓)+(𝑡)− (𝑆𝑓)−(𝑡) = −𝑓(𝑡) · (𝑡′)2, 𝜃′+(𝜏 ′𝑓)(𝑡)− 𝜃′−(𝜏 ′𝑓)(𝑡) = 𝑓𝑡 + 𝑓𝑡 · (𝑡
′
)2, 𝑡 ∈ Γ,

in which the operators 𝑆𝑓 , Θ′(𝑓) are defined in (3.8), (4.13), and assuming without loss of gen-
erality that 𝑡 = 0 ∈ Γ, after simple transformations we see that the functions 𝑣1, 𝑣2, 2𝑣3, 𝑣4, 𝑣5
satisfy also homogeneous boundary conditions in (3.4). Thus, the vector ̃︀𝑣 = (𝑣1, 𝑣2, 2𝑣3, 𝑣4, 𝑣5)
is a solution of homogeneous system of linear equations in (3.2) satisfying homogeneous bound-
ary conditions in (3.4). Therefore, in accordance with (4.9), for the components of the vector̃︀𝑣 we obtain the following representations:

𝑣1 = −𝑐0𝛼2 + 𝑐1, 𝑣2 = 𝑐0𝛼
1 + 𝑐2, 𝑣3 = (−𝑐4𝛼1 − 𝑐5𝛼

2 + 𝑐6)/2, 𝑣4 = 𝑐4, 𝑣5 = 𝑐5,

where 𝑐𝑗 are arbitrary real constants.
The functions 𝜈𝑗(𝑡) and 𝑣𝑘 are related by formulas (4.15). Therefore, the solution (𝑣, 𝜈)𝑇 ,

𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5), 𝜈 = (𝜈1, 𝜈2, 𝜈3, 𝜈4, 𝜈5) of adjoint system (4.12) can be represented as

(𝑣, 𝜈)𝑇 = 𝑐0𝛾1 + 𝑐1𝛾2 + 𝑐2𝛾3 + 𝑐4𝛾4 + 𝑐5𝛾5 + 𝑐6𝛾6,

where 𝛾𝑘 = (𝛾𝑘1, 𝛾𝑘2, . . . , 𝛾𝑘10), 𝑘 = 1, 6, are linearly independent solutions of system (4.12).
Then system (4.7) is solvable if and only the conditions∫︁∫︁

Ω

{︀
Re

[︀
(𝑓 1

𝑐 + 𝑓 1
𝜒 + 𝑔1𝑐 − 𝐹 1)(𝑧)(𝛾𝑘1 − 𝑖𝛾𝑘2)(𝑧)

+(𝑓 2
𝑐 + 𝑓 2

𝜒 + 𝑔2𝑐 − 𝐹 2)(𝑧)(𝛾𝑘4 − 𝑖𝛾𝑘5)(𝑧)
]︀
+ (𝑓 3

𝑐 + 𝑓 3
𝜒 + 𝑔3𝑐 − 𝐹 3)(𝑧)𝛾𝑘3(𝑧)

}︀
𝑑𝛼1𝑑𝛼2

+
5∑︁

𝑗=1

∫︁
Γ

(𝜙𝑐𝑗 + 𝜙𝜒𝑗 + 𝑔3+𝑗
𝑐 − 𝐹 3+𝑗)(𝑡)𝛾𝑘,5+𝑗(𝑡)𝑑𝑠 = 0, 𝑘 = 1, 6,

hold true, which, after simple transformations, become∫︁∫︁
Ω

𝑅𝑗𝑑𝛼1𝑑𝛼2 +

∫︁
Γ

𝑃 𝑗𝑑𝑠−
∫︁∫︁
Ω

𝐵𝑗𝜆[𝑇
𝜆3(𝛾) + 𝑇 𝜆𝜇(𝛾)𝜔𝜇]𝑑𝛼

1𝑑𝛼2 = 0, 𝑗 = 1, 2,

∫︁∫︁
Ω

(𝑅1𝛼2 −𝑅2𝛼1)𝑑𝛼1𝑑𝛼2 +

∫︁
Γ

(𝑃 1𝛼2 − 𝑃 2𝛼1)𝑑𝑠

+

∫︁∫︁
Ω

(𝛼1𝐵2𝜆 − 𝛼2𝐵1𝜆)[𝑇
𝜆𝜇(𝛾)𝜔𝜇 + 𝑇 𝜆3(𝛾)]𝑑𝛼1𝑑𝛼2 = 0,

∫︁∫︁
Ω

(𝛼𝑗𝑅3 − 𝐿𝑗)𝑑𝛼1𝑑𝛼2 +

∫︁
Γ

(𝛼𝑗𝑃 3 −𝑁 𝑗)𝑑𝑠+

∫︁∫︁
Ω

𝛼𝑗𝐵𝜆𝜇𝑇
𝜆𝜇(𝛾)𝑑𝛼1𝑑𝛼2

−
∫︁∫︁
Ω

𝑇 𝑗𝜇(𝛾)𝜔𝜇𝑑𝛼
1𝑑𝛼2 = 0, 𝑗 = 1, 2,

∫︁∫︁
Ω

𝑅3𝑑𝛼1𝑑𝛼2 +

∫︁
Γ

𝑃 3𝑑𝑠+

∫︁∫︁
Ω

𝐵𝜆𝜇𝑇
𝜆𝜇(𝛾)𝑑𝛼1𝑑𝛼2 = 0,

(4.18)

where 𝑅𝑗, 𝑃 𝑗 (𝑗 = 1, 3), 𝐿𝑘, 𝑁𝑘, 𝑘 = 1, 2, are the components of external forces, 𝛾 is an
arbitrarily fixed vector of deformation, 𝜔𝜇 is an arbitrarily fixed function.
Under conditions (4.18), the general solution of system (4.7) can be represented as

(𝜌, 𝜇) = (𝜌𝑐, 𝜇𝑐)(𝑎) + (𝜌𝜒, 𝜇𝜒)(𝑎) + (𝜌*, 𝜇*) + (𝜌𝐹 , 𝜇𝐹 ), (𝜌𝑐, 𝜇𝑐)(𝑎) = R𝑓𝑐(𝑎),

(𝜌𝜒, 𝜇𝜒)(𝑎) = R𝑓𝜒(𝑎), (𝜌*, 𝜇*) = R𝑔𝑐 + (̃︀𝜌, ̃︀𝜇), (𝜌𝐹 , 𝜇𝐹 ) = −R𝐹,
(4.19)
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where

𝑓𝑐(𝑎) = (𝑓 1
𝑐 , 𝑓

2
𝑐 , 𝑓

3
𝑐 , 𝜙𝑐1, . . . , 𝜙𝑐5), 𝑓𝜒(𝑎) = (𝑓 1

𝜒, 𝑓
2
𝜒, 𝑓

3
𝜒, 𝜙𝜒1, . . . , 𝜙𝜒5), 𝑔𝑐 = (𝑔1𝑐 , . . . , 𝑔

8
𝑐 ),

𝐹 = (𝐹 1, . . . , 𝐹 8); R = (R1, . . . ,R8);

R𝑗, 𝑗 = 1, 3, and R𝑘, 𝑘 = 4, 8, are linear bounded operators from 𝐿𝑝(Ω)×𝐶𝛼(Γ) into 𝐿𝑝(Ω) and
into 𝐶𝛼(Γ), respectively; the functions ̃︀𝜌 = (̃︀𝜌1, ̃︀𝜌2, ̃︀𝜌3), ̃︀𝜇 = (̃︀𝜇1, . . . , ̃︀𝜇5) are defined by formulas
(4.10), (4.11), while 𝑓 𝑗

𝑐 , 𝑓
𝑗
𝜒, 𝜙𝑐𝑘, 𝜙𝜒𝑘, 𝑔

𝑛
𝑐 , 𝐹

𝑛 are defined by formulas in (3.3), (3.5), (4.8).
If we substitute the expression for the vector function 𝜇(𝑡) in (4.19) into relations (4.5), (4.6),

then for a holomorphic vector function Φ(𝑧) = (Φ0,Ψ), Φ0 = (Φ1,Φ2), Ψ = (Ψ1,Ψ2,Ψ3), we
obtain a representation:

Φ(𝑧) = Φ𝑐(𝑎)(𝑧) + Φ𝜒(𝑎)(𝑧) + Φ*(𝑧) + Φ𝐹 (𝑧), 𝑧 ∈ Ω, (4.20)

where

Φ𝑐(𝑎)(𝑧) = Φ(𝜇𝑐(𝑎))(𝑧), Φ𝜒(𝑎)(𝑧) = Φ(𝜇𝜒(𝑎))(𝑧), Φ𝐹 (𝑧) = Φ(𝜇𝐹 )(𝑧),

Φ*(𝑧) = Φ(R𝑔𝑐)(𝑧) + ̃︀Φ(𝑧), ̃︀Φ(𝑧) = (𝑐0𝛽0(𝑧), 𝑐0𝛽1(𝑧), 𝑐0𝛾0(𝑧) + 𝑐1 + 𝑖𝑐2, 0, 0),

𝛽𝑗(𝑧) = 2𝑖Θ(𝑡′𝐷1212
𝑗 )(𝑧), 𝑗 = 0, 1, 𝛾0(𝑧) = Θ(𝑡′𝑡)(𝑧);

the function Θ(𝑓)(𝑧) is defined in (4.5) and 𝑐𝑗 are arbitrary real constants.
Now we substitute the expressions for 𝜌(𝑧) in (4.19) and for the holomorphic functions in

(4.20) into (3.10), (3.12). Then problem (2.1), (2.2) is reduced to a system of nonlinear equations
for the vector function 𝑎 = (𝑤1, 𝑤2, 𝑤3, 𝜓1, 𝜓2), which we represent as

