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SYLVESTER PROBLEM, COVERINGS BY SHIFTS, AND

UNIQUENESS THEOREMS FOR ENTIRE FUNCTIONS

G.G. BRAICHEV, B.N. KHABIBULLIN, V.B. SHERSTYUKOV

Abstract. The idea to write this note arose during the discussion that followed the report
of the first author at the International Scientific Conference “Ufa Autumn Mathematical
School-2022”. We propose three general methods for constructing uniqueness sets in classes
of entire functions with growth restrictions. In all three cases, the sequence of zeros of an
entire function with special properties is chosen as such set. The first method is related to
Sylvester famous problem on the smallest circle containing a given set of points on a plane,
and theorems of convex geometry. The second method initially relies on Helly theorem
on the intersection of convex sets and its application to the possibility of covering one set
by shifting another. The third method is based on the classical Jensen formula, which
allows one to estimate the type of an entire function via the averaged upper density of the
sequence of its zeros. We present only basic results now. The development of our approaches
is expected to be presented in subsequent works.
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1. Preliminaries. Formulation and discussion of results

1.1. Uniqueness sets for classes of entire functions of exponential type with re-

striction for type. In 1857 English mathematician James Joseph Sylvester posed the following
problem in note [1]. Given a finite set of the points in the plane, find a circle of the minimal
radius containing these points. The Sylvester problem then was generalized many times up to
an abstract formulation for an arbitrary set in a metric space. The exposition of the current
state-of-art in the framework of the approximation theory, including applications, was pre-
sented, for instance, in survey [2]. An important role in the developing of these problems was
played by a Heinrