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RANDOM WALKS ON A LINE AND ALGEBRAIC CURVES

S.V. GRISHIN

Abstract. This work is devoted to the studying the generating function of the first hitting

time of the positive semi-axis under the homogeneous discrete integer random walk on a

line. In the first part of the work the increments are supposed to be independent. Recurrent

relations for the probabilities allow us to write the system of equations for the sought

generating function. Applying the resultants technique, we succeed to reduce this system to

a single equation. Then we can study it by calculating the genus of the correposponding plane

algrebraic curve via analyzing its singularities. In the work we write the sought equations

for some random walks and we show that if the increments take all integer values from −2

to 2, or from −1 to 3 with equal probabilities or they take equally probable values −1 and

4, then the curve is rational, while this is not true in the first case.

In the second part of the work we consider a symmetric process, the increments take the

values −1, 0, 1, but then we suppose a non-zero correlation of each next increment with the

previous one. For such process the equation for the generating function defines an elliptic

curve depending on the square of the correlation coefficient for neighbouring increments if

all increments are non-zero and it defines a hyperelliptic curve of genus 2. The degeneration

criterion of the latter is the presence of multiple roots of a sixth order polynomial under

general symmetrically distributed conditional probabilities.
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1. Introduction

In this work we study a homogeneous discrete random walk. We recall the definition.

Definition 1.1. A homogeneous discrete random walk is a disrete random process with a
fixed set of increments 𝑎1, . . . , 𝑎𝑛, each of which occurs with a certain probability, which can
depend on previous increments but is invariant with respect to the discrete time.

Random walks are used in biology, economimcs and other scientific fields and this is why
they are studied quite actively. We continue studies initiated in work [1].
The method we use consists in obtaining and studying an equation for the generating

function of the first hitting time of the positive semi-axis. First this method was applied by
V.A. Malyshev (in 1970s) for random walks in a quadrant with increments at most 1 in each
coordinate, see [2]. Vadim Alexandrovich’s ideas were later developed by several scientists, who
obtained the following result:

Proposition 1.1 ([3]). The generating function 𝐺(𝑡, 𝑎, 𝑏) =
∑︀

𝑃 (𝑘,𝑚, 𝑛)𝑡𝑘𝑎𝑚𝑏𝑛, where
𝑃 (𝑘,𝑚, 𝑛) is the probability of returning back to the origin in 𝑘 steps with 𝑚 intersections of
horizontal boundary and 𝑛 intersections of the vertical boundary for the aforementioned random
walk in the quadrant, possesses the following property:
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1) If the set of steps possesses a horizontal (vertical) symmetry axis, then 𝐺(𝑡, 𝑎, 1) is 𝐷-
finite, that is, it satisfies a linear differential equation with polynomial coefficients as a function
of the variable 𝑡 for each 𝑎 (respectively, 𝐺(𝑡, 1, 𝑏) possesses this property for each 𝑏).
2) If the set of step possesses both a vertical and horizontal symmetry axes, then 𝐺(𝑡, 𝑎, 𝑏) is

equal to the quotient of two 𝐷-finite functions on 𝑡 for each 𝑎 and 𝑏, while if the set of steps
consists of 4 elements (±1,±1) (the signs are not related), then it is 𝐷-finite for all 𝑎 and 𝑏.
3) If the set of steps is symmetric with respect to the axis 𝑥 = −𝑦, then 𝐺(𝑡, 𝑎, 𝑎) is equal to

the quotient of two 𝐷-finite functions on 𝑡 for all 𝑎, while for 𝑎 = 1 it is a 𝐷-finite function.
An exception is the central-symmetric case of 6 steps (±1, 0), (0,±1), (±1,±1) (the signs are
consistent), for which we only known that 𝐺(𝑡, 1, 1) satisfies, as well as the studied generating
function, some algebraic relation. In the case of three steps (−1, 0), (0, 1), (1,−1) it is also
known that 𝐺(𝑡, 𝑎, 𝑏) is equal to the quotient of two 𝐷-finite functions of 𝑡 for arbitrary not
necessary coinciding 𝑎 and 𝑏.
4) If the set of three steps is symmetric with respect to the straight line 𝑥 = 𝑦, then for

each 𝑎 the function 𝐺(𝑡, 𝑎, 𝑎) satisfies some algebraic relation. удовлетворяет некоторому
алгебраическому соотношению.
5) In the case of 4 steps (±1, 0), (±1,∓1) (the signs are consistent) the same as in

Statement 1 holds, while in the case of 4 steps (±1, 0), (±1,±1) (the signs are consistent)
we only know that 𝐺(𝑡, 1, 1) satisfies some algebraic relation.

Already in our century there were obtained some particular results about random walks on
the line with independent increments. In [4] walks with increments −1, 0, 1 were considered; it
turned out that the probability of the first hitting time of the point 𝑥 > 0 in 𝑛 steps is equal

𝑃 (𝑥, 𝑛) = 𝑝𝑥1𝑝
𝑛−𝑥
0

(𝑛− 1)!