𝜐0𝑗 (𝑧) = 𝜐0𝑗𝑐(𝑎) + 𝜐0𝑗𝜒(𝑎) + 𝜐0𝑗*(𝑧) + 𝜐0𝑗𝐹 (𝑧), 𝑗 = 1, 2,

𝑤3(𝑧) = 𝑤3𝑐(𝑎) + 𝑤3𝜒(𝑎) + 𝑤3*(𝑧) + 𝑤3𝐹 (𝑧), 𝑧 ∈ Ω,
(4.21)

where

𝜐0𝑗𝑐(𝑎) = 𝜐0𝑗 (Ψ𝑗𝑐(𝑎); 𝜐𝑗𝑐(𝑎)), 𝜐𝑐(𝑎) = (𝜐1𝑐, 𝜐2𝑐),

𝜐𝑗𝑐(𝑎) = 𝜐𝑗(Φ𝑗𝑐(𝑎); 𝜌
𝑗
𝑐(𝑎)), 𝑗 = 1, 2, 𝑤3𝑐(𝑎) = 𝑤3(Ψ3𝑐(𝑎); 𝜌

3
𝑐(𝑎)).

Other terms in (4.21) are defined similarly, while the operators 𝜐𝑗(Φ𝑗; 𝜌
𝑗), 𝜐0𝑗 (Ψ𝑗; 𝜐𝑗) and

𝑤3(Ψ3; 𝜌
3) are defined in (3.7), (3.10), (3.12), respectively.

We observe that the functions 𝜐0𝑗*(𝑧), 𝑤3*(𝑧) and 𝜐0𝑗𝐹 (𝑧), 𝑤3𝐹 (𝑧) depend respectively on
arbitrary constants and external forces acting on the shell. At the same time, as we see easily,
the functions 𝜐01*(𝑧) = 𝑤2* + 𝑖𝑤1*, 𝜐

0
2*(𝑧) = 𝜓2* + 𝑖𝜓1*, 𝑤3*(𝑧) satisfy representations (4.9).

We proceed to studying the solvability of system (4.21) in the space 𝑊
(2)
𝑝 (Ω).

Lemma 4.2. Let Conditions (a), (b), (c), (d) hold. Then

1) 𝜐0𝑗𝑐(𝑎) (𝑗 = 1, 2), 𝑤3𝑐(𝑎) are linear completely continuous operators in 𝑊
(2)
𝑝 (Ω);

2) 𝜐0𝑗𝜒(𝑎), 𝑗 = 1, 2, 𝑤3𝜒(𝑎) are nonlinear bounded operators in 𝑊
(2)
𝑝 (Ω), and for all 𝑎𝑗 =

(𝑤𝑗
1, 𝑤

𝑗
2, 𝑤

𝑗
3, 𝜓

𝑗
1, 𝜓

𝑗
2) ∈ 𝑊

(2)
𝑝 (Ω), 𝑗 = 1, 2, the estimates

‖𝜐0𝑗𝜒(𝑎1)− 𝜐0𝑗𝜒(𝑎
2)‖

𝑊
(2)
𝑝 (Ω)

⩽ 𝑐
(︁
‖𝑎1‖

𝑊
(2)
𝑝 (Ω)

+ ‖𝑎2‖
𝑊

(2)
𝑝 (Ω)

+ ‖𝑤1‖2
𝑊

(2)
𝑝 (Ω)

+ ‖𝑤2‖2
𝑊

(2)
𝑝 (Ω)

)︁
‖𝑎1 − 𝑎2‖

𝑊
(2)
𝑝 (Ω)

,

‖𝑤3𝜒(𝑎
1)− 𝑤3𝜒(𝑎

2)‖
𝑊

(2)
𝑝 (Ω)

⩽ 𝑐
(︁
‖𝑎1‖

𝑊
(2)
𝑝 (Ω)

+ ‖𝑎2‖
𝑊

(2)
𝑝 (Ω)

+ ‖𝑤1‖2
𝑊

(2)
𝑝 (Ω)

+ ‖𝑤2‖2
𝑊

(2)
𝑝 (Ω)

)︁
‖𝑎1 − 𝑎2‖

𝑊
(2)
𝑝 (Ω)

(4.22)
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hold, where

‖𝑤𝑗‖2
𝑊

(2)
𝑝 (Ω)

= ‖𝑤𝑗
1‖2𝑊 (2)

𝑝 (Ω)
+ ‖𝑤𝑗

2‖2𝑊 (2)
𝑝 (Ω)

+ ‖𝑤𝑗
3‖2𝑊 (2)

𝑝 (Ω)
, 𝑗 = 1, 2,

𝑐 is a known positive constant depending on physical and geometrical characteristics of the
shell;

3) 𝜐0𝑗*(𝑧), 𝜐
0
𝑗𝐹 (𝑧) ∈ 𝑊

(2)
𝑝 (Ω), 𝑗 = 1, 2.

Proof. The representations for 𝑓 𝑗
𝑐 (𝑎), 𝑓

𝑗
𝜒(𝑎) in (3.3) and those for 𝜙𝑐𝑗(𝑎), 𝜙𝜒𝑗(𝑎) in (3.5) imply

that 𝑓 𝑗
𝑐 (𝑎) and 𝜙𝑐𝑗(𝑎) are linear completely continuous, while 𝑓 𝑗

𝜒(𝑎) and 𝜙𝜒𝑗(𝑎) are nonlinear

bounded operators from 𝑊
(2)
𝑝 (Ω) into 𝐿𝑝(Ω) and into 𝐶𝛼(Γ), respectively; for 𝑓

3
𝜒(𝑎), 𝜙𝜒3(𝑎) we

have estimates of form (4.22), while 𝑓 𝑗
𝜒(𝑎), 𝜙𝜒𝑗(𝑎), 𝑗 = 1, 2, satisfy estimates of form

‖𝑓 𝑗
𝜒(𝑎

1)− 𝑓 𝑗
𝜒(𝑎

2)‖𝐿𝑝(Ω), ‖𝜙𝜒𝑗(𝑎
1)− 𝜙𝜒𝑗(𝑎

2)‖𝐶𝛼(Γ) ⩽ 𝑐
(︁
‖𝑤1‖

𝑊
(2)
𝑝 (Ω)

+‖𝑤2‖
𝑊

(2)
𝑝 (Ω)

)︁
‖𝑎1 − 𝑎2‖

𝑊
(2)
𝑝 (Ω)

, 𝑗 = 1, 2.
(4.23)

Then in view of the boundedness of the operators R𝑗 by (4.19) we obtain that 𝜌𝑗𝑐(𝑎) and 𝜇𝑘𝑐(𝑎)
are linear completely continuous, while 𝜌𝑗𝜒(𝑎) and 𝜇𝑘𝜒(𝑎) are nonlinear bounded operators from

𝑊
(2)
𝑝 (Ω) into 𝐿𝑝(Ω) and into 𝐶𝛼(Γ), respectively, and for 𝜌𝑗𝜒(𝑎), 𝜇𝑘𝜒(𝑎) estimates (4.22) hold.

Therefore, in view of the properties of the Cauchy type integral in in (4.20) we conclude that
Φ𝑘𝑐(𝑎), Ψ

′
𝑗𝑐(𝑎) are linear completely continuous, Φ𝑘𝜒(𝑎), Ψ

′
𝑗𝜒(𝑎) are nonlinear bounded operators

from 𝑊
(2)
𝑝 (Ω) into 𝐶𝛼(Ω) and for nonlinear operators Φ𝑘𝜒(𝑎), Ψ

′
𝑗𝜒(𝑎) estimates (4.22) hold.

Let us study the properties of the operators

Φ′
𝑘𝑐(𝑎) = Θ′(𝜇2𝑘𝑐(𝑎)), 𝑘 = 1, 2, Ψ′′

𝑗𝑐(𝑎) = 𝑖(𝑗−1)(𝑗−2)/2Θ′(𝜇2𝑗−1𝑐(𝑎)), 𝑗 = 1, 3, (4.24)

where the operator Θ′(𝑓) is defined in (4.13).
We observe that the functions 𝜌𝑗𝑐(𝑎)(𝑧), 𝜇𝑘𝑐(𝑎)(𝑡) defined in (4.19) are solutions of system

(4.7) with the right hand side 𝑓 𝑗
𝑐 (𝑎)(𝑧), 𝑗 = 1, 3, 𝜙𝑐𝑘(𝑎)(𝑡) 𝑘 = 1, 5. This is why the vector

𝜇𝑐 = (𝜇1𝑐, . . . , 𝜇5𝑐) can be represented as

𝜇𝑐(𝑎)(𝑡) = 𝐴−1(𝑡)

⎡⎣𝜙𝑐(𝑎)(𝑡)−𝐵(𝑡)

∫︁
Γ

𝜇𝑐(𝑎)(𝜏)

𝜏 − 𝑡
𝑑𝜏 −𝐾𝜇𝑐(𝑎)(𝑡)−𝐻𝜌𝑐(𝑎)(𝑡)

⎤⎦ , (4.25)

where 𝐴−1(𝑡) ∈ 𝐶𝛽(Γ) is the matrix inverse to the matrix 𝐴(𝑡), 𝜙𝑐 = (𝜙𝑐1, . . . , 𝜙𝑐5), 𝐾 =
(𝐾1, . . . , 𝐾5), 𝐻 = (𝐻1, . . . , 𝐻5), 𝜌𝑐 = (𝜌1𝑐 , 𝜌

2
𝑐 , 𝜌

3
𝑐).

We substitute expression (4.25) for 𝜇𝑐(𝑎)(𝑡) into (4.24), interchange the integration order in
the iterated integrals and use the aforementioned properties of the Cauchy type integral and
of the operators 𝑇 , 𝑆, as well as relations (4.7), (4.9) from [14] and Lemma 4.1. Then after
simple but rather bulky transformations we obtain that the operators Φ′

𝑘𝑐(𝑎), 𝑘 = 1, 2, Ψ′′
𝑗𝑐(𝑎),

𝑗 = 1, 3, are linear completely continuous operators from 𝑊
(2)
𝑝 (Ω) into 𝐿𝑝(Ω). By means of

similar arguing we also see that Φ′
𝑘𝜒(𝑎), 𝑘 = 1, 2, Ψ′′

𝑗𝜒(𝑎), 𝑗 = 1, 3, are nonlinear bounded

operators from 𝑊
(2)
𝑝 (Ω) into 𝐿𝑝(Ω) and they satisfy estimates (4.22). Once we employ now

relations (3.9), (3.10), (3.13) and estimates (4.23), then the statement of the lemma becomes
obvious. The proof is complete.

We write system (4.21) in the form

𝑎− 𝐿(𝑎)−𝐺(𝑎) = 𝑎* + ̃︀𝑎𝐹 , (4.26)

where

𝐿 = (𝐿1, . . . , 𝐿5), 𝐺 = (𝐺1, . . . , 𝐺5),
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𝑎* = (𝑤1*, 𝑤2*, 𝑤3*, 𝜓1*, 𝜓2*), ̃︀𝑎𝐹 = ( ̃︀𝑤1𝐹 , ̃︀𝑤2𝐹 , ̃︀𝑤3𝐹 , ̃︀𝜓1𝐹 , ̃︀𝜓2𝐹 ),

𝜐01* = 𝑤2* + 𝑖𝑤1*, 𝜐02* = 𝜓2* + 𝑖𝜓1*,

𝐿3(𝑛−1)+𝑗(𝑎) = −Re[𝑖𝑗𝜐0𝑛𝑐(𝑎)], 𝑛, 𝑗 = 1, 2;

𝐺3(𝑛−1)+𝑗(𝑎) = −Re[𝑖𝑗𝜐0𝑛𝜒(𝑎))], 𝑛, 𝑗 = 1, 2;

𝐿3(𝑎) = 𝑤3𝑐(𝑎), 𝐺3(𝑎) = 𝑤3𝜒(𝑎),̃︀𝑤𝑗𝐹 = −Re[𝑖𝑗𝜐01𝐹 ], 𝑗 = 1, 2,̃︀𝜓𝑗𝐹 = −Re[𝑖𝑗𝜐02𝐹 ], 𝑗 = 1, 2,̃︀𝑤3𝐹 = 𝑤3𝐹 .

We note that 𝐿(𝑎) is a linear completely continuous and 𝐺(𝑎) is a nonlinear bounded operator

in 𝑊
(2)
𝑝 (Ω) and 𝐺(𝑎) satisfies estimate (4.22); ̃︀𝑎𝐹 ∈ 𝑊

(2)
𝑝 (Ω) is a known function depending on

the external forces; the components of the vector 𝑎* are given by formulas (4.9).

The equation 𝑎 − 𝐿(𝑎) = 0 has only trivial solution in 𝑊
(2)
𝑝 (Ω). Indeed if 𝑎 ∈ 𝑊

(2)
𝑝 (Ω) is

its nonzero solution then, as one can easily see 𝑎 is a solution of system of linear equations of
equilibrium obeying linear homogeneous boundary conditions. Arguing then as in the case of
system (4.7), we conclude that the vector 𝑎 satisfies the system

𝑤𝑗𝛼𝑗 −𝐵𝑗𝑗𝑤3 = 0, 𝑗 = 1, 2,

𝑤1𝛼2 + 𝑤2𝛼1 − 2𝐵12𝑤3 = 0,

𝜓𝑗𝛼𝑗 = 0, 𝑗 = 1, 2,

𝜓1𝛼2 + 𝜓2𝛼1 = 0,

𝑤3𝛼𝑗 +𝐵𝑗𝜆𝑤𝜆 + 𝜓𝑗 = 0, 𝑗 = 1, 2.

(4.27)

We proceed to solving system (4.27). By means of the fourth, fifth and sixth identities for
𝜓1, 𝜓2 we obtain the representations

𝜓1 = 𝑐0𝛼
2 + 𝑐1, 𝜓2 = −𝑐0𝛼1 + 𝑐2, (4.28)

where 𝑐0, 𝑐1, 𝑐2 are arbitrary real constants.
We multiply the first identity in (4.27) by 𝐵22, the second is multiplied by 𝐵11, the third is

multiplied by 𝐵12. After that we sum first two identities and deduct the third one. As a result,
in view of condition (b) and the relations

𝐵11𝛼2 = 𝐵12𝛼1 , 𝐵12𝛼2 = 𝐵22𝛼1 (4.29)

implied by the Gauss–Peterson–Codazzi formulas [1] we obtain the identity

(𝐵22𝑤1 −𝐵12𝑤2)𝛼1 + (𝐵11𝑤2 −𝐵12𝑤1)𝛼2 = 0.

