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ON INVERTIBILITY OF DUHAMEL OPERATOR IN

SPACES OF ULTRADIFFERENTIABLE FUNCTIONS

O.A. IVANOVA, S.N. MELIKHOV

Abstract. Let ∆ be a non-point segment or an (open) interval on the real line containing
the point 0. In the space of entire functions realized by the Fourier-Laplace transform of the
dual space to the space of ultradifferentiable or of all infinitely differentiable functions on ∆,
we study the operators from the commutator subgroup of the one-dimensional perturbation
of the backward shift operator. We prove a criterion of their invertibility. In this case, the
Riesz-Schauder theory is applied, the use of which in such a situation goes back to the works
by V.A. Tkachenko. In the topological dual space to the original space, the multiplication ⊛
is introduced and we show that its dual space endowed with a strong topology is a topological
algebra. Using the mapping associated with Fourier-Laplace transform, the introduced
multiplication ⊛ is implemented as a generalized Duhamel product in the corresponding
space of ultradifferentiable or infinitely differentiable functions on ∆. We prove a criterion
for the invertibility of the Duhamel operator in this space. The multiplication ⊛ is used to
extend the Duhamel’s formula to classes of ultradifferentiable functions. It represents the
solution of an inhomogeneous differential equation of finite order with constant coefficients,
satisfying zero initial conditions at the point 0, in the form of Duhamel’s product of the
right-hand side and a solution to this equation with the right-hand side identically equalling
to 1. The obtained results cover both the non-quasianalytic and quasianalytic cases.

Keywords: backward shift operator, entire function, Duhamel product, ultradifferentiable
function.
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1. Introduction

Let ∆ be a non-point segment or an (open) interval on the real line containing the point 0. In
this paper, we study a one-dimensional perturbation 𝐷0,𝑢 of the backward shift operator 𝐷0 acting
in the space 𝐴𝜔(∆) of entire functions in C of exponential type; this space realizes the adjoint to the
space of ultradifferentiable functions of Beurling type or infinitely differentiable functions on ∆ by the
Fourier-Laplace transform. The operator 𝐷0,𝑢 is defined by an entire function 𝑢 such that 𝑢(0) = 1. It
was first defined by V.A. Tkachenko [14] using the function 𝑢 = 𝑒𝑃 , where 𝑃 is some polynomial such
that 𝑃 (0) = 1. In [14], [15] the operator afjoint to 𝐷0,𝑢, called the generalized integration operator,
was studied. Moreover, 𝐷0,𝑢 acts in the countable inductive limit of weighted Banach spaces defined by
some 𝜌-trigonometrically convex function. We note that a general approach to the study of spaces of
ultradifferentiable functions was proposed in work by R.W. Braun, R. Miese, B.A. Taylor [19]; in this
paper the non-quasianalytic case is studied in detail. Recently, there appeared many works devoted
to ultradifferentiable functions, in which, in particular, the approach to this topic proposed in [19] is
generalized and expanded, see, for example, book by A.V. Abanin [1], paper by A. Rainer, G. Schindl
[25] and the references in these works. In [19] the case of a non-quasianalytic weight function was
considered, but many of the results from [19] are also valid for the quasianalytic situation. Therefore,
in some cases we refer to [19] for the general situation.

The main result of this paper, Theorem 3.1, provides a criterion for the invertibility of the operator
𝐵𝜇 from the commutant 𝐷0,𝑢 in the algebra of all linear continuous operators in 𝐴𝜔(∆). It covers
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both the non-quasianalytic and quasianalytic case. The proof of the sufficiency of the invertibility
condition uses Riesz-Schauder theory for Banach spaces by considering the corresponding operators
on the Banach steps forming the inductive limit. The use of this method goes back to work by
V.A. Tkachenko [15]. The proof of the injectivity of the operator 𝐵𝜇 essentially employs the results of
[21]. This criterion was previously proven by the authors in [5, Thm. 2] in the case of 𝑢 ≡ 1 for the
space 𝐶∞(Ω), where Ω is an interval in R containing the point 0. Moreover, the proof of the injectivity
of the corresponding operator in [5] was different and was based on singular integrals.

The duality theory allows us to apply the above results to the implementation of the adjoint of the
operator 𝐵𝜇 called here the generalized Duhamel operator. The title of the paper reflects precisely
this part of the work. In the strong dual space 𝐴𝜔(∆)′ of 𝐴𝜔(∆) we introduce the multiplication
⊛ and we prove that 𝐴𝜔(∆)′ with it is a topological algebra. By means of an adjoint mapping to
the Fourier-Laplace transform, the introduced operation ⊛ is implemented as a generalized Duhamel
product in ℰ𝜔(∆). If we fix one factor in it, then we obtain the corresponding Duhamel operator. This
is an operator from the commutant of the realization of the generalized integration operator adjoint to
𝐷0,𝑢. Here we establish a criterion for the invertibility of the Duhamel operator in the space ℰ𝜔(∆).
Previously, such criterion was obtained by R. Tapdigoglu and B.T. Torebek [26] for the space 𝐶∞[0, 1]
in the case of 𝑢 ≡ 1.

In the final part of the work, we apply the product ⊛ to a new proof of the well-known Duhamel
formula for solving a differential equation of finite order with constant coefficients satisfying zero initial
conditions at point 0. It expresses this solution in the form of the Duhamel product of the right-hand
side and such a solution with the right-hand side part identically equalling to 1. In particular, the
mentioned formula was obtained for classes of ultradifferentiable functions that were not previously
considered in this regard. The proof is based on the possibility of dividing linear continuous functionals
on 𝐴𝜔(∆) by a nonzero polynomial so that the resulting quotient vanishes on monomials the degrees
of which are less than the degree of this polynomial.

2. Basic spaces and operators

Following [19], a continuous non-decreasing function 𝜔 : [0,+∞) → [0,+∞) is called a weight
function if it satisfies the following conditions:

(𝛼) 𝜔(2𝑡) = 𝑂(𝜔(𝑡)), 𝑡→ +∞;
(𝛽) 𝜔(𝑡) = 𝑂(𝑡), 𝑡→ +∞;
(𝛾) log 𝑡 = 𝑜(𝜔(𝑡)), 𝑡→ +∞;
(𝛿) The function 𝜙 = 𝜔 ∘ exp is convex on R.

By [19, Lm. 1.2] the weight function 𝜔 satisfies the following condition:
(𝛼1) There exists a constant 𝐶 ⩾ 1 such that

𝜔(𝑥+ 𝑦) ⩽ 𝐶(𝜔(𝑥) + 𝜔(𝑦) + 1) for all 𝑥, 𝑦 ∈ [0,+∞).

The weight function 𝜔 is called non-quasianalytic if

∞∫︁
1

𝜔(𝑡)

𝑡2
𝑑𝑡 < +∞,

and it is quasianalytic if
∞∫︁
1

𝜔(𝑡)

𝑡2
𝑑𝑡 = +∞.

By 𝜙* we denote a Young adjoint to 𝜙 functions, that is, 𝜙*(𝑥) := sup
𝑦⩾0

(𝑥𝑦 − 𝜙(𝑦)), 𝑥 ⩾ 0.

Let 𝜔 be a weight function, N0 := N ∪ {0}. As in [19], we define the spaces of ultradifferentiable
functions of Beurling type defined with help of 𝜔. For a segment 𝐾 ⊂ R with a non-empty interior we
introduce the space

ℰ𝜔(𝐾) :=

{︃
𝑓 ∈ 𝐶∞(𝐾)

⃒⃒⃒
|𝑓 |𝐾,𝑚 := sup

𝛼∈N0

sup
𝑥∈𝐾

|𝑓 (𝛼)(𝑥)|
exp(𝑚𝜙*(𝛼/𝑚))

< +∞ for all 𝑚 ∈ N

}︃
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and define its locally convex topology by the family of semi-norms | · |𝐾,𝑚, 𝑚 ∈ N. Then ℰ𝜔(𝐾) is an
(FS)-space, that is, the Fréchet-Schwartz space, see [2, Sect. 1], [24, Sect. 25].

Let Ω be an interval in R. We fix a sequence of segments 𝐾𝑛, 𝑛 ∈ N, such that 𝐾𝑛 ⊂ int𝐾𝑛+1,
𝑛 ∈ N, int𝐾1 ̸= ∅ and Ω =

⋃︀
𝑛∈N

𝐾𝑛; here int𝑄 is the interior of a ser 𝑄 ⊂ R in R. We let

ℰ𝜔(Ω) :=

{︃
𝑓 ∈ 𝐶∞(Ω)

⃒⃒⃒
|𝑓 |Ω,𝑚,𝑛 := sup

𝛼∈N0

sup
𝑥∈𝐾𝑛

|𝑓 (𝛼)(𝑥)|
exp(𝑚𝜙*(𝛼/𝑚))

< +∞ for all 𝑚,𝑛 ∈ N

}︃
.

A locally convex topology in ℰ𝜔(Ω) is defined by the family of semi-norms | · |Ω,𝑚,𝑛, 𝑚,𝑛 ∈ N, which
make ℰ𝜔(Ω) an (FS)-space. The space ℰ𝜔(Ω) is algebraically and topologically independent of the
choice of the segments (𝐾𝑛)𝑛∈N, as above.

For 𝜔(𝑡) = log(1 + 𝑡), 𝑡 ∈ [0,+∞), for a segment 𝐾 ⊂ R with a non-empty interior and for an
interval Ω ⊂ R we suppose that

ℰ𝜔(𝐾) := 𝐶∞(𝐾), ℰ𝜔(Ω) := 𝐶∞(Ω).

The spaces 𝐶∞(𝐾) and 𝐶∞(Ω) are equipped with their standard topologies.
For a bounded set 𝑄 ⊂ R the symbol 𝐻𝑄 denotes the support function of 𝑄, that is, 𝐻𝑄(𝑦) :=

sup
𝑥∈𝑄

(𝑥𝑦), 𝑦 ∈ R. Let 𝑒𝜆(𝑥) := 𝑒−𝑖𝜆𝑥, 𝑥 ∈ R, 𝜆 ∈ C. For a locally convex space 𝐻 by 𝐻 ′ we denote

a topologically dual to 𝐻. The space 𝐻 ′ is equipped with the strong topology. The Fourier-Laplace
transform of a functional 𝜙 from ℰ𝜔(𝐾)′ or from ℰ𝜔(Ω)′ is defined by the identity

ℱ(𝜙)(𝜆) := 𝜙(𝑒𝜆), 𝜆 ∈ C.
We continue the function 𝜔 on C by letting 𝜔(𝑧) := 𝜔(|𝑧|), 𝑧 ∈ C. By 𝐻(C) we denote the space of

all entire in C functions. For a segment 𝐾 ⊂ R, 𝑛 ∈ N, we define a Banach space of entire functions

𝐴𝜔,𝑛(𝐾) :=

{︂
𝑓 ∈ 𝐻(C)

⃒⃒⃒
‖𝑓‖𝐾,𝑛 := sup

𝑧∈C

|𝑓(𝑧)|
exp(𝐻𝐾(Im 𝑧) + 𝑛𝜔(𝑧))

< +∞
}︂

with the norm ‖ · ‖𝐾,𝑛 and we let 𝐴𝜔(𝐾) := ind
𝑛→

𝐴𝜔,𝑛(𝐾). If Ω is an interval in R, then 𝐴𝜔(Ω) :=

ind
𝑛→

𝐴𝜔,𝑛(𝐾𝑛). At the same time, an algebraic and topological identity 𝐴𝜔(Ω) = ind
𝑛→

𝐴𝜔(𝐾𝑛) holds true.

The spaces 𝐴𝜔(𝐾) and 𝐴𝜔(Ω) are (DFS)-spaces, see [2, Sect. 2.10], [24, Thm. 25.20]. If 𝑓 ∈ 𝐴𝜔(𝐾) or

𝑓 ∈ 𝐴𝜔(Ω), then for each zero 𝑧 of the function 𝑓 , the function 𝑓(𝑡)
𝑡−𝑧 also belongs to 𝐴𝜔(𝐾), respectively,

to 𝐴𝜔(Ω). We note that the spaces 𝐴𝜔(𝐾) and 𝐴𝜔(Ω) contain also polynomials if 0 ∈ 𝐾 or 0 ∈ Ω.
By the Paley-Wiener-Schwartz theorem for ultradistributions and quasianalytic functionals [19,

Prop. 3.5, Thm. 7.4], [23, Prop. 3.6] and for usual distributions [16, Thm. 7.3.1] we have the
following theorem.

Theorem 2.1. Let 𝜔 be a weight function or 𝜔(𝑡) := log(1 + 𝑡), 𝑡 ∈ [0,+∞). The Fourier-Laplace
transform ℱ is a topological isomorphism of ℰ𝜔(𝐾)′ onto 𝐴𝜔(𝐾) and of ℰ𝜔(Ω)′ onto 𝐴𝜔(Ω).

We provide a few statements, which will be employed in what follows.

Lemma 2.1. (i) Let 𝐾 be a segment in R. Then

|𝐻𝐾(𝑡)−𝐻𝐾(𝑧)| ⩽ 𝛼𝐾 |𝑡− 𝑧|, 𝑡, 𝑧 ∈ C,
where 𝛼𝐾 = sup

|𝜉|=1
𝐻𝐾(𝜉) < +∞.

(ii) For all 𝑡, 𝑧 ∈ C obeying |𝑡− 𝑧| ⩽ 1
2 log(1 + |𝑧|) the inequality

log(1 + |𝑧|) ⩽ log(1 + |𝑡|) + log 2

holds true.
(iii) Let 𝜔 be a weight function. For all 𝑧, 𝜉, 𝑡 ∈ C such that

|𝜉 − 𝑧| ⩽ 1

2
log(1 + |𝑧|) and |𝑡− 𝑧| ⩽ 1

2
log(1 + |𝑧|)

the inequality
𝜔(𝜉) ⩽ 𝐶(𝐶 + 1)𝜔(𝑡) + 𝐶(𝐶𝜔(log 2) + 𝐶 + 1)

holds, where 𝐶 is a constant from condition (𝛼1).
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Proof. The inequality in (i) is well-known; it is implied by the semi-additivity and positivity homo-
geneity of the support function 𝐻𝐾 .

(ii): Since

|𝑧| ⩽ |𝑡|+ |𝑡− 𝑧| ⩽ |𝑡|+ 1

2
log(1 + |𝑧|) ⩽ |𝑡|+ |𝑧|

2
,

then |𝑧| ⩽ 2|𝑡| and hence,

log(1 + |𝑧|) ⩽ log(1 + 2|𝑡|) ⩽ log(1 + |𝑡|) + log 2.

(iii): Using condition (𝛼1) and Statement (ii), we obtain:

𝑤(𝜉) ⩽ 𝐶(𝜔(𝑡) + 𝜔(𝜉 − 𝑡) + 1) ⩽ 𝐶(𝜔(𝑡) + 𝜔(log(1 + |𝑧|)) + 1)

⩽ 𝐶(𝜔(𝑡) + 𝜔(log(1 + |𝑡|) + log 2) + 1) ⩽ 𝐶(𝜔(𝑡) + 𝐶(𝜔(log(1 + |𝑡|)) + 𝜔(log 2) + 1) + 1)

⩽ 𝐶(𝜔(𝑡) + 𝐶𝜔(𝑡) + 𝐶𝜔(log 2) + 𝐶 + 1) = 𝐶(𝐶 + 1)𝜔(𝑡) + 𝐶(𝐶𝜔(log 2) + 𝐶 + 1).

The proof is complete.

In what follows ∆ is a non-point segment or interval in R containing the point 0. We fix a function
𝑢 ∈ 𝐴𝜔(∆) such that 𝑢(0) = 1. An a generalized backward shift operator 𝐷0,𝑢, linear and continuous

in 𝐴𝜔(∆), is defined by the identity 𝐷0,𝑢(𝑓)(𝑡) :=
𝑓(𝑡)−𝑢(𝑡)𝑓(0)

𝑡 , 𝑓 ∈ 𝐴𝜔(∆), see [3, Sect. 1]. If 𝑢 ≡ 1,
then 𝐷0 := 𝐷0,𝑢 is the usual backward shift operator. We mention the identities

𝐷0,𝑢(𝑓)(𝑡) =
𝑓(𝑡)− 𝑢(𝑡)𝑓(0)

𝑡
=
𝑓(𝑡)− 𝑓(0)

𝑡
− 𝑓(0)

𝑢(𝑡)− 𝑢(0)

𝑡
= 𝐷0(𝑓)(𝑡)− 𝑓(0)𝐷0(𝑢)(𝑡). (2.1)

They show that 𝐷0,𝑢 is an one-dimensional perturbation of the operator 𝐷0. The operator 𝐷0,𝑢 in
the form as in the right hand sides of identities (2.1) was studied by Yu.S. Linchuk in the space of
functions holomorphic in a domain in C [22].

Following [15], [18], we introduce shift operators

𝑇𝑧(𝑓)(𝑡) :=
𝑡𝑓(𝑡)𝑢(𝑧)− 𝑧𝑓(𝑧)𝑢(𝑡)

𝑡− 𝑧

for the operator 𝐷0,𝑢 and Pommiez operators

𝐷𝑧(𝑓)(𝑡) :=
𝑓(𝑡)𝑢(𝑧)− 𝑓(𝑧)𝑢(𝑡)

𝑡− 𝑧
, 𝑓 ∈ 𝐴𝜔(∆).

All of them linearly and continuously act in 𝐴𝜔(∆).

Remark 2.1. For all functions 𝑓 ∈ 𝐴𝜔(𝐾), 𝑧 ∈ C and a zero 𝑎 of a function 𝑢, the function

𝑢𝑎(𝑡) :=
𝑢(𝑡)
𝑡−𝑎 is an eigenvector of the operator 𝑇𝑧:

𝑇𝑧(𝑢) = 𝑢(𝑧)𝑢, 𝑇𝑧(𝑢𝑎) = −𝑎𝑢𝑎(𝑧)𝑢𝑎.
These identities can be confirmed by straightforward calculations.

Lemma 2.2. Let 𝐾 be a non-point segment in R containing the point 0.
(i) For each 𝑛 ∈ N there exist 𝑚 ∈ N and a constant 𝑐1 ⩾ 0 such that for each function 𝑓 ∈ 𝐴𝜔,𝑛(𝐾)
the inequality

|𝑓 ′(𝑡)| ⩽ 𝑐1‖𝑓‖𝐾,𝑛 exp (𝐻𝐾(Im 𝑡) +𝑚(𝜔(𝑡))) , 𝑡 ∈ C.
holds true.
(ii) For each 𝑛 ∈ N there exist 𝑠 ∈ N and a constant 𝑐2 ⩾ 0 such that for each function 𝑓 ∈ 𝐴𝜔,𝑛(𝐾)
the inequality

|𝑇𝑧(𝑓)(𝑡)| ⩽ 𝑐2‖𝑓‖𝐾,𝑛 exp (𝐻𝐾(Im 𝑡) +𝐻𝐾(Im 𝑧) + 𝑠(𝜔(𝑡) + 𝜔(𝑧))) , 𝑡, 𝑧 ∈ C,
holds true.

This statement is implied by the maximum modulus principle for holomorphic functions in view of
Lemma 2.1, see also a general result in [4, Lm. 4 (i)].

For a functional 𝜇 ∈ 𝐴𝜔(∆)′ we introduce an operator

𝐵𝜇(𝑓)(𝑧) := 𝜇(𝑇𝑧(𝑓)), 𝑧 ∈ C, 𝑓 ∈ 𝐴𝜔(∆),

which is linear and continuous in 𝐴𝜔(∆). By [4, Thm. 15] the set {𝐵𝜇 |𝜇 ∈ 𝐴𝜔(∆)′} coincides with the
commutant of the operator 𝐷0,𝑢 in the algebra of all linear continuous operators in 𝐴𝜔(∆). We also
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observe that due to Lemma 2.1 the sequences of functions (𝐻𝐾(Im 𝑧) + 𝑛𝜔(𝑧))𝑛∈N and (𝐻𝐾𝑛(Im 𝑧) +
𝑛𝜔(𝑧))𝑛∈N defining the space 𝐴𝜔(∆) satisfy original assumptions (1.1) in [4].

The following identities are useful, for instance, in using Riesz-Shauder theory in the problem on
invertibility of the operators 𝐵𝜇 in 𝐴𝜔(∆).

Remark 2.2. For 𝜇 ∈ 𝐴𝜔(∆)′, 𝑓 ∈ 𝐴𝜔(∆), 𝑧 ∈ C the identities

𝐵𝜇(𝑓)(𝑧) = 𝜇(𝑢)𝑓(𝑧) + 𝜇𝑡

(︂
𝑡
𝑓(𝑡)𝑢(𝑧)− 𝑓(𝑧)𝑢(𝑡)

𝑡− 𝑢

)︂
= 𝜇(𝑢)𝑓(𝑧) + 𝜇𝑡 (𝑡𝐷𝑧(𝑓)(𝑡))

hold; the subscript 𝑡 means that the functional 𝜇 acts in the variable 𝑡.

3. Invertibility criterion of operator 𝐵𝜇

For a non-point segment 𝐾 in R, for 𝜈 ∈ 𝐴𝜔(𝐾)′, 𝑛 ∈ N, we let
‖𝜈‖*𝐾,𝑛 := sup

‖𝑓‖𝐾,𝑛⩽1
|𝜈(𝑓)|.

By the symbol 𝑆𝑛(𝐾) we denote a closed unit ball in 𝐴𝜔,𝑛(𝐾).

Lemma 3.1. Let 𝐾 be a non-point segment in R containing the point 0, 𝜇 ∈ 𝐴𝜔(𝐾)′, 𝑢 ∈ 𝐴𝜔,𝑚(𝐾),
𝑚 ∈ N. Then for each 𝑛 ⩾ 𝑚 the operator

𝐶𝜇(𝑓)(𝑧) := 𝜇𝑡

(︂
𝑡
𝑓(𝑡)𝑢(𝑧)− 𝑓(𝑧)𝑢(𝑡)

𝑡− 𝑧

)︂
is compact in 𝐴𝜔,𝑛(𝐾).

Proof. We use some modification of the proving method by V.A. Tkachenko [15, Thm. 2]. We let
𝑑(𝑧) := max

(︀
1; 12 log(1 + |𝑧|)

)︀
, 𝑧 ∈ C.

We fix 𝑛 ⩾ 𝑚. Let |𝑡− 𝑧| ⩾ 𝑑(𝑧). Then for each function 𝑓 ∈ 𝑆𝑛(𝐾) we have

|𝑡𝐷𝑧(𝑓)(𝑡)| ⩽
|𝑡|(|𝑓(𝑡)||𝑢(𝑧)|+ |𝑓(𝑧)||𝑢(𝑡)|)

𝑑(𝑧)

⩽
|𝑡|
𝑑(𝑧)

‖𝑢‖𝐾,𝑚

(︁
𝑒𝐻𝐾(Im 𝑡)+𝑛𝜔(𝑡)𝑒𝐻𝐾(Im 𝑧)+𝑚𝜔(𝑧) + 𝑒𝐻𝐾(Im 𝑧)+𝑛𝜔(𝑧)𝑒𝐻𝐾(Im 𝑡)+𝑚𝜔(𝑡)

)︁
⩽

2|𝑡|
𝑑(𝑧)

‖𝑢‖𝐾,𝑚𝑒
𝐻𝐾(Im 𝑧)+𝑛𝜔(𝑧)𝑒𝐻𝐾(Im 𝑡)+𝑛𝜔(𝑡).

Now let |𝑡− 𝑧| < 𝑑(𝑧). By the maximum modulus principle of holomorphic functions for each function
𝑓 ∈ 𝑆𝑛(𝐾) there exists a point 𝜉 ∈ C, for which |𝜉 − 𝑧| = 𝑑(𝑧) and

|𝑡𝐷𝑧(𝑓)(𝑡)| ⩽ |𝜉𝐷𝑧(𝑓)(𝜉)| ⩽
2|𝜉|
𝑑(𝑧)

‖𝑢‖𝐾,𝑚𝑒
𝐻𝐾(Im 𝑧)+𝑛𝜔(𝑧)𝑒𝐻𝐾(Im 𝜉)+𝑛𝜔(𝜉).

Owing to Lemma 2.1 and condition (𝛾) for the weight function 𝜔 there exist constants 𝐴1, 𝐴2 > 0,
such that for all 𝑡, 𝑧 ∈ C, 𝑓 ∈ 𝑆𝑛(𝐾) we have

|𝑡𝐷𝑧(𝑓)(𝑡)| ⩽
|𝑡|
𝑑(𝑧)

‖𝑢‖𝐾,𝑚𝑒
𝐻𝐾(Im 𝑧)+𝑛𝜔(𝑧)𝑒𝐻𝐾(Im 𝑡)+𝐴1𝜔(𝑡)+𝐴1

⩽
1

𝑑(𝑧)
‖𝑢‖𝐾,𝑚𝑒

𝐻𝐾(Im 𝑧)+𝑛𝜔(𝑧)𝑒𝐻𝐾(Im 𝑡)+𝐴2𝜔(𝑡)+𝐴2 .

We take 𝑠 ∈ N such that 𝑠 ⩾ 𝐴2. Then, for all 𝑧 ∈ C, 𝑓 ∈ 𝑆𝑛(𝐾),

|𝐶𝜇(𝑓)(𝑧)| ⩽ ‖𝜇‖*𝐾,𝑠 sup
𝑡∈C

|𝑡𝐷𝑧(𝑓)(𝑡)|
exp(𝐻𝐾(Im 𝑡) + 𝑠𝜔(𝑡))

⩽ 𝑒𝐴2
‖𝜇‖*𝐾,𝑠‖𝑢‖𝐾,𝑚

𝑑(𝑧)
𝑒𝐻𝐾(Im 𝑧)+𝑛𝜔(𝑧).

This is why

lim
|𝑧|→+∞

sup
‖𝑓‖𝐾,𝑛⩽1

|𝐶𝜇(𝑓)(𝑧)|
exp(𝐻𝐾(Im 𝑧) + 𝑛𝜔(𝑧))

= 0.

Hence, the set 𝐶𝜇(𝑆𝑛(𝐾)) is relatively compact in 𝐴𝜔,𝑛(𝐾). The proof is complete.
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Let C[𝑧] and C[𝑧]𝑛, 𝑛 ∈ N0, be the sets of all polynomials of one variable, respectively, of degree at
most 𝑛 over the field C. For the sake for convenience we provide results from paper [21], which will be
employed below; these are Lemmas 2, 4–6 from [21].

Lemma 3.2. (i) Let 𝑣, 𝑤 ∈ 𝐻(C), 𝑣(0) = 𝑤(0) = 1. Then for all functions ℎ ∈ 𝐻(C), 𝑗 ∈ N the

identity 𝐷𝑗
0,𝑣𝑤(𝑣ℎ) = 𝑣𝐷𝑗

0,𝑤(ℎ) holds.

(ii) If the polynomials 𝑣, ℎ ∈ C be coprime, 𝑣(0) = 1, then the polynomials 𝐷0,𝑣(ℎ) and 𝑣 are also
coprime.
(iii) Let 𝑣 ∈ 𝐻(C), 𝑣(0) = 1. If a function 𝑓 ∈ 𝐻(C) satisfies the identity

𝑠∑︁
𝑗=1

𝑎𝑗𝐷
𝑗
0,𝑣(𝑓)(𝑧) = 0, 𝑧 ∈ C, 𝑠 ∈ N, 𝑎𝑗 ∈ C, 1 ⩽ 𝑗 ⩽ 𝑠, 𝑎𝑠 ̸= 0,

then there exist polynomials 𝑝, 𝑟 ∈ C[𝑧] of degree at most 𝑛− 1, for which 𝑓 = 𝑟
𝑝𝑣.

(iv) Let 𝑣, 𝑟 ∈ C[𝑧], 𝑣(0) = 1. If the polynomials 𝑣, 𝑟 are coprime, then the system

{𝐷𝑗
0,𝑣(𝑟) | 1 ⩽ 𝑗 ⩽ deg(𝑣)}

is linearly independent in 𝐻(C).

By the symbol 𝒩 (𝑢) we denote the set of all zeros of the function 𝑢. We let 𝑢𝑎(𝑡) := 𝑢(𝑡)
𝑡−𝑎 for

𝑎 ∈ 𝒩 (𝑢).

Theorem 3.1. Let ∆ be a non-point segment or interval in R and 0 ∈ ∆, while 𝜔 be a weight
function or 𝜔(𝑡) = log(1 + 𝑡), 𝑡 ∈ [0,+∞). For 𝜇 ∈ 𝐴𝜔(∆)′ the following statements are equivalent:
(i) 𝐵𝜇 is an isomorphism of 𝐴𝜔(∆) onto itself;
(ii) 𝜇(𝑢) ̸= 0 and 𝜇(𝑢𝑎) ̸= 0 for each 𝑎 ∈ 𝒩 (𝑢).

Proof. (i)⇒(ii): By Remark 2.1, 𝐵𝜇(𝑢) = 𝜇(𝑢)𝑢 and if𝒩 (𝑢) ̸= ∅, then𝐵𝜇(𝑢𝑎) = −𝑎𝜇(𝑢𝑎)𝑢𝑎, 𝑎 ∈ 𝒩 (𝑢).
Hence, 𝜇(𝑢) ̸= 0 and 𝜇(𝑢𝑎) ̸= 0 for each 𝑎 ∈ 𝒩 (𝑢).