(𝑛− 𝑥)!(𝑥− 1)!
𝐹

(︂
𝑥− 𝑛

2
,
𝑥− 𝑛+ 1

2
;𝑥+ 1;

4𝑝−1𝑝1
𝑝20

)︂
, (1.1)

where 𝐹 (𝑎, 𝑏; 𝑐, 𝑑) is the Gaussian hypergeometric function, while the associated generating
function is expressed by the formula(︃

𝑧−1 − 𝑝0
2𝑝1

−

√︃(︂
𝑧−1 − 𝑝0

2𝑝1
)2 − 𝑝−1

𝑝1

)︂)︃𝑥

. (1.2)

Work [5] is devoted to walks with increments −2, −1, 1. In this work, a two-dimensional Galton-
Watson process was considered, which is a one of kinds of branching random walk. This process
was related in a certain way with the initial walk and from such consideration the equation

𝑤 = 𝑧(𝑝1 + 𝑝−1𝑤
2 + 𝑝−2𝑤

3),

was derived, where 𝑤 = 𝑓(𝑧) is the value of the generating function of the first hitting time of
the positive semi-axis at the point 𝑧. It was proved that this value is equal to the smallest real
root of this equation. Thus, algebraic properties of generating functions for random walks are
rather remarkable and are widely studied.
During the talk of the author on the Second All-Russian Conference of Mathematical Centers,

A.V. Shklyaev proposed a gentle arguing for random walks 𝜉0 = 0, 𝜉𝑛 = 𝜉𝑛−1 + 𝛿𝜉 with
increments 𝛿𝜉 being equal to 1 = 𝑎1 > . . . > 𝑎𝑘 with probabilities 𝑝1, . . . , 𝑝𝑘. Let 𝑔(𝑧) =∑︀𝑘

𝑖=1 𝑝𝑖𝑡
𝑎𝑖 be a generating function of the increment. Then the quotient 𝑡𝜉𝑛

𝑔𝑛(𝑡)
is a martingale.

As a stopping moment 𝜂 we choose the hitting time. Since 𝜉𝜂 = 1, by the Wald identity from
[6] we have 𝐸( 𝑡

𝑔𝜂(𝑡)
) = 1 for sufficiently small 𝑡. Since by the definition the sought generating
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function is equal to 𝑤(𝑧) = 𝐸(𝑧𝜂), then for 𝑧 = 1
𝑔(𝑡)

we obtain

𝑤(
1

𝑔(𝑡)
) =

1

𝑡
or 𝑤(𝑧) =

1

𝑔−1(1
𝑧
)
.

This gives the equation

1

𝑧
=

𝑘∑︁
𝑖=1

𝑝𝑖𝑤
−𝑎𝑖 , (1.3)

which was obtained in [1] in another way: by means of recurrent relations on probability. Here
we also employ the latter way.
We note that the point 𝑤 = 𝑧 = 1 lies on the studied curve for each random walk. This is

related with the fact that the value of the generating function at the point 1 is equal to the
sum of probabilities of all finite values 𝜂. This sum is equal to 1 in the case a non-negative
mathematical expectation of the increment and this condition defines a half-space in the space
of the parameters of walk, on which the generating function depends algebraically. Not only
this point, but also (one of) the tangential(s) to the curve for non-negative mathematical
expectation of the increment possesses a certain probabilistic meaning: its slope is equal to the
mathematical expectation of 𝜂, which is finite for a positive mathematical expectation of the
increment and is infinite for the zero expectation; in the latter case the tangential is vertical.
This point is not singular only in the case of the maximal increment 1. The author does not
know how to explain this fact from the point of view of the probability theory.
This work is organized as follows: in Section 2 we describe a special approach, which is used

in Section 3 for proving theorems on generating function of the first hitting time of the positive
semi-axis.

2. Study of system of algebraic equations

2.1. Reduction of system to single equation. Given a system of algebraic equations
𝑓𝑖(𝑥1, . . . , 𝑥𝑘, 𝑦1, . . . , 𝑦𝑛) = 0, 1 ⩽ 𝑖 ⩽ 𝑚, if 𝑚 > 𝑘, we can obtain a system of 𝑚 − 𝑘 equation
for 𝑦’s without 𝑥’s as follows: we consider first two equations are ones for 𝑥1, while other
variables are regarded as parameters. Then we apply the following statement.

Proposition 2.1 ([7]). Two equations of the variable 𝑥1 with parameters 𝑥2, . . ., 𝑥𝑛 possess
a joit root 𝑥1 if and only if their resultant, as a polynomial of the parameters, vanishes.

In the same way we “pair” the second equation with the third one and so forth up to “pairing”
two latter equations. As a result we obtain a system not containing 𝑥1 and consisting of 𝑚− 1
equations. Then we repeat the procedure with 𝑥2, 𝑥3 and so forth up to 𝑥𝑘. This gives the
desired system. In our case we need to exclude all variables except for 𝑤 and 𝑧 and the total
number of equations in the system is exactly so that finally a single equation remains.

2.2. Study of curve by method of analysis of singularities. We are interesting in the
question whether a given curve is rational. A polynomial defining this curve possesses a greater
degree even for 𝑎𝑖 with not large absolute values. For studying such curves we need to apply a
genus technique. An algebraic curve in CP2 as a real manifold is a compact oriented surface.
Topologically each such surface is equivalent to a sphere with 𝑔 handles. Now we can give a
definition of the genus.