Then we easily see that there exists a function 𝑢(𝛼1, 𝛼2) ∈ 𝐶2(Ω) such that the relations

𝐵12𝑤1 −𝐵11𝑤2 = 𝑢𝛼1 , 𝐵22𝑤1 −𝐵12𝑤2 = 𝑢𝛼2 (4.30)

hold. We multiply the first identity in (4.30) by 𝐵12, the second identity is multiplied by 𝐵11

and then we deduct one from the other. Then we obtain an equation for the function 𝑢(𝛼1, 𝛼2):

𝐵12𝑢𝛼1 −𝐵11𝑢𝛼2 = 0,

the general solution of which is given by the formula [18]

𝑢(𝛼1, 𝛼2) = Λ1(𝑥), 𝑥 = 𝑥(𝛼1, 𝛼2) =

(𝛼1,𝛼2)∫︁
(𝛼1

0,𝛼
2
0)

𝐵11(𝛽
1, 𝛽2)𝑑𝛽1 +𝐵12(𝛽

1, 𝛽2)𝑑𝛽2, (4.31)
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where Λ1(𝑥) is an arbitrary real function belonging to the space 𝐶2 and (𝛼1
0, 𝛼

2
0) is an arbitrarily

fixed point in Ω.
Now we multiply the seventh identity in (4.27) by 𝐵22, the eighth identity is implied by 𝐵12

and we deduct one identity from the other. This gives

𝐵22𝑤3𝛼1 −𝐵12𝑤3𝛼2 = 𝐵12𝜓2 −𝐵22𝜓1,

and in view of relations (4.28), (4.29) this gives a representation for the function 𝑤3 [18]:

𝑤3(𝛼
1, 𝛼2) = Λ2(𝑦) + 𝑤*

3(𝛼
1, 𝛼2),

𝑦 = 𝑦(𝛼1, 𝛼2) =

(𝛼1,𝛼2)∫︁
(𝛼1

0,𝛼
2
0)

𝐵12(𝛽
1, 𝛽2)𝑑𝛽1 +𝐵22(𝛽

1, 𝛽2)𝑑𝛽2,

𝑤*
3(𝛼

1, 𝛼2) = 𝑐0𝑎1(𝛼
1, 𝛼2) + 𝑐1𝑎2(𝛼

1, 𝛼2) + 𝑐2𝑎3(𝛼
1, 𝛼2),

̃︀𝑎1(𝛼1, 𝑦) = −
𝛼1∫︁

𝛼1
0

[𝛽1 ̃︀𝐵12(𝛽
1, 𝑦) + 𝛼2(𝛽1, 𝑦) ̃︀𝐵22(𝛽

1, 𝑦)]/ ̃︀𝐵22(𝛽
1, 𝑦)𝑑𝛽1,

𝑎2(𝛼
1, 𝛼2) = 𝛼1

0 − 𝛼1, ̃︀𝑎3(𝛼1, 𝑦) =

𝛼1∫︁
𝛼1
0

̃︀𝐵12(𝛽
1, 𝑦)/ ̃︀𝐵22(𝛽

1, 𝑦)𝑑𝛽1,

̃︀𝐵𝜆𝜇(𝛽
1, 𝑦) ≡ 𝐵𝜆𝜇(𝛽

1, 𝛼2), 𝜆, 𝜇 = 1, 2, ̃︀𝑎𝑗(𝛼1, 𝑦) ≡ 𝑎𝑗(𝛼
1, 𝛼2), 𝑗 = 1, 3,

(4.32)

where 𝛼2 = 𝛼2(𝛼1, 𝑦) is a solution of the equation 𝑦(𝛼1, 𝛼2) = 𝑦 with respect to 𝛼2; this solution
exists due to the condition 𝑦𝛼2 = 𝐵22 ̸= 0 in Ω; 𝑐𝑗, 𝑗 = 0, 1, 2, are arbitrary real constants.
In order to derive representations for 𝑤1, 𝑤2 from the seventh identity in (4.27) and the first

identity in (4.30), we form the system

𝐵11𝑤1 +𝐵12𝑤2 = −𝑤3𝛼1 − 𝜓1, 𝐵12𝑤1 −𝐵11𝑤2 = 𝑢𝛼1 .

Solving this system with respect to 𝑤1, 𝑤2, we obtain

𝑤1 = 𝑏1[Λ
′
1(𝑥)− Λ′

2(𝑦)] + 𝑤*
1(𝛼

1, 𝛼2),

𝑤2 = 𝑏2[Λ
′
1(𝑥)− Λ′

2(𝑦)]− Λ′
1(𝑥) + 𝑤*

2(𝛼
1, 𝛼2),

𝑤*
𝑗 = −𝐵1𝑗(𝑤

*
3𝛼1 + 𝜓1)/(𝐵

2
11 +𝐵2

12), 𝑗 = 1, 2,

𝑏1 = 𝐵/(1 +𝐵2),

𝑏2 = 1/(1 +𝐵2),

𝐵 = 𝐵11/𝐵12 = 𝐵12/𝐵22,

(4.33)

where 𝜓1, 𝑤
*
3 are defined in (4.28), (4.32). We note that by Condition (b) we have 𝑤*

𝑗 , 𝑏𝑗 ∈
𝐶1(Ω), 𝑗 = 1, 2.
Excluding the function 𝑤3 from the first two identities in (4.27), we obtain