(ii)⇒(i): We first consider the case when ∆ is the segment 𝐾. We choose 𝑚 ∈ N such that
𝑢 ∈ 𝐴𝜔,𝑚(𝐾). We choose 𝑛 ⩾ 𝑚. By Remark 2.2 and Lemma 3.1, the operator 𝐷0,𝑢 acts in 𝐴𝜔,𝑛(𝐾).
Moreover, by Lemma 3.1, due to the representation in Remark 2.2, the kernel Ker𝐵𝜇 of the operator
𝐵𝜇 : 𝐴𝜔,𝑛(𝐾) → 𝐴𝜔,𝑛(𝐾) is finite-dimensional.

Let us show that the operator 𝐵𝜇 is injective in 𝐴𝜔,𝑛(𝐾). Suppose that there exists a non-zero
function 𝑓 ∈ 𝐴𝜔,𝑛(𝐾) such that 𝐵𝜇(𝑓) = 0. We consider the case when 𝑓 can not be represented in
the form 𝑓 = 𝑟

𝑝𝑢, where 𝑟, 𝑝 are polynomials. According to Lemma 3.2, then 𝑓 satisfies none of the

equations
𝑠∑︀

𝑗=1
𝑎𝑗𝐷

𝑗
0,𝑢(𝑓) = 0, 𝑠 ∈ N, 𝑎𝑠 ̸= 0 in 𝐻(C). Hence, the system {𝐷𝑗

0,𝑢(𝑓) | 𝑗 ∈ N} is linearly

independent in 𝐻(C). Since 𝐵𝜇𝐷0,𝑢 = 𝐷0,𝑢𝐵𝜇 in 𝐴𝜔(𝐾) (and in 𝐴𝜔,𝑛(𝐾)), then 𝐵𝜇(𝐷
𝑗
0,𝑢(𝑓)) = 0

for each 𝑗 ∈ N. Hence, Ker𝐵𝜇 is infinite-dimensional and this is a contradiction. Thus, there exist
coprime polynomials 𝑟 and 𝑝 such that 𝑓 = 𝑟

𝑝𝑢. Then
𝑢
𝑝 ∈ 𝐻(C) and without loss of generality we can

suppose that 𝑝(0) = 1. By Lemma 3.2 for each 𝑗 ⩾ 0 the identity holds:

𝐷𝑗
0,𝑢(𝑓) =

𝑢

𝑝
𝐷𝑗

0,𝑝(𝑟). (3.1)

At the same time 𝐷𝑗
0,𝑢(𝑓) ∈ Ker𝐵𝜇 for each 𝑗 ⩾ 0. We let 𝑘 := deg(𝑟), 𝑙 := deg(𝑝). If 𝑙 = 0, then

𝑝 ≡ 1, and the identities deg(𝐷𝑘
0,𝑝(𝑟)) = 0 and (3.1) as 𝑗 = 𝑘 yield that 𝑢 ∈ Ker𝐵𝜇. Therefore,

𝜇(𝑢)𝑢 = 0 and this is a contradiction.
Let 𝑙 ⩾ 1. We apply a method used in the proof of Lemma 8 in [21]. By Lemma 3.2 the set

𝑆 := {𝐷𝑗
0,𝑝(𝑟) | 1 ⩽ 𝑗 ⩽ 𝑙} is linearly independent in 𝐻(C). Suppose that 𝑘 < 𝑙. Since deg(𝐷𝑗

0,𝑝(𝑟)) < 𝑙

for all 𝑗 such that 1 ⩽ 𝑗 ⩽ 𝑙, then the system 𝑆 is a basis in C[𝑧]𝑙−1. Let 𝑎 be some root of 𝑝. Then
𝑎 is also a root of the function 𝑢. Using (3.1), we obtain that 𝑢

𝑝C[𝑧]𝑙−1 ⊂ Ker𝐵𝜇 and this is why the

function 𝑢(𝑡)
𝑡−𝑎 also belongs to Ker𝐵𝜇, which is a contradiction.

Let 𝑘 = 𝑙. Then the system 𝑆 is a basis in C[𝑧]𝑙−1, and 𝑆 ∪ {𝑟} is a basis in C[𝑧]𝑙. This is why
𝑢
𝑝C[𝑧]𝑙 ⊂ Ker𝐵𝜇 and this leads us to a contradiction. Now let 𝑘 > 𝑙. By Lemma 3.2 the polynomials
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𝐷𝑘−𝑙
0,𝑝 (𝑟) and 𝑝 are coprime and the set{︁

𝐷𝑗
0,𝑝(𝑟) = 𝐷𝑗−𝑘+𝑙

0,𝑝 (𝐷𝑘−𝑙
0,𝑝 (𝑟))

⃒⃒⃒
𝑘 − 𝑙 + 1 ⩽ 𝑗 ⩽ 𝑘

}︁
is linearly independent. Since deg(𝐷𝑘−𝑙

0,𝑝 (𝑟)) = 𝑙, then this set is contained in C[𝑧]𝑙−1, and hence, it is

a basis in C[𝑧]𝑙−1. This is again a contradiction.
Thus, the operator 𝐵𝜇 : 𝐴𝜔,𝑛(𝐾) → 𝐴𝜔,𝑛(𝐾) is injective. Due to Remark 2.2 and Lemma 3.1, 𝐵𝜇

is an isomorphism of each space 𝐴𝜔,𝑛(𝐾), 𝑛 ⩾ 𝑚, onto itself. This is why 𝐵𝜇 is an isomorphism of
𝐴𝜔(𝐾) onto itself; the theorem on an open mapping implies that this is a topological isomorphism.

Now we consider the case, when ∆ is an interval Ω containing the point 0. Then 𝐴𝜔(Ω) =
ind
𝑛→

𝐴𝜔(𝐾𝑛), where 𝐾𝑛 are segments such that 𝐾𝑛 ⊂ int𝐾𝑛+1, 𝑛 ∈ N, int𝐾1 ̸= ∅ and Ω =
⋃︀

𝑛∈N
𝐾𝑛.

At the same time for each 𝑛 ∈ N the restriction of 𝜇 on 𝐴𝜔(𝐾𝑛) is a linear continuous functional on
𝐴𝜔(𝐾𝑛). If 𝑢 ∈ 𝐴𝜔(𝐾𝑠), then by the previous part of the proof the operator 𝐵𝜇 is an isomorphism
of each space 𝐴𝜔(𝐾𝑛) as 𝑛 ⩾ 𝑠. Hence, 𝐵𝜇 is an isomorphism of 𝐴𝜔(Ω) onto itself. The proof is
complete.

Remark 3.1. (i) The criterion in Theorem 3.1 was proved in work [5, Thm. 2] in the case 𝜔(𝑡) =
log(1 + 𝑡), 𝑢 ≡ 1.

(ii) In the proof of the previous theorem, the compactness of the operator 𝐶𝜇(𝑓) = 𝜇𝑡

(︁
𝑡𝑓(𝑡)𝑢(𝑧)−𝑓(𝑧)𝑢(𝑡)

𝑡−𝑧

)︁
in each space 𝐴𝜔,𝑛(𝐾) for sufficiently large 𝑛 has been essentially employed. Under certain conditions,
this operator is not compact in 𝐴𝜔(𝐾), which means that in this case it is impossible to use the Riesz-
Schauder theory for operators in locally convex spaces other than Banach ones, see, for instance, [27],
[13, Ch. VIII].

Let us show this fact for 𝜔(𝑡) = log(1+ 𝑡) and 𝑢 ≡ 1. Let ̂︀𝜇(𝑥) := 𝜇𝑡(𝑒
−𝑖𝑡𝑥), 𝑥 ∈ ∆. Then ̂︀𝜇 ∈ ℰ𝜔(∆)

(see Section 4.2). Suppose that the function ̂︀𝜇 − ̂︀𝜇(0) is not flat at zero, i.e., that there exists 𝑘 ∈ N
such that 0 ̸= ̂︀𝜇(𝑘)(0) = (−𝑖)𝑘𝜇𝑡(𝑡𝑘) and (for 𝑘 ⩾ 2) 0 = ̂︀𝜇(𝑗)(0) = (−𝑖)𝑗𝜇𝑡(𝑡𝑗) if 1 ⩽ 𝑗 < 𝑘. Let

𝑣𝑛(𝑧) := (𝐶𝜇)𝑡(𝑡
𝑛)(𝑧) = 𝜇𝑡

(︁
𝑡 𝑡

𝑛−𝑧𝑛

𝑡−𝑧

)︁
, 𝑧 ∈ C, 𝑛 ∈ N. Suppose that the operator 𝐶𝜇 : 𝐴𝜔(𝐾) → 𝐴𝜔(𝐾)

is compact, i.e., it maps some neighborhood of zero onto a subset of a compact set in 𝐴𝜔(𝐾). Since
the countable inductive limit 𝐴𝜔(𝐾) is regular, that is, each bounded subset 𝐴𝜔(𝐾) is contained and
bounded in some space 𝐴𝜔,𝑠(𝐾), see [2, Sect. 2, 2.9(c)], then there exists 𝑠 ∈ N such that all functions
𝑣𝑛, 𝑛 ∈ N, belong to 𝐴𝜔,𝑠(𝐾). This means that for each 𝑛 ∈ N

|𝑣𝑛(𝑧)| ⩽ ‖𝑣𝑛‖𝐾,𝑠𝑒
𝐻𝐾(Im 𝑧)(1 + |𝑧|)𝑠, 𝑧 ∈ C,

where ‖𝑣𝑛‖𝐾,𝑠 < +∞. Therefore, for 𝑛 = 𝑘 + 𝑠+ 1 we get:⃒⃒⃒ 𝑘+𝑠∑︁
𝑙=0

𝑧𝑙𝜇𝑡(𝑡
𝑘+𝑠+1−𝑙)

⃒⃒⃒
⩽ ‖𝑣𝑛‖𝐾,𝑠(1 + |𝑧|)𝑠, 𝑧 ∈ C.

But the last inequality does not hold for sufficiently large |𝑧| and we get a contradiction.

4. Results for Duhamel operator

Let ∆ be still a non-point segment or interval R, 0 ∈ ∆, and 𝜔 be a weight function or 𝜔(𝑡) =
log(1 + 𝑡), 𝑡 ∈ [0,+∞).