Definition 2.1 ([8]). Then number of the handles is called a genus of a curve.

The genus of the curve is equal to the dimension of the space of holomorphic differential
1-forms on it and this is a birational invariant.
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Proposition 2.2 ([8]). A plane algebraic curve is rational if and only if its genus is equal
to zero.

The study of an algebraic curve involves an analysis of its singularities. For instance, a
delta-invariant of the singularity 𝛿𝑠 is the number of infinitesimally closed self-intersection
points of the curve “contained” in a given singularity. This is the most important topological
characteristic of the singularity and is calculated by the leading part of the curve in the vicinity
of the singularity (the origin is moved to the singularity). For calculating the genus, the following
statement is employed.

Proposition 2.3 ([8]). If a plane curve has a degree 𝑑, then the genus of the curve is equal
to

𝑔 =
(𝑑− 1)(𝑑− 2)

2
−
∑︁
𝑠

𝛿𝑠,

where the summation is made over all singular points on CP2.

Let us consider the most frequent singularities. For instance, if the terms of the minimal
power 𝑘 forms a homogeneous polynomial without multiple roots, which can be checked by
means of the discriminant, the resultant of the polynomial and its derivative, then this is the
leading part of the curve. The corresponding point is called an ordinary 𝑘-multiple point and
its delta-invariant is equal 𝑘(𝑘−1)

2
. In particular, the infinity point (0 : 1 : 0) of the graph of the

rational function 𝑦(𝑥) = 𝑃 (𝑥)
𝑄(𝑥)

, where 𝑃 and 𝑄 has no multiple roots, an ordinary multiple point

of multiplicity less by 1 than the degree of the curve, no other singularities, and this is why the
genus of the curve calculated by the genus formula is zero, as it should be.
If a homogeneous polynomial of the minimal degree 𝑘 possess multiple roots, then the

leading part involves some terms of greater degree and at the same time, for calculating delta-
invariant we apply a so-called procedure of singularity resolving by means of blow-up, which
is a transformation (𝑥, 𝑦) ↦→ (𝑥𝑦, 𝑦), where the coordinate system is chosen so that 𝑥 = 0 is a
multiple root of a homogeneous polynomial of degree 𝑘 and 𝑦 = 0 is not a root. The blow-up
splits off an ordinary 𝑘-multiple point from the singularity; algebraically this looks as moving
out a comment factor 𝑦𝑘 in the transformed leading part. This is why the following statement
holds.

Proposition 2.4 ([7]). The delta-invariant of the singularity is equal 𝑘(𝑘−1)
2

, 𝑘 is the
multiplicity of the point, plus the delta-invariant of the transformed singularity if the latter
remains.

As an example we consider a cusp (𝑎, 𝑏), which is a singularity with the leading part of form
𝑥𝑎 + 𝑦𝑏, where 𝑎 < 𝑏. A sequence of bloats transforming the cusp (𝑎, 𝑏) into the casp (𝑎, 𝑏− 𝑎)
(Euclid algorithm implies that the process is finite) allows us to calculate its delta-invariant
and in the case 𝑔𝑐𝑑(𝑎, 𝑏) ⩽ 2 we can write out the result:

Proposition 2.5. The delta-invariant of the cusp (𝑎, 𝑏) is equal to
[︁
(𝑎−1)(𝑏−1)+1

2

]︁
.

Доказательство. We argue by induction in the parameters of the cusp. The induction base
is as follows: as 𝑎 = 1 (if 𝑎 and 𝑏 are coprime), the delta-invariant is 0 (regular point) and as
𝑎 = 𝑏 = 2 (if 𝑔𝑐𝑑(𝑎, 𝑏) = 2), the delta-invariant is 1 (ordinary double point). Let the statement
holds for 𝑎′ < 𝑏′ < 𝑏; we are going to prove for 𝑎, 𝑏. Each blow-up splits off an ordinary 𝑎-
multiple point from the cusp (𝑎, 𝑏) and transforms it into the cusp (𝑎, 𝑏− 𝑎). For the latter we

apply an induction assumption: the delta-invariant is equal to
[︁
(𝑎−1)(𝑏−𝑎−1)+1

2

]︁
. Applying the
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previous proposition and adding the delta-invariant of the multiple point 𝑎(𝑎−1)
2

, we obtain a
required result.

As a first example we provide a curve 𝑥𝑎 = 𝑦𝑏, which for 2 ⩽ 𝑎 ⩽ 𝑏 − 2 and 𝑔𝑐𝑑(𝑎, 𝑏) = 1
possesses two cusps, at zero (𝑎, 𝑏) and at infinity (𝑏 − 𝑎, 𝑏), and has no other singularities.
The calculation of its genus gives an expected value 0 since the curve is obviously rational. As
the second example we observe that the only singularity of the degenerate hyperelliptic curve
𝑦2 = 𝑃𝑛(𝑥), where 𝑃𝑛(𝑥) is a polynomial of degree 𝑛 without multiple roots, is at infinity and

this is a cusp (𝑛−2, 𝑛) with the delta-invariant [ (𝑛−1)(𝑛−3)+1
2

] and this is why the genus is equal

to
[︀
𝑛−1
2

]︀
, which coincides with a known result obtained by a topological method.