𝐵22𝑤1𝛼1 −𝐵11𝑤2𝛼2 = 0. (4.34)

We differentiate the seventh identity in (4.27) in the variable 𝛼2, while the eighth identity
is differentiated in the variable 𝛼1; then we deduct one identity from the other. In view of
relations (4.28), (4.29) we then get

𝐵12(𝑤1𝛼1 − 𝑤2𝛼2) +𝐵22𝑤2𝛼1 −𝐵11𝑤1𝛼2 = 2𝑐0. (4.35)

Now we substitute the expressions for 𝑤1, 𝑤2, 𝑤3 from (4.32), (4.33) into (4.34), (4.35) and into
the last identity in system (4.27). As a result, in view of relations 𝑥𝛼1 = 𝐵11, 𝑥𝛼2 = 𝑦𝛼1 = 𝐵12,
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𝑦𝛼2 = 𝐵22 implied by the representations for the functions 𝑥(𝛼1, 𝛼2), 𝑦(𝛼1, 𝛼2) in (4.31), (4.32),
we obtain a system of form

𝐵11𝐵12Λ
′′
1(𝑥) + 𝑏3[Λ

′
1(𝑥)− Λ′

2(𝑦)] = 𝑑1,

𝑏4[Λ
′
1(𝑥)− Λ′

2(𝑦)] = 𝑑2,

𝑤*
3𝛼2 − (𝑤*

3𝛼1 + 𝜓1)/𝐵 + 𝜓2 = 0,

(4.36)

where we have adopted the notations

𝑏3 = 𝐵22𝑏1𝛼1 −𝐵11𝑏2𝛼2 , 𝑏4 = 𝐵22𝑏2𝛼1 −𝐵11𝑏1𝛼2 +𝐵12(𝑏1𝛼1 − 𝑏2𝛼2),

𝑑1 = 𝐵11𝑤
*
2𝛼2 −𝐵22𝑤

*
1𝛼1 , 𝑑2 = 2𝑐0 +𝐵11𝑤

*
1𝛼2 −𝐵22𝑤

*
2𝛼1 −𝐵12(𝑤

*
1𝛼1 − 𝑤*

2𝛼2),
(4.37)

the functions 𝑤*
𝑗 (𝛼

1, 𝛼2), 𝑗 = 1, 3, are defined in (4.32), (4.33); 𝑑𝑗, 𝑏2+𝑗 ∈ 𝐶(Ω), 𝑗 = 1, 2.
Suppose that the components of the curvature tensor of the middle surface of the shell satisfy

the conditions

𝐵𝐵𝛼2 −𝐵𝛼1 ̸= 0, 𝐵𝛼2 ̸= 0, 1 + 𝛼1𝐵𝛼2 ̸= 0, (𝛼1, 𝛼2) ∈ Ω, (4.38)

where 𝐵 is defined in (4.33).
In view of the expressions for the functions 𝑤*

3, 𝜓1, 𝜓2 in (4.28), (4.32), we rewrite the third
identity in (4.36) as

𝑐2𝐵𝛼2 − 𝑐0(1 + 𝛼1𝐵𝛼2) = 0,

and by conditions (4.38) this implies 𝑐0 = 𝑐2 = 0. Then

𝑤*
1 = 𝑤*

2 ≡ 0, 𝜓2 ≡ 0, 𝑤*
3 = −𝑐1𝛼1, 𝜓1 = 𝑐1,

and hence, by (4.37) we get: 𝑑1 = 𝑑2 ≡ 0. We note that by the first condition in (4.38) we have
𝑏4 ̸= 0 in Ω. This is why by the second equation in (4.36) we get

Λ′
1(𝑥)− Λ′

2(𝑦) = 0.

Then the first equation in (4.36) implies Λ′′
1(𝑥) = 0 and hence, Λ′

1(𝑥) = 𝑐3 = Λ′
2(𝑦), where 𝑐3

is an arbitrary real constant. By formulas (4.28), (4.33) we have 𝑤1 ≡ 0, 𝑤2 = −𝑐3, and it
follows from the first identity in (4.27) that 𝑤3 ≡ 0 in Ω. Therefore, taking into consideration
representation (4.32) for 𝑤3, we get the identity Λ2(𝑦)−𝑐1𝛼1 = 0. Differentiating this identity in
the variable 𝛼1 and using the formula 𝑦𝛼1 = 𝐵12, we arrive at the identity 𝑐3𝐵12(𝛼

1, 𝛼2)−𝑐1 = 0.
Then in view of Condition (b) we have 𝑐1 = 𝑐3 = 0, that is, 𝑤𝑗 = 0, 𝑗 = 1, 3, 𝜓𝑘 = 0, 𝑘 = 1, 2, in

Ω. Thus, the equation 𝑎−𝐿(𝑎) = 0 has only trivial solution in𝑊
(2)
𝑝 (Ω). Hence, there exists the

inverse operator (𝐼 − 𝐿)−1 bounded in 𝑊
(2)
𝑝 (Ω), by means of which equation (4.26) is reduced

to the equivalent equation
𝑎−𝐺*(𝑎) = 𝑎𝐹 , (4.39)

where
𝐺*(𝑎) = (𝐼 − 𝐿)−1𝐺(𝑎), 𝑎𝐹 = (𝐼 − 𝐿)−1̃︀𝑎𝐹 .