4.1. 𝐴𝜔(∆)′ as topological algebra. Following [4, Sect. 2.2], we introduce an operation ⊛:

(𝜙⊛ 𝜓)(𝑓) := 𝜙𝑧(𝜓(𝑇𝑧(𝑓))), 𝜙, 𝜓 ∈ 𝐴𝜔(∆)′, 𝑓 ∈ 𝐴𝜔(∆).

According to [4, Sect. 2.2], ⊛ is an associative and commutative binary operation in 𝐴𝜔(∆)′. Let us
show that 𝐴𝜔(∆)′ is a topological algebra with the multiplication ⊛. We use the following terminology.
Algebra is a complex linear space 𝒜 with a multiplication, i.e., a bilinear mapping from 𝒜×𝒜 to 𝒜.
It is called topological if 𝒜 is a locally convex space and the multiplication is continuous from 𝒜×𝒜
into 𝒜.

Since the inductive limit 𝐴𝜔(∆) is regular, then [24, Thm. 25.9] a strong dual space 𝐴𝜔(∆)′ is a
Fréchet space with a fundamental sequence of continuous semi-norms

‖𝜙‖*𝐾,𝑛 = sup
‖𝑓‖𝐾,𝑛⩽1

|𝜙(𝑓)|, 𝜙 ∈ 𝐴𝜔(𝐾)′, 𝑛 ∈ N,
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if ∆ is a segment 𝐾 and

‖𝜙‖*𝐾𝑛,𝑛 = sup
‖𝑓‖𝐾𝑛,𝑛⩽1

|𝜙(𝑓), 𝜙 ∈ 𝐴𝜔(Ω)
′, 𝑛 ∈ N,

∆ is an interval Ω.

Theorem 4.1. (𝐴𝜔(∆)′,⊛) is a topological algebra.

Proof. We fix 𝑛 ∈ N and let 𝑄 := 𝐾 if ∆ is the segment 𝐾 and 𝑄 := 𝐾𝑛 if ∆ is the interval Ω. We
choose 𝑠 and 𝑐2 by 𝑛 and 𝑄 as in Lemma 2.2 (ii). Then

‖𝜙⊛ 𝜓‖*𝑄,𝑛 = sup
‖𝑓‖𝑄,𝑛⩽1

|(𝜙⊛ 𝜓)(𝑓)| | = sup
‖𝑓‖𝑄,𝑛⩽1

|𝜙𝑧(𝜓(𝑇𝑧(𝑓)))|

⩽ ‖𝜙‖*𝑄,𝑠 sup
‖𝑓‖𝑄,𝑛⩽1

sup
𝑧∈C

|𝜓(𝑇𝑧(𝑓))|
exp(𝐻𝑄(Im 𝑧) + 𝑠𝜔(𝑧))

⩽ ‖𝜙‖*𝑄,𝑠‖𝜓‖*𝑄,𝑠 sup
‖𝑓‖𝑄,𝑛⩽1

sup
𝑧∈C

sup
𝑡∈C

|𝑇𝑧(𝑓)(𝑡)|
exp(𝐻𝑄(Im 𝑧) +𝐻𝑄(Im 𝑡) + 𝑠(𝜔(𝑧) + 𝜔(𝑡)))

⩽ 𝑐2‖𝜙‖*𝑄,𝑠‖𝜓‖*𝑄,𝑠.

Hence, a bilinear mapping (𝜙,𝜓) ↦→ 𝜙⊛𝜓 is continuous from 𝐴𝜔(∆)′×𝐴𝜔(∆)′ into 𝐴𝜔(∆)′. The proof
is complete.

Remark 4.1. For 𝜇 ∈ 𝐴𝜔(∆)′ an adjoint for the operator 𝐵𝜇 : 𝐴𝜔(∆) → 𝐴𝜔(∆) with respect
to the dual pair (𝐴𝜔(∆), 𝐴𝜔(∆)′) is an operator 𝐵′

𝜇 : 𝐴𝜔(∆)′ → 𝐴𝜔(∆)′ such that 𝐵′
𝜇(𝜙) = 𝜙 ⊛ 𝜇,

𝜙 ∈ 𝐴𝜔(∆)′. Indeed, for all 𝜙 ∈ 𝐴𝜔(∆)′, 𝑓 ∈ 𝐴𝜔(∆) we have

𝐵′
𝜇(𝜙)(𝑓) = 𝜙(𝐵𝜇(𝑓)) = (𝜙⊛ 𝜇)(𝑓).

Below in Section 4.3 we shall show that the operation ⊛ is realized in ℰ𝜔(∆) as a generalized Duhamel
product, while 𝐵′

𝜇 is realized as a generalized Duhamel operator.

4.2. Operator of generalized integration. Let ℱ ′ : 𝐴𝜔(∆)′ → ℰ𝜔(∆) be the adjoint mapping for
the Fourier-Laplace transform ℱ : ℰ𝜔(∆)′ → 𝐴𝜔(∆) with respect to dual pairs (ℰ𝜔(∆)′, ℰ𝜔(∆)) and
(𝐴𝜔(∆), 𝐴𝜔(Ω)

′). Since the space ℰ𝜔(∆) is reflexive and ℱ is a topological isomorphism of ℰ𝜔(∆)′ onto
𝐴𝜔(∆), see Theorem 2.1, then ℱ ′ is a topological isomorphism of 𝐴𝜔(∆)′ onto ℰ𝜔(∆). For 𝑧 ∈ C, and
a function 𝑓 defined at the point 𝑧, we let 𝛿𝑧(𝑓) := 𝑓(𝑧). It is clear that 𝛿𝑥 ∈ ℰ𝜔(∆)′ for 𝑥 ∈ ∆ and
𝛿𝑧 ∈ 𝐴𝜔(∆)′ for 𝑧 ∈ C. Moreover, for all 𝜙 ∈ 𝐴𝜔(∆)′, 𝑥 ∈ ∆ we have

ℱ ′(𝜙)(𝑥) = 𝛿𝑥(ℱ ′(𝜙)) = 𝜙(ℱ(𝛿𝑥)) = 𝜙(𝑒𝑥). (4.1)

We let ̂︀𝜙 := ℱ ′(𝜙), 𝜙 ∈ 𝐴𝜔(∆)′. We observe that ̂︀𝛿𝛼 = 𝑒𝛼 for each 𝛼 ∈ C. Moreover, standard
identities hold:

𝜙𝑡(𝑡
𝑗𝑒−𝑖𝑥𝑡) = 𝑖𝑗 ̂︀𝜙(𝑗)(𝑥), 𝜙 ∈ 𝐴𝜔(∆)′, 𝑥 ∈ ∆, 𝑗 ∈ N0. (4.2)

They are implied by the fact that for each function 𝑓 ∈ 𝐴𝜔(∆) there exists a limit lim
𝜂→0

𝑓(·+𝜂)−𝑓
𝜂 in the

space 𝐴𝜔(∆), which is equal to 𝑓 ′, see, for instance, [8, Lm. 2]; original assumptions (V1) and (V2)
for considered in [8] spaces are satisfied in this case.

For a linear continuous operator𝐵 : 𝐴𝜔(∆) → 𝐴𝜔(∆) we denote by𝐵′ the operator in𝐴𝜔(∆)′ adjoint
to 𝐵 with respect to the natural dual pair (𝐴𝜔(∆), 𝐴𝜔(∆)′). Following V.A. Tkachenko [15], we call
𝐷′

0,𝑢 a generalized integration operator. V.A. Tkachenko [15] introduced the generalized integration
operator as well as the adjoint to the operator 𝐷0,𝑢 acting in the countable inductive limit of weighted
Banach spaces of entire functions defined by a 𝜌-trigonometrically convex function. Moreover, in [15]
𝑢 = 𝑒𝒫 , where 𝒫 is a polynomial. Operators with this name were studied by R. Crownover, R. Hansen
[20]. Due to (2.1), the identity

𝐷′
0,𝑢(𝜙) = 𝐷′

0(𝜙)− 𝜙(𝐷0(𝑢))𝛿0, 𝜙 ∈ 𝐴𝜔(∆)′ (4.3)

holds.
We define a complex-valued bilinear form

⟨𝑓, 𝑔⟩ := ℱ−1(𝑓)(𝑔), 𝑓 ∈ 𝐴𝜔(∆), 𝑔 ∈ ℰ𝜔(∆).
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It makes a duality between 𝐴𝜔(∆) and ℰ𝜔(∆). We note that

𝑓(𝑧) = ⟨𝑓, 𝑒𝑧⟩, 𝑓 ∈ 𝐴𝜔(∆), 𝑧 ∈ C, and ℎ(𝑥) = ⟨𝑒𝑥, ℎ⟩, ℎ ∈ ℰ𝜔(∆), 𝑥 ∈ ∆.

For a linear continuous operator 𝐵 : 𝐴𝜔(∆) → 𝐴𝜔(∆), by ̃︀𝐵 we denote an operator acting in ℰ𝜔(∆)

and adjoint to 𝐵 with respect to the dual pair (𝐴𝜔(∆), ℰ𝜔(∆)). The identity ̃︀𝐵 = ℱ ′𝐵′(ℱ ′)−1 holds.

If 𝑢 ≡ 1, then ̃︀𝐷0 = ̃︀𝐷0,𝑢 is a Volterra operator:

̃︀𝐷0(ℎ)(𝑥) = −𝑖
𝑥∫︁

0

ℎ(𝜉)𝑑𝜉, 𝑥 ∈ ∆, ℎ ∈ ℰ𝜔(∆). (4.4)

The proof of this identity is standard, see, for instance, [7, Lm. 2]. By (2.1) the identity holds:

̃︀𝐷0,𝑢(ℎ)(𝑥) =

𝑥∫︁
0

ℎ(𝜉)𝑑𝜉 − ⟨𝐷0(𝑢), ℎ⟩, 𝑥 ∈ ∆, ℎ ∈ ℰ𝜔(∆). (4.5)

Let us specify the latter representation in the case 𝑢 = 𝑃𝑒𝜆, where 𝑃 ∈ C[𝑧], 𝑃 (0) = 1, 𝜆 ∈ ∆. For

a polynomial 𝑤(𝑧) =
𝑛∑︀

𝑗=0
𝑏𝑗𝑧

𝑗 ∈ C[𝑧] we define a differential operator

𝑤(𝑑)(𝑓) :=
𝑛∑︁

𝑗=0

𝑖𝑗𝑏𝑗𝑓
(𝑗).