3. Results

3.1. Random walks with independent increments. We are going to write the equations
of curves and study their rationality for several cases in our problem.

Theorem 3.1. 1) An algebraic curve defined by an equation, which is satisfied by a
generating function of the first hitting time of the positive semi-axis under a homogeneous
discrete random walk without memory is rational in the following cases:
a) The increment takes values from −1 to 3, each is taken with probability 0.2;
b) The increment takes values from −2 to 2, each is taken with probability 0.2;
c) The increment takes values −1 and 4, each is taken with probability 0.5.
2) If the increments from −2 to 2 occurs with arbitrary probabilities, then in general the

associated algebraic curve is not rational.

Remark 3.1. Statements 1 and 2 of Theorem 3.1 together with a result from [1] on random
walks with increments from −1 to 2 suggest a conjecture that for the minimal increment −1 the
curve is always rational. The author also expect that in the case of increments from −2 to 2 the
curve is always rational under a symmetric with respect to 0 distribution of the increments since
the degeneration of the singularity 𝑤 = 𝑧 = 1 in Statement 1b) is related with the appearance
of a double vertical tangential at this point; however, this is also just a conjecture. The finding
of the genus in the general case requires an independent study, probably, with applying algebraic
geometry.

In order to prove Theorem 3.1, we need the following auxiliary proposition.

Proposition 3.1. For a random walk with increments from 𝑚 to 𝑀 and associated
probabilities 𝑝𝑚, . . . , 𝑝𝑀 the sought generating function satisfies the system of equations⎧⎪⎨⎪⎩

𝑤 = 𝑤1 + . . .+ 𝑤𝑀 ,

𝑤𝑖 = 𝑧(𝑝𝑖 +
∑︁

𝑚⩽𝑗⩽0

(𝑝𝑗
∑︁

1⩽𝑠1,...,𝑠𝑛⩽𝑀,𝑠𝑛⩾𝑖,𝑠1+...+𝑠𝑛=𝑖−𝑗

𝑤𝑠1 . . . 𝑤𝑠𝑛))
,

where 𝑖 runs from 1 to 𝑀 .

Remark 3.2. If in the general case we argue similarly to one from [6] and using Alexander

Viktorovich’s results, then we obtain 𝐸( 𝑡𝜉𝜂

𝑔𝜂(𝑡)
) = 1. But the only fact we can obtain from this

relation is a system of equations for 𝑤1, . . . , 𝑤𝑀 , each of which contains an unknown function
of 𝑧 and these unknown functions are related just by the fact that their linear combination
with unknown coefficients is equal to 1. The unknown functions are conditional mathematical
expectations of the aforementioned variable for a fixed value 𝜉𝜂, while the coefficients defines a
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distribution of this variable, which is apriori unknown. This is why we need another method,
namely, the method of recurrent relations.

Доказательство. The proof almost literally reproduces the arguing from [1] used for
derivations of similar systems as 𝑀 = 1 and as 𝑚 = −1, 𝑀 = 2. Since the largest jump
forward has a length 𝑀 , the first positive value can be from 1 to 𝑀 . This is why the generating
function is split into the sum of 𝑀 terms, each of which corresponds to a certain value 𝑖 at the
stopping moment. It can occur after the first step with the probability 𝑝𝑖 or later if the first step
turned out to be 𝑗 ⩽ 0. In the latter case we mark all intermediate records of our walk, that
is, the time moments 𝑘, when the value of the variable 𝜉𝑘 describing the studied walk exceeds
the previous maximum; the zeroth record is supposed to be 𝑗, while the last record is 𝑖.
The distance between neighbouring records can be 1 ⩽ 𝑠𝑘 ⩽ 𝑀 , while the probability of

record achieving time by the homogeneity of the process has the same distribution as the
probability of first hitting time of the positive value 𝑠𝑘. By its meaning, the sum of all distances
is equal to the length of the segment from 𝑗 to 𝑖 and the penultimate record necessarily does not
exceed 0 otherwise the stopping would be on that record. It remains to write out the recurrent
relations for the stopping probabilities at a given point in a given number of steps using the
independence of disjoint pieces of the considered walk and to confirm that the aforementioned
system of equations defines the same recurrent relations for the coefficients of the Taylor series
of the corresponding functions.

Before proving Theorem 3.1 we observe the following fact: the first equation in the system
defines a hyperplane and moreover, this is the only equation containing 𝑤. This is why it is
possible not to consider it in studying the curve. Moreover, in the considered cases (under
minimal increment −1 or −2) we can express 𝑤2 via 𝑤1 from the second equation, express 𝑤3

via 𝑤2 and 𝑤1, and hence, in view of the second equation, via 𝑤1, and so forth. After that, by a
straightforward substitution into the last equation we obtain a relation for 𝑤1 and 𝑧. However
the degree of the obtained relation, both general and separately in each variable is the same as
in our consideration in terms of 𝑤 and 𝑧 since the complexity of calculating genus in two ways
is same.