We observe that the vector 𝑎𝑐 = (𝐼−𝐿)−1𝑎* is a solution of the homogeneous system of linear
equilibrium equations satisfying homogeneous linear boundary conditions. This is why by the
above proven facts we have 𝑎𝑐 ≡ 0, which has been taken into consideration while passing to
equation (4.39).
We also note that the vector 𝑎𝐹 in (4.39) depends only on external forces and 𝑎𝐹 = 0 once

the external forces are absent.

Lemma 4.3. Let Conditions (a), (b), (c), (d) hold. Then

1) 𝐺*(𝑎) is a nonlinear bounded operator in 𝑊
(2)
𝑝 (Ω) and for all 𝑎𝑗 = (𝑤𝑗

1, 𝑤
𝑗
2, 𝑤

𝑗
3, 𝜓

𝑗
1, 𝜓

𝑗
2),

𝑗 = 1, 2, the estimate

‖𝐺*(𝑎
1)−𝐺*(𝑎

2)‖
𝑊

(2)
𝑝 (Ω)

⩽ 𝑐*

(︁
‖𝑎1‖

𝑊
(2)
𝑝 (Ω)

+ ‖𝑎2‖
𝑊

(2)
𝑝 (Ω)
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+ ‖𝑤1‖2
𝑊

(2)
𝑝 (Ω)

+ ‖𝑤2‖2
𝑊

(2)
𝑝 (Ω)

)︁
‖𝑎1 − 𝑎2‖

𝑊
(2)
𝑝 (Ω)

,

‖𝑤𝑗‖2
𝑊

(2)
𝑝 (Ω)

= ‖𝑤𝑗
1‖2𝑊 (2)

𝑝 (Ω)
+ ‖𝑤𝑗

2‖2𝑊 (2)
𝑝 (Ω)

+ ‖𝑤𝑗
3‖2𝑊 (2)

𝑝 (Ω)
, 𝑗 = 1, 2,

holds true, where 𝑐* is a known positive constant depending on physical and geometrical
characteristics of the shell;

2) 𝑎𝐹 ∈ 𝑊
(2)
𝑝 (Ω).

The validity of the lemma is implied by Lemma 4.2 in view of the aforementioned properties
of the operators (𝐼 − 𝐿)−1 and 𝐺.

We proceed to studying the solvability of equation (4.39) in the space 𝑊
(2)
𝑝 (Ω). Using

Lemma 4.3, for all 𝑎𝑗 ∈ 𝑊
(2)
𝑝 (Ω), 𝑗 = 1, 2, belonging to the ball ‖𝑎‖

𝑊
(2)
𝑝 (Ω)

< 𝑟, we obtain

‖𝐺*(𝑎
1)−𝐺*(𝑎

2)‖
𝑊

(2)
𝑝 (Ω)

⩽ 𝑞*‖𝑎1 − 𝑎2‖
𝑊

(2)
𝑝 (Ω)

, 𝑞* = 2𝑐*𝑟(1 + 𝑟).

Suppose that the radius 𝑟 of the ball and external forces are such that the inequalities

𝑞* < 1, ‖𝑎𝐹‖𝑊 (2)
𝑝 (Ω)

< (1− 𝑞*)𝑟 (4.40)

hold. Then we can apply the contracting mapping principle to equation (4.39) [19], according
to which equation (4.39) in the ball ‖𝑎‖

𝑊
(2)
𝑝 (Ω)

< 𝑟 possesses a unique solution of form 𝑎 =

ℛ(𝑎𝐹 ) ∈ 𝑊
(2)
𝑝 (Ω), where ℛ is the resolvent of the operator 𝐺*. We note that if the external

load is absent, then problem (2.1), (2.2) possesses only the zero solution.

We return back to solvability conditions (4.18), in which by 𝑎 = (𝑤1, 𝑤2, 𝑤3, 𝜓1, 𝜓2) ∈ 𝑊
(2)
𝑝 (Ω)

we mean a solution to problem (2.1), (2.2) and 𝜔𝜇, 𝜇 = 1, 2, are defined in (4.3). Using identities
(2.1) and (2.2), we confirm that solvability conditions (4.18) are satisfied.
Thus, we have proved the following theorem.

Theorem 4.1. Let Conditions (a), (b), (c), (d), (4.17), (4.38) and (4.40) be satisfied. Then

problem (2.1), (2.2) possesses a unique generalized solution 𝑎 = (𝑤1, 𝑤2, 𝑤3, 𝜓1, 𝜓2) ∈ 𝑊
(2)
𝑝 (Ω),

2 < 𝑝 < 4/(2− 𝛽) .
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