We note that for all 𝑤 ∈ C[𝑧], ℎ ∈ ℰ𝜔(∆), 𝑥 ∈ ∆, we have

⟨𝑤𝑒𝑥, ℎ⟩ = 𝑤(𝑑)(ℎ)(𝑥). (4.6)

Since

𝐷0(𝑃𝑒𝜆)(𝑡) =
𝑃 (𝑡)𝑒𝜆(𝑡)− 1

𝑡
=
𝑃 (𝑡)− 1

𝑡
𝑒𝜆(𝑡) +

𝑒𝜆(𝑡)− 1

𝑡
= 𝐷0(𝑃 )(𝑡)𝑒𝜆(𝑡) +𝐷0(𝑒𝜆)(𝑡),

then for ℎ ∈ ℰ𝜔(∆)

⟨𝐷0(𝑢), ℎ⟩ = ⟨𝐷0(𝑃 )𝑒𝜆, ℎ⟩+ ⟨𝐷0(𝑒𝜆), ℎ⟩ = 𝐷0(𝑃 )(𝑑)(ℎ)(𝜆) +

𝜆∫︁
0

ℎ(𝜉)𝑑𝜉. (4.7)

It follows from identities (4.4)–(4.7) that for all ℎ ∈ ℰ𝜔(∆), 𝑥 ∈ ∆ the idenity holds:

̃︀𝐷0,𝑢(ℎ)(𝑥) =

𝑥∫︁
𝜆

ℎ(𝜉)𝑑𝜉 −𝐷0(𝑃 )(𝑑)(ℎ)(𝜆).

4.3. Generalized Duhamel product. We consider the case 𝑢 = 𝑃𝑒𝜆, where 𝑃 ∈ C[𝑧], 𝑃 (0) = 1,

𝜆 ∈ ∆. Let 𝑃 (𝑧) =
𝑚∑︀
𝑗=0

𝑎𝑗𝑧
𝑗 , 𝑚 ∈ N (at the same time 𝑎0 = 1 and the case 𝑎𝑚 = 0 is not excluded).

We introduce polynomials 𝑝𝑗 , 0 ⩽ 𝑗 ⩽ 𝑚− 1, such that

𝑚−1∑︁
𝑗=0

(−𝑖)𝑗𝑝𝑗(𝑡)𝑧𝑗 =
𝑃 (𝑡)− 𝑃 (𝑧)

𝑡− 𝑧

for all 𝑡, 𝑧 ∈ C. The identities hold:

𝑝𝑗(𝑡) = 𝑖𝑗
𝑚−1∑︁
𝑘=𝑗

𝑎𝑘+1𝑡
𝑘−𝑗 , 0 ⩽ 𝑗 ⩽ 𝑚− 1.

We let ̃︀𝑝𝑗(𝑡) := 𝑡𝑝𝑗(𝑡), 0 ⩽ 𝑗 ⩽ 𝑚− 1, 𝑡 ∈ C.
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We define a generalized Duhamel product: for 𝑔, ℎ ∈ 𝐶∞(∆), 𝑥 ∈ ∆ we let

(𝑔 * ℎ)(𝑥) = 𝑃 (𝑑)(𝑔)(𝜆)ℎ(𝑥) +

𝑥∫︁
𝜆

(𝑃 (𝑑)(𝑔))′(𝜉)ℎ(𝑥+ 𝜆− 𝜉)𝑑𝜉 −
𝑚−1∑︁
𝑗=0

̃︀𝑝𝑗(𝑑)(𝑔)(𝑥)ℎ(𝑗)(𝜆).
It is clear that 𝑔*ℎ ∈ 𝐶∞(∆) and a bilinear mapping (𝑔, ℎ) ↦→ 𝑔*ℎ is continuous from 𝐶∞(∆)×𝐶∞(∆)
into 𝐶∞(∆), and hence, from ℰ𝜔(∆)× ℰ𝜔(∆) into 𝐶∞(∆). If 𝑃 ≡ 1, then

(𝑔 * ℎ)(𝑥) = 𝑔(𝜆)ℎ(𝑥) +

𝑥∫︁
𝜆

𝑔′(𝜉)ℎ(𝑥+ 𝜆− 𝜉)𝑑𝜉.

As 𝑃 ≡ 1 and 𝜆 = 0, the product 𝑔 * ℎ is the usual Duhamel product:

(𝑔 * ℎ)(𝑥) = 𝑔(0)ℎ(𝑥) +

𝑥∫︁
0

𝑔′(𝜉)ℎ(𝑥− 𝜉)𝑑𝜉.

Earlier, a generalized Duhamel product similar to the above introduced one was defined in the space
of germs of all functions holomorphic on a convex locally closed subset C [21, Sect. 4] and in the space
of entire functions of exponential type realizing by means of the Laplace transform the dual space for
one of functions holomorphic in a simply-connected domain in C [6, Sect. 1.2]. In [9], M.T. Karasev
considered a generalized Duhamel product as some discrete analogue of the Duhamel product.

Lemma 4.1. The mapping 𝑡 ↦→ 𝛿𝑡 is continuous from C into 𝐴𝜔(∆)′.

Proof. We fix 𝑛 ∈ N. Let 𝑄 := 𝐾 if ∆ is the segment 𝐾 and 𝑄 := 𝐾𝑛 in the case when ∆ is the
interval Ω. We choose 𝑚 ∈ N, 𝑐1 by 𝑛 as in Lemma 2.2 (i). For a fixed 𝑡0 ∈ C and for 𝑡 ∈ C we obtain:

‖𝛿𝑡 − 𝛿𝑡0‖*𝑄,𝑛 = sup
‖𝑓‖𝑄,𝑛⩽1

|𝑓(𝑡)− 𝑓(𝑡0)| = sup
‖𝑓‖𝑄,𝑛⩽1

⃒⃒⃒ 𝑡∫︁
𝑡0

𝑓 ′(𝜉)𝑑𝜉
⃒⃒⃒

⩽ |𝑡− 𝑡0| sup
‖𝑓‖𝑄,𝑛⩽1

sup
𝜉∈[𝑡0,𝑡]

|𝑓 ′(𝜉)| ⩽ 𝑐1|𝑡− 𝑡0| sup
𝜉∈[𝑡0,𝑡]

exp((𝐻𝐾(Im 𝜉) +𝑚𝜔(𝜉)).

This implies that ‖𝛿𝑡 − 𝛿𝑡0‖*𝑄,𝑛 → as 𝑡→ 𝑡0.

Theorem 4.2. For all 𝜙,𝜓 ∈ 𝐴𝜔(∆)′ the identity 𝜙⊛ 𝜓 = ̂︀𝜙 * ̂︀𝜓 holds.

Proof. First let us show that for all 𝛼, 𝛽 ∈ C, in 𝐶∞(∆) the identity

̂𝛿𝛼 ⊛ 𝛿𝛽 = 𝑒𝛼 * 𝑒𝛽 (4.8)

holds. Indeed, for 𝑥 ∈ ∆,

̂𝛿𝛼 ⊛ 𝛿𝛽(𝑥) = (𝛿𝛼 ⊛ 𝛿𝛽)(𝑒𝑥) = (𝛿𝛼)𝑧

(︂
(𝛿𝛽)𝑡

(︂
𝑡𝑒−𝑖𝑥𝑡𝑃 (𝑧)𝑒−𝑖𝜆𝑧 − 𝑧𝑒−𝑖𝑥𝑧𝑃 (𝑡)𝑒−𝑖𝜆𝑡

𝑡− 𝑧

)︂)︂
=
𝛼𝑒−𝑖𝑥𝛼𝑃 (𝛽)𝑒−𝑖𝜆𝛽 − 𝛽𝑒−𝑖𝑥𝛽𝑃 (𝛼)𝑒−𝑖𝜆𝛼

𝛼− 𝛽
.

A straightforward calculation shows that

(𝑒𝛼 * 𝑒𝛽)(𝑥) =
𝛼𝑒−𝑖𝑥𝛼𝑃 (𝛽)𝑒−𝑖𝜆𝛽 − 𝛽𝑒−𝑖𝑥𝛽𝑃 (𝛼)𝑒−𝑖𝜆𝛼

𝛼− 𝛽
.

We take 𝜙,𝜓 ∈ 𝐴𝜔(∆)′. Since the set {𝛿𝑡 | 𝑡 ∈ C} is dense in the Fréchet space 𝐴𝜔(∆)′, then there
exist sequences of functionals 𝜙𝑛, 𝜓𝑛, 𝑛 ∈ N, from the linear span of the set {𝛿𝑡 | 𝑡 ∈ C} such that

𝜙𝑛 → 𝜙, 𝜓𝑛 → 𝜓 in 𝐴𝜔(∆)′. Due to (4.8), ̂𝜙𝑛 ⊛ 𝜓𝑛 = ̂︁𝜙𝑛 * ̂︁𝜓𝑛 for each 𝑛 ∈ N. Since the mappings
(𝜈, 𝜂) ↦→ 𝜈⊛ 𝜂 are continuous from 𝐴𝜔(∆)′×𝐴𝜔(∆)′ into 𝐴𝜔(∆)′, ℱ : 𝐴𝜔(∆)′ → ℰ𝜔(∆), (𝑔, ℎ) ↦→ 𝑔 *ℎ
from 𝐶∞(∆) × 𝐶∞(∆) into 𝐶∞(∆), ℰ𝜔(∆) is continuously embedded into 𝐶∞(∆), then passing to

the limit in the later identity, we obtain 𝜙⊛ 𝜓 = ̂︀𝜙 * ̂︀𝜓 in ℰ𝜔(∆). Simultaneously we have shown that
𝑔 * ℎ ∈ ℰ𝜔(∆) for all functions 𝑔, ℎ ∈ ℰ𝜔(∆). The proof is complete.
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For 𝑔 ∈ ℰ𝜔(∆) we define the Duhamel operator 𝑆𝑔(ℎ) := 𝑔 * ℎ, ℎ ∈ ℰ𝜔(∆), linear and continuous
in ℰ𝜔(∆). It follows from [4, Thm. 15], Remark 4.1, Theorem 4.2 that the set {𝑆𝑔 | 𝑔 ∈ ℰ𝜔(∆)} is the

commutant of the realization ̃︀𝐷0,𝑢 of the generalized integration operator in the algebra of all linear
continuous in ℰ𝜔(∆) operators. We note that in the space 𝐶∞[0, 1] the commutant of the Volterra
operator

̃︀𝐷0(ℎ)(𝑥) = ̃︀𝐷0,𝑢(ℎ)(𝑥) =

𝑥∫︁
0

ℎ(𝜉)𝑑𝜉

corresponding to the case 𝑢 ≡ 1 was described in work [26].