Proof of Theorem 3.1. 1a) Initial system of equations reads⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑤 = 𝑤1 + 𝑤2 + 𝑤3,

5𝑤1 = 𝑧(1 + 𝑤1 + 𝑤2
1 + 𝑤2),

5𝑤2 = 𝑧(1 + 𝑤2 + 𝑤1𝑤2 + 𝑤3),

5𝑤3 = 𝑧(1 + 𝑤3 + 𝑤1𝑤3).

We write out the obtained equation

𝑤4𝑧3 + 𝑤3𝑧2(−15 + 6𝑧) + 𝑤2𝑧(75− 80𝑧 + 26𝑧2)

+ 𝑤(−125 + 225𝑧 − 170𝑧2 + 51𝑧3) = 𝑧(−75 + 110𝑧 − 41𝑧2),

or in coordinates 𝑢 = 𝑤 − 1, 𝑥 = 𝑧 − 1

𝑃 (𝑢, 𝑥) :=125𝑢𝑥3 + 𝑢2𝑥(−25 + 25𝑥+ 50𝑥2)

+ 𝑢4(1 + 3𝑥+ 3𝑥2 + 𝑥3) + 𝑢3(−5 + 15𝑥2 + 10𝑥3) + 125𝑥3 = 0,

that is 𝑤 = 𝑧 = 1 is an ordinary triple point (the discriminant of the cubic part is non-zero),

the delta-invariant is 3(3−1)
2

= 3. Solving the system 𝑃 = 𝜕𝑃
𝜕𝑢

= 𝜕𝑃
𝜕𝑥

= 0, we see that the curve
possesses no other singular points in C2.
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We are going to study singularities at infinities. The present curve has two infinite points
(𝑥 : 𝑢 : 𝑡) = (1 : 0 : 0) and (0 : 1 : 0) and both of them are singular. In the vicinity of the
first we have the leading part 125𝑢𝑡3 + 50𝑢2𝑡2 + 𝑢4 + 10𝑢3𝑡 + 125𝑡4, the discriminant is again
non-zero and hence, this is an ordinary quadric point, the delta-invariant is 4(4−1)

2
= 6. In the

vicinity of the second point the curve reads

(𝑡+ 𝑥)3 + 5𝑡(𝑡+ 𝑥)2(2𝑥− 𝑡) + 25𝑥𝑡2(𝑡+ 𝑥)(2𝑥− 𝑡) + 125𝑥3𝑡3 + 125𝑥3𝑡4

or

𝑦3 + 5𝑡𝑦2(2𝑦 − 3𝑡) + 25𝑡2𝑦(𝑦 − 𝑡)(2𝑦 − 3𝑡) + 125𝑡3(𝑦 − 𝑡)3 + 125𝑡4(𝑦 − 𝑡)3

in the coordinate system (𝑦 = 𝑥+ 𝑡, 𝑡). Here the leading part is

𝑦3 − 15𝑦2𝑡2 + 75𝑦𝑡4 − 125𝑡6 − 125𝑡7 or (𝑦 − 5𝑡2)3 − 125𝑡7.

The blow-up (𝑦, 𝑡) ↦→ (𝑦𝑡, 𝑡) maps the leading part of the singularity into (𝑦 − 5𝑡)3 − 125𝑡4,

which corresponds to the cusp (3, 4). Hence, the delta-invariant is 3 + (3−1)(4−1)
2

= 6. Hence,

the genus of the curve of degree 7 is equal to (7−1)(7−2)
2

− 3− 6− 6 = 0 and hence, the curve is
rational.
1b) We write out the system⎧⎪⎨⎪⎩

𝑤 = 𝑤1 + 𝑤2,

5𝑤1 = 𝑧(1 + 𝑤1 + 𝑤2
1 + 𝑤2 + 𝑤3

1 + 2𝑤1𝑤2),

5𝑤2 = 𝑧(1 + 𝑤2 + 𝑤1𝑤2 + 𝑤2
1𝑤2 + 𝑤2

2).

The equation derived from this system reads as

𝑤6𝑧3 + 𝑤5𝑧2(−5 + 4𝑧) + 𝑤4𝑧2(−20 + 10𝑧) + 𝑤3𝑧(50− 45𝑧 + 25𝑧2)

+ 𝑤2𝑧(75− 145𝑧 + 35𝑧2) + 𝑤(−125 + 200𝑧 − 95𝑧2 + 39𝑧3) = 𝑧(−50 + 65𝑧 − 11𝑧2),

or in the coordinates 𝑢 = 𝑤 − 1, 𝑥 = 𝑧 − 1

𝑃 (𝑢, 𝑥) = 𝑢2𝑥2(225 + 225𝑥) + 𝑢𝑥2(125 + 250𝑥) + 𝑢4𝑥(45 + 90𝑥+ 45𝑥2)

+ 𝑢3𝑥(75 + 200𝑥+ 125𝑥2) + 𝑢6(1 + 3𝑥+ 3𝑥2 + 𝑥3) + 𝑢5(5 + 20𝑥+ 25𝑥2 + 10𝑥3) + 125𝑥3 = 0.

Thus, at the point 𝑤 = 𝑧 = 1, the leading part reads as 125𝑥2𝑣 + 75𝑥𝑣3 + 5𝑣5 − 100𝑥4, where
𝑣 = 𝑥 + 𝑢. After the blow-up (𝑥, 𝑣) ↦→ (𝑥𝑣, 𝑣) the leading part of the singularity reads as
125𝑥2 + 75𝑥𝑣 + 5𝑣2 and this corresponds to an ordinary double point and this is why the
delta-invariant of the singularity is 3(3−1)

2
+ 1 = 4.

Let us study other singular points. The solution of the system

𝑃 =
𝜕𝑃

𝜕𝑥
=

𝜕𝑃

𝜕𝑈
= 0

gives one more singularity in C2, which is 𝑥 = −5, 𝑢 = −5
2
. Here the leading part is

−6250𝑦2 + 8000𝑣2𝑦 − 38400𝑣4,

where 𝑣 = 𝑢+ 5
2
, 𝑦 = 𝑥+ 5, that is, after the blow-up (𝑦, 𝑣) ↦→ (𝑦𝑣, 𝑣) it becomes

−6250𝑦2 + 8000𝑣𝑦 − 38400𝑣2,

which corresponds to an ordinary double point and finally, the delta-invariant is 1 + 1 = 2.
We proceed to studying the behavior at infinity. The leading part at the point (1 : 0 : 0) is

225𝑢2𝑡4 + 250𝑢𝑡5 + 45𝑢4𝑡2 + 125𝑢3𝑡3 + 𝑢6 + 10𝑢5𝑡+ 125𝑡6,
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the discriminant is zero, this is an ordinary sextus point, the delta-invariant is 6(6−1)
2

= 15. The
leading part at the point (0 : 1 : 0) is

(𝑡+ 𝑥)3 + 𝑡(𝑡+ 𝑥)2(10𝑥+ 5𝑡) + 𝑡3𝑥(𝑥+ 𝑡)(125𝑥+ 75𝑡) + 𝑥2𝑡5(125𝑡+ 250𝑥),

or

𝑦3 + 𝑦2𝑡(10𝑦 − 5𝑡) + 𝑦𝑡3(𝑦 − 𝑡)(125𝑦 − 50𝑡) + 𝑡5(𝑦 − 𝑡)2(250𝑦 − 125𝑡)

in coordinates 𝑦 = 𝑥+ 𝑡, 𝑡, in new coordinates we can omit unnecessary term and obtain 𝑦3 −
5𝑦2𝑡2+50𝑦𝑡5−125𝑡8 or 𝑦3−5𝑡2(𝑦−5𝑡3)2. After two blow-up (𝑦, 𝑡) ↦→ (𝑦𝑡, 𝑡) we obtain the leading
part in the form 𝑦3 − 5(𝑦 − 5𝑡)2 and this corresponds to the cusp (2, 3) and the delta-invariant

is 1+3(3− 1) = 7. The genus of the curve of degree 9 is equal to (9−1)(9−2)
2

− 4− 2− 15− 7 = 0
and this curve turns out to be rational.
1c) We have the system ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑤 = 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4,

2𝑤1 = 𝑧(𝑤2
1 + 𝑤2),

2𝑤2 = 𝑧(𝑤1𝑤2 + 𝑤3),

2𝑤3 = 𝑧(𝑤1𝑤3 + 𝑤4),

2𝑤4 = 𝑧(1 + 𝑤1𝑤4).

In this case the equation of the curve reads as

𝑤5𝑧4 − 8𝑤4𝑧3+𝑤2𝑧(−32 + 32𝑧 − 28𝑧2) + 𝑤3𝑧2(24− 12𝑧 + 10𝑧2)

+𝑤(16− 24𝑧 + 32𝑧2 − 12𝑧3 + 5𝑧4) = 𝑧(8− 8𝑧 + 4𝑧2),

and in the coordinates 𝑤 = 1 + 𝑢, 𝑧 = 1 + 𝑥

𝑢𝑥3(24 + 40𝑥)+𝑢2𝑥2(8 + 48𝑥+ 40𝑥2) + 𝑢3𝑥(−4 + 12𝑥+ 36𝑥2 + 20𝑥3)

+𝑢5(1 + 𝑥)4 + 𝑢4(−3− 4𝑥+ 6𝑥2 + 12𝑥3 + 5𝑥4) + 16𝑥4 = 0.