For a root 𝑎 of a polynomial 𝑃 we let 𝑃𝑎(𝑡) := 𝑃 (𝑡)
𝑡−𝑎 . By means of usual dual arguing, Theo-

rems 3.1, 4.2 and identity (4.6) implies the following corollary.

Corollary 4.1. The Duhamel operator 𝑆𝑔 is an isomorphism of ℰ𝜔(∆) onto itself if and only if
𝑃 (𝑑)(𝑔)(𝜆) ̸= 0 and 𝑃𝑎(𝑑)(𝑔)(𝜆) ̸= 0 for each root 𝑎 of the polynomial 𝑃 .

4.4. Proof of Duhamel formula for solution of differential equaiton with constant coef-
ficients by means for multiplication ⊛. In the section we suppose that 𝑢 ≡ 1. We apply the
multiplication ⊛ for proving a formula expressing a solution 𝑓 ∈ ℰ𝜔(∆) to a differential equation with
constant coefficients

𝑛∑︁
𝑗=0

𝑎𝑗𝑓
(𝑗) = 𝑔, 𝑔 ∈ ℰ𝜔(∆), 𝑛 ∈ N, 𝑎𝑛 ̸= 0, (4.9)

satisfying zero initial conditions 𝑓 (𝑗)(0) = 0, 0 ⩽ 𝑗 ⩽ 𝑛 − 1, via a similar solution for the right
hand side identically equalling to 1. There are various approaches for justifying this formula for some
classes of functions different from the spaces considered in this paper, see, for instance, monograph by
M.A. Lavrentiev, B.V. Shabat [11, Ch. VI] and paper by I.L. Kogan [10].

For a polynomial 𝑞 ∈ C[𝑧], 𝜙 ∈ 𝐴𝜔(∆)′ we let

(𝑞𝜙)(𝑓) := 𝜙(𝑞𝑓), 𝑓 ∈ 𝐴𝜔(∆).

Since the operator 𝑀𝑞(𝑓) := 𝑞𝑓 of multiplication by 𝑞 is linear and continuous in 𝐴𝜔(∆), then 𝑞𝜙 ∈
𝐴𝜔(∆) for each functional 𝜙 ∈ 𝐴𝜔(∆)′. Let 𝑚𝑗(𝑧) := 𝑧𝑗 , 𝑧 ∈ C, 𝑗 ∈ N0.

Lemma 4.2. Let 𝐿 ∈ N. For all pairwise different numbers 𝜆𝑙, 1 ⩽ 𝑙 ⩽ 𝐿 and all 𝑘𝑙 ∈ N, 1 ⩽ 𝑙 ⩽ 𝐿,

𝑐𝑗 ∈ C, 0 ⩽ 𝑗 ⩽ 𝑛− 1, where 𝑛 :=
𝐿∑︀
𝑙=1

𝑘𝑙, the system of equations

𝐿∑︁
𝑙=1

𝑘𝑙−1∑︁
𝑠=0

𝑏𝑙,𝑠𝑚
(𝑠)
𝑗 (𝜆) = 𝑐𝑗 , 0 ⩽ 𝑗 ⩽ 𝑛− 1, (4.10)

has a unique equation 𝑏𝑙,𝑠 ∈ C, 1 ⩽ 𝑙 ⩽ 𝐿, 0 ⩽ 𝑠 ⩽ 𝑘𝑙 − 1.

Proof. With the family of complex numbers 𝑐 = (𝑐𝑙,𝑠)1⩽𝑙⩽𝐿,0⩽𝑠⩽𝑘𝑙−1 we associate a stretched vector

𝜎(𝑐) := (𝑐1,0, . . . , 𝑐1,𝑘1−1, . . . , 𝑐𝐿,0, . . . , 𝑐𝐿,𝑘𝐿−1) ∈ C𝑛.

The mapping

Φ(𝑓) := 𝜎

(︂(︁
𝑓 (𝑠)(𝜆𝑙)

)︁
1⩽𝑙⩽𝐿,0⩽𝑠⩽𝑘𝑙−1

)︂
is linear from C[𝑧] into C𝑛. Due to the uniqueness of the solution of the corresponding multiple
interpolation Hermite problem in C[𝑧]𝑛−1, see [12, Ch. 4, Sect. 16.2], Φ bijectively maps C[𝑧]𝑛−1 onto
C𝑛. Since the system of polynomials ℳ𝑛 := {𝑚𝑗 | 0 ⩽ 𝑗 ⩽ 𝑛 − 1} is linearly independent in C[𝑧]𝑛−1,

then its image Φ(ℳ𝑛) is a linearly independent subset in C𝑛. This implies that for each (𝑐𝑗)
𝑛−1
𝑗=0 ∈ C𝑛

system (4.10) possesses a unique solution. The proof is complete.

We introduce the functionals 𝛿𝜆,𝑗(𝑓) := 𝑓 (𝑗)(𝜆), 𝜆 ∈ ∆, 𝑗 ⩾ 0, where 𝛿𝜆,0 is the above considered
delta function 𝛿𝜆. All of them are linear and continuous on 𝐴𝜔(∆). For a subspace 𝑄 of the space
𝐴𝜔(∆) by 𝑄0 we denote the annulator of 𝑄 in 𝐴𝜔(∆)′. We are going to prove the following statement
on dividing by a polynomial in the space 𝐴𝜔(∆)′.
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Theorem 4.3. Let 𝑞 ∈ C[𝑧] be a polynomial of degree 𝑛 ∈ N.
(i) For each 𝜓 ∈ 𝐴𝜔(∆)′ the equation 𝑞𝜙 = 𝜓 possesses a solution 𝜙 ∈ 𝐴𝜔(∆)′. This equation has a
unique solution 𝜙0 ∈ 𝐴𝜔(∆)′ obeying the conditions 𝜙(𝑚𝑗) = 0, 0 ⩽ 𝑗 ⩽ 𝑛− 1.

(ii) Let 𝛿0
𝑞 ∈ 𝐴𝜔(∆)′ be a solution to the equation 𝑞𝜙 = 𝛿0 such that 𝛿0

𝑞 (𝑚𝑗) = 0, 0 ⩽ 𝑗 ⩽ 𝑛− 1. Then

for each 𝜓 ∈ 𝐴𝜔(∆)′ the functional 𝜙0 := 𝜓 ⊛ 𝛿0
𝑞 is a solution to the equation 𝑞𝜙 = 𝜓 obeying the

conditions 𝜙0(𝑚𝑗) = 0, 0 ⩽ 𝑗 ⩽ 𝑛− 1.

Proof. (i): The adjoint operator for the operator 𝑀𝑞 : 𝐴𝜔(∆) → 𝐴𝜔(∆) of multiplication by 𝑞 is
𝑀 ′

𝑞 : 𝐴𝜔(∆)′ → 𝐴𝜔(∆)′, 𝜙 ↦→ 𝑞𝜙. Since 𝑀𝑞 is injective and has a closed image, then 𝑀 ′
𝑞 is surjective

[17, Ch. 8, Sect. 8.6; Thm 8.6.13]. At the same time,

Ker𝑀 ′
𝑞 = (Im𝑀𝑞)

0 = span{𝛿𝜆𝑙,𝑠 | 1 ⩽ 𝑙 ⩽ 𝐿, 0 ⩽ 𝑠 ⩽ 𝑘𝑙 − 1}. (4.11)

Let 𝜆𝑙 ∈ C, 1 ⩽ 𝑙 ⩽ 𝐿, 𝐿 ∈ N, be all pairwise different roots of 𝑞 and 𝑘𝑙 be the multiplicity of 𝜆𝑙,
while 𝜙 ∈ 𝐴𝜔(∆)′ be some solution of the equation 𝑞𝜙 = 𝜓, 𝑐𝑗 := 𝜙(𝑚𝑗), 0 ⩽ 𝑗 ⩽ 𝑛−1. By Lemma 4.2
the system of equations

𝐿∑︁
𝑙=1

𝑘𝑙−1∑︁
𝑠=0

𝑏𝑙,𝑠𝑚
(𝑠)
𝑗 (𝜆𝑙) = 𝑐𝑗 , 0 ⩽ 𝑗 ⩽ 𝑛− 1,

has a solution 𝑏𝑙,𝑠 ∈ C, 1 ⩽ 𝑙 ⩽ 𝐿, 0 ⩽ 𝑠 ⩽ 𝑘𝑙 − 1. The functional

𝜙0 := 𝜙−
∑︁

1⩽𝑙⩽𝐿

𝑘𝑙−1∑︁
𝑠=0

𝑏𝑙,𝑠𝛿𝜆,𝑠 ∈ 𝐴𝜔(∆)′

satisfy the identities 𝑞𝜙0 = 𝜓 and 𝜙0(𝑚𝑗) = 0, 0 ⩽ 𝑗 ⩽ 𝑛− 1.
Let us show that such functional 𝜙0 is unique. Let 𝑞𝜉 = 0, that is, 𝑀 ′

𝑞(𝜉) = 0, where 𝜉 ∈ 𝐴𝜔(∆)′.
By (4.11) there exist numbers 𝑑𝑙,𝑠, 1 ⩽ 𝑗 ⩽ 𝐿, 0 ⩽ 𝑠 ⩽ 𝑘𝑙 − 1, for which

𝜉 =
𝐿∑︁

𝑗=1

𝑘𝑙−1∑︁
𝑠=1

𝑑𝑙,𝑠𝛿𝜆𝑙,𝑠.