The leading part at the point 𝑢 = 𝑥 = 0 is 24𝑢𝑥3+8𝑢2𝑥2− 4𝑢3𝑥− 3𝑢4+16𝑥4, the discriminant
is non-zero, this is an ordinary quadric point and the delta-invariant is 6. The curve possesses
no other singular points.
We proceed to studying infinite singular points. The leading part at the point (1 : 0 : 0) at

𝑢5 + 5𝑢4𝑡+ 20𝑢3𝑡2 + 40𝑢2𝑡3 + 40𝑢𝑡4 + 16𝑡5,

the discriminant is non-zero, this is an ordinary quintic point, the delta-invariant is 10. At the
point (0 : 1 : 0) we have

(𝑡+ 𝑥)4 + (5𝑥− 3𝑡)(𝑡+ 𝑥)3𝑡+ (20𝑥− 4𝑡)𝑥(1 + 𝑥)2𝑡2

+ (40𝑥+ 8𝑡)𝑥2(1 + 𝑥)𝑡3 + 𝑥3(24𝑡+ 40𝑥)𝑡4 + 16𝑥4𝑡5 = 0,

the leading part in coordinates (𝑦 = 𝑥+𝑡, 𝑡) is of the form 𝑦4−8𝑡2𝑦3+24𝑡4𝑦2−32𝑡6𝑦+16𝑡8+16𝑡9,
or (𝑦− 2𝑡2)4 +16𝑡9. After the blow-up (𝑦, 𝑡) ↦→ (𝑦𝑡, 𝑡) the leading part becomes (𝑦− 2𝑡)4 +16𝑡5

and this corresponds to the cusp (4, 5) and this is why the delta-invariant is equal to 6+6 = 12.
Since the degree of the curve is 9, by the genus formula it is equal to 28− 6− 10− 12 = 0 and
the curve is again rational.
2) Under the probabilities 𝑝−2 = 𝑝1 = 𝑝2 =

1
3
, when the system reads⎧⎪⎨⎪⎩

𝑤 = 𝑤1 + 𝑤2,

3𝑤1 = 𝑧(1 + 𝑤3
1 + 2𝑤1𝑤2),

3𝑤2 = 𝑧(1 + 𝑤2
1𝑤2 + 𝑤2

2),
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and the equation is

𝑤6𝑧3 − 3𝑤5𝑧2+𝑤4𝑧2(2𝑧 − 6) + 𝑤2𝑧(9− 48𝑧 − 3𝑧2)

+𝑤3𝑧(18 + 9𝑧2) + 𝑤(19𝑧3 + 36𝑧 − 27) + 𝑧(18− 24𝑧 − 𝑧2) = 0,

the point 𝑤 = 𝑧 = 1 is an ordinary triple point. Two singularities, in which one more finite
singular point splits off, have irrational coordinates conjugate in 𝑄[

√
6]. This is an obstacle in

their direct studying but since nothing splits off from the point 𝑤 = 𝑧 = 1, then under the
general values of the probabilities the delta-invariant of this singularity is equal 3. Concerning
other singularities, the sum of the delta-invariants in the general case is not greater than in the
above described example. Hence, the genus of the curve is not less than 28−3− (2+15+7) = 1
and it is no longer rational. In the above described symmetric case the singularity 𝑤 = 𝑧 = 1,
as the calculations show, degenerates.

3.2. Symmetric random walk with memory. We recall that a discrete random process is
a sequence 𝜉𝑛 of random variables such that for each finite set of integer non-negative numbers
𝑖1, . . . , 𝑖𝑛 for quantities 𝜉𝑖1 , . . . , 𝜉𝑖𝑛 the joint distribution is well-defined. Before we considered
random processes with independent increments, that is, the quantities 𝜉𝑛 − 𝜉𝑛−1, called 𝑛th
increments, for different natural 𝑛 we independent, in particular, they pairwise did not correlate.
Such processes are Markov ones: the conditional distribution 𝜉𝑛+1 for a fixed value 𝜉𝑛 does
not change under posing additional conditions for 𝜉𝑘 as 𝑘 < 𝑛. In this section we consider
random walks, in which each increment from the second step correlates with the increment
at the previous step. At the same, adding a condition for 𝜉𝑛−1 influences the aforementioned
conditional distribution and the process is no longer Markov one. Such processes are usually
called processes with memory. However, this process can be considered as Markov one if into
the notion “state” we include the information on the increment from the previous state.
For simplicity we suppose that walks are symmetric with steps ±1. Then the first increment

takes both admissible values with the probability 1
2
, and each next value coincides with the

previous one with probability 𝑝 and is opposite with the probability 𝑞 = 1− 𝑝. In this walk the
correlation coefficient between neighbouring increments is equal to 𝑘 = 𝑝− 𝑞.

Proposition 3.2. The generating function of the first hitting time of the positive semi-axis
for the above described random walk as 0 < 𝑘 < 1 satisfies the equation

2𝑤 = 𝑧[1 + 𝑤2 − 𝑘2(𝑤 − 𝑧)2)], (3.1)

which defines a regular elliptic curve, which is not rational.

Доказательство. By 𝑤− and 𝑤+ we denote generating functions for the first time of reaching
𝑥 + 1 from 𝑥 under the conditions that at the previous step we respectively has a negative or
positive increment. If at the first step the increment is positive (the probability of this even is 1

2
),

then the first hitting time of the positive semi-axis is equal to 1. If at the first step the increment
is negative, then we first need to return back to 0 and this corresponds to the definition of 𝑤−.
Then we need to reach 1 and this corresponds to 𝑤+ since before this 0 there was a positive
increment. This is why the sought function is calculated by the formula 𝑤 = 𝑧

2
(1 + 𝑤−𝑤+).

We argue in the same way for 𝑤− and 𝑤+ and we get the equations{︃
𝑤− = 𝑧(𝑞 + 𝑝𝑤−𝑤+),

𝑤+ = 𝑧(𝑝+ 𝑞𝑤−𝑤+).

Multiplying one equation by the other and denoting 𝑢 = 𝑤−𝑤+, we obtain

𝑢 = 𝑧2(𝑝+ 𝑞𝑢)(𝑞 + 𝑝𝑢), (3.2)
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and since 𝑤 = 𝑧
2
(1 + 𝑢), we express 𝑢 = 2𝑤

𝑧
− 1 and after substituting into (3.2), we take into

consideration that 𝑝 = 1+𝑘
2

and 𝑞 = 1−𝑘
2

and we obtain the relation (3.1).
Now we rewrite the obtained equation in the form

𝑤2𝑧(1− 𝑘2) + 2𝑤(𝑘2𝑧2 − 1) + 𝑧(1− 𝑘2𝑧2) = 0. (3.3)

We calculate the discriminant of this square equation with respect to 𝑤: it is equal to (1 −
𝑘2𝑧2)(1 − 𝑧2) and, as 0 < 𝑘 < 1, it has for different roots and this is why it defines a regular
elliptic curve. As it is known, the genus of this curve is 1 and therefore, it is rational.

In the case 𝑘 = 0 equation (3.1), as it is expected, becomes a usual equation for generating
function of the first hitting time of the positive semi-axis under a simple symmetric random
walk. Another limiting case is interesting: 𝑘 = ±1. In this case the equation becomes (2𝑤 −
𝑧)(1 − 𝑧2) = 0 and this implies 𝑤 = 𝑧

2
. This result is explained by the fact that in the case of

a linear dependence of the next increment on the previous one the process either stops at the
first step or never. It is curious to mention that if 𝑘 differs from ±1, then the curve intersect
the straight lint 𝑧 = 1 at a unique point 𝑤 = 𝑧 = 1 and this means that the process ends in a
finite time with the probability 1 and this is not true in the limiting case.
In more complicated case we need to apply the methods described in the previous section.

Consider, for instance, the following modification of the previous walk: besides the increments
±1, the zero increment is also possible. In other words, at the first step the probabilities are
equal 1

3
, while at the next steps they are equal to this number only once the previous increment

is 0, while under the increment ±1 the probabilities are equal to 𝑝±1 = 𝑝, 𝑝∓1 = 𝑞, 𝑝0 = 1−𝑝−𝑞

and self-correlation coefficient is equal to 𝑘 = (5−3𝑝−3𝑞)(𝑝−𝑞)
2

.
Let us write an equation for the generating function of such walk.

Proposition 3.3. The generating function of the first hitting time of 1 for the
aforementioned walk satisfies the equation

(1− 3𝑝− 3𝑞 + 2𝑝2 + 5𝑝𝑞 + 2𝑞2)𝑤2𝑧3 + (3𝑝+ 3𝑞 − 3𝑝2 − 12𝑝𝑞 − 3𝑞2)𝑤2𝑧2 + 9𝑝𝑞𝑤2𝑧

+ (𝑝− 𝑞)2𝑤𝑧3 + 3(𝑝− 𝑞)2𝑤𝑧2 + 𝑤𝑧 − 3𝑤 − (𝑝− 𝑞)2𝑧3 + 𝑧 = 0,
(3.4)

which for general 𝑝, 𝑞 defines a hyperelliptic curve of genus 2 (as 𝑝 = 𝑞 we obtain a process
without the memory and the curve is rational, while for 𝑝 + 𝑞 = 1 we obtain the process from
the previous proposition and the genus is 1.) It is likely that there are parameters, for which the
curve is degenerate, but the discriminant of the polynomial of sixth degree with parameters can
not be calculated in a reasonable time.

Remark 3.3. As in the case of walk without the memory, the projectivization of the curve has
singularities. At the same time, if for walk without memory the compactification CP1×CP1 does
not eliminate the singularities (and for symmetric walks with memory without zero increment
it even added them), at the latter case the curve in the mentioned compactification possesses no
singularities.

Доказательство. Reproducing the arguing for the previous process with minor modifications,
we obtain that the generating function for the first hitting time of the positive semi-axis satisfies
the system ⎧⎪⎪⎨⎪⎪⎩

𝑤 =
𝑧

3
(1 + 𝑤 + 𝑤−𝑤+),

𝑤+ = 𝑧(𝑝+ 𝑝0𝑤 + 𝑞𝑤−𝑤+),

𝑤− = 𝑧(𝑞 + 𝑝0𝑤 + 𝑝𝑤−𝑤+).
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Excluding 𝑤+ and 𝑤− from this system by the resultant method and taking into consideration
that 𝑝0 = 1 − 𝑝 − 𝑞, we obtain equation (3.4). By a fiber-to-fiber transform this quintic is
mapped into a hyperelliptic curve of form 𝑤2 = 𝑃6(𝑧) with some polynomial of sixth degree
in the right hand side. The calculation of the discriminant of the polynomial, for instance, as
𝑝 + 𝑞 = 2

3
and |𝑝 − 𝑞| = 1

2
shows that in the general case it possesses no multiple roots. The

genus of such curve is equal to 2.
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