If 𝜉(𝑚𝑗) = 0, 0 ⩽ 𝑗 ⩽ 𝑛− 1, then

𝐿∑︁
𝑙=1

𝑘𝑙−1∑︁
𝑠=0

𝑑𝑙,𝑠𝑚
(𝑠)
𝑗 (𝜆𝑙) = 0, 0 ⩽ 𝑗 ⩽ 𝑛− 1.

Due to Lemma 4.2 we have 𝜉 = 0.
(ii): First we are going to show that 𝑞𝜙0 = 𝜓. For 𝑓 ∈ 𝐴𝜔(∆) we have

(𝑞𝜙0)(𝑓) = 𝑞

(︂
𝜓 ⊛

𝛿0
𝑞

)︂
(𝑓) =

(︂
𝜓 ⊛

𝛿0
𝑞

)︂
(𝑞𝑓)

= 𝜓𝑧

(︂
𝛿0
𝑞
(𝑇𝑧(𝑞𝑓))

)︂
= 𝜓𝑧

(︂(︂
𝛿0
𝑞

)︂
𝑡

(︂
𝑡𝑞(𝑡)𝑓(𝑡)− 𝑧𝑞(𝑧)𝑓(𝑧)

𝑡− 𝑧

)︂)︂
= 𝜓𝑧

(︂(︂
𝛿0
𝑞

)︂
𝑡

(︂
𝑡𝑞(𝑡)

𝑓(𝑡)− 𝑓(𝑧)

𝑡− 𝑧
+ 𝑓(𝑧)

𝑡𝑞(𝑡)− 𝑧𝑞(𝑧)

𝑡− 𝑧

)︂)︂
.

Since (︂
𝛿0
𝑞

)︂
𝑡

(︂
𝑡𝑞(𝑡)

𝑓(𝑡)− 𝑓(𝑧)

𝑡− 𝑧

)︂
= (𝛿0)𝑡

(︂
𝑡
𝑓(𝑡)− 𝑓(𝑧)

𝑡− 𝑧

)︂
= 0,

then

(𝑞𝜙0)(𝑓) = 𝜓𝑧

(︂
𝑓(𝑧)

(︂
𝛿0
𝑞

)︂
𝑡

(︂
𝑡𝑞(𝑡)− 𝑧𝑞(𝑧)

𝑡− 𝑧

)︂)︂
.

Let

𝑞(𝑧) =

𝑛∑︁
𝑗=0

𝑎𝑗𝑧
𝑗 , 𝑎𝑛 ̸= 0.
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Then

𝑡𝑞(𝑡)− 𝑧𝑞(𝑧)

𝑡− 𝑧
=

1

𝑡− 𝑧

𝑛∑︁
𝑗=0

𝑎𝑗(𝑡
𝑗+1 − 𝑧𝑗+1) =

𝑛∑︁
𝑗=0

𝑎𝑗

𝑗∑︁
𝑘=0

𝑡𝑘𝑧𝑗−𝑘.

This is why

(𝑞𝜙0)(𝑓) = 𝜓𝑧

(︂
𝑓(𝑧)

(︂
𝛿0
𝑞

)︂
𝑡

(𝑎𝑛𝑡
𝑛)

)︂
= 𝜓(𝑓)

(︂
𝛿0
𝑞

)︂
𝑡

(𝑎𝑛𝑡
𝑛).

Since (︂
𝛿0
𝑞

)︂
𝑡

(𝑎𝑛𝑡
𝑛) =

(︂
𝛿0
𝑞

)︂
𝑡

⎛⎝𝑞(𝑡)− 𝑛−1∑︁
𝑗=0

𝑎𝑗𝑡
𝑗

⎞⎠ =

(︂
𝛿0
𝑞

)︂
(𝑞) = 1,

then (𝑞𝜙0)(𝑓) = 𝜓(𝑓) for each function 𝑓 ∈ 𝐴𝜔(∆). Thus, 𝑞𝜙0 = 𝜓.
Let us confirm the initial conditions 𝜙0(𝑚𝑗) = 0, 0 ⩽ 𝑗 ⩽ 𝑛− 1. For 𝑗 such that 0 ⩽ 𝑗 ⩽ 𝑛− 1 we

obtain: (︂
𝜓 ⊛

𝛿0
𝑞

)︂
(𝑚𝑗) = 𝜓𝑧

(︂(︂
𝛿0
𝑞

)︂
𝑡

(︂
𝑡𝑗+1 − 𝑧𝑗+1

𝑡− 𝑧

)︂)︂
= 𝜓𝑧

(︃(︂
𝛿0
𝑞

)︂
𝑡

(︃
𝑗∑︁

𝑘=0

𝑡𝑘𝑧𝑗−𝑘

)︃)︃
= 0.

The proof is complete.

Since ℱ ′ is an isomorphism of 𝐴𝜔(∆)′ onto ℰ𝜔(∆), then (4.2) and the identity, see Section 4.2,̂︁𝑣𝜙(𝑥) = (𝑣𝜙)(𝑒𝑥) = 𝜙(𝑣𝑒𝑥) = 𝜙(ℱ(ℱ−1(𝑣𝑒𝑥))) = ℱ−1(𝑣𝑒𝑥)(ℱ ′(𝜙))

= ⟨𝑣𝑒𝑥, ̂︀𝜙⟩ = 𝑣(𝑑)(̂︀𝜙)(𝑥), 𝑣 ∈ C[𝑧], 𝜙 ∈ 𝐴𝜔(∆)′, 𝑥 ∈ ∆,

yield such statement.

Corollary 4.2. For each function 𝑔 ∈ ℰ𝜔(∆) equation (4.9) has a unique solution 𝑓 ∈ ℰ𝜔(∆)

obeying the conditions 𝑓 (𝑗)(0) = 0, 0 ⩽ 𝑗 ⩽ 𝑛− 1.
If 𝑓1 ∈ ℰ𝜔(∆) is a solution of equation (4.9) with the right hand side 𝑔 ≡ 1 saitsfying the conditions

𝑓
(𝑗)
1 (0) = 0, 0 ⩽ 𝑗 ⩽ 𝑛 − 1, then for each function 𝑔 ∈ ℰ𝜔(∆) the function 𝑓 = 𝑔 * 𝑓1 ∈ ℰ𝜔(∆) is a

solution of (4.9) such that 𝑓 (𝑗)(0) = 0, 0 ⩽ 𝑗 ⩽ 𝑛− 1.
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dual Fréchet-Schwartz spaces // Uspekhi Matem. Nauk. 34:4 (208), 97–131 (1979). [Russ. Math.
Surv. 34:4, 105–143 (1979).]

3. O.A. Ivanova, S.N. Melikhov. On A.F. Leont’ev’s interpolating function // Ufimskij Matem. Zhurn.
6:3, 17–27 (2014). [Ufa Math. J. 6:3, 17–27 (2014).]

4. O.A. Ivanova, S.N. Melikhov. On operators which commute with the Pommiez type operator in
weighted spaces of entire functions // Alg. Anal. 28:2, 114–137 (2016). [St. Petersburg Math. J.
28:2, 209–224 (2017).]

5. O.A. Ivanova, S.N. Melikhov. The commutant of the Pommiez operator in a space of entire func-
tions of exponential type and polynomial growth on the real line // Vladikavkaz. Matem. Zhurn.
20:3, 48–56 (2018). (in Russian).

6. O.A. Ivanova, S.N. Melikhov. Algebras of analytic functionals and the generalized Duhamel product
// Vladikavkaz. Matem. Zhurn. 22:3, 72–84 (2020). (in Russian).

7. O.A. Ivanova, S.N. Melikhov. Cyclic vectors and invariant subspaces of the backward shift operator
in Schwartz modules // Funkts. Anal. Pril. 56:3, 39–51 (2022). [Funct. Anal. Appl. 56:3, 188–198
(2022).]

8. O.A. Ivanova, S.N. Melikhov, Yu.N. Melikhov. On commutant of differentiation and translation
operators in weighted spaces of entire functions // Ufimskij Matem. Zhurn. 9:3, 38–49 (2017). [Ufa
Math. J. 9:3, 37–47 (2017).]

9. M.T. Karaev. On some applications of the ordinary and extended Duhamel products // Sibir.
Matem. Zhurn. 46:3, 553–566 (2005). [Siberian Math. J. 46:3, 431–442 (2005).]



ON INVERTIBILITY OF DUHAMEL OPERATOR . . . 75

10. I.L. Kogan. Method of Duhamel integral for ordinary differential equations with constant coeffi-
cients in respect to the theory of distributions // Vestnik Samar. Gosud. Tekhn. Univ. Ser. Fiz.-
Matem. Nauki. 1(20), 37–45 (2010). (in Russian).

11. M.A. Lavrentiev, B.V. Shabat.Methods of theory of functions of complex variable. Nauka, Moscow
(1973). (in Russian).

12. V.I. Prasolov. Polynomials. MCCME, Moscow (2003). (in Russian).
13. A.P. Robertson, W. Robertson. Topological vector spaces. Cambridge University Press, Cambridge

(1964).
14. V.A. Tkachenko. Invariant subspaces and unicellularity of operators of generalized integration in

spaces of analytic functionals // Matem. Zamet. 22:2, 221–230 (1977). [Math. Notes. 22:2, 613–618
(1977).]

15. V.A. Tkachenko. Operators that commute with generalized integration in spaces of analytic func-
tionals // Matem. Zamet. 25:2, 271–282 (1979). [Math. Notes. 25:2, 141–146 (1979).]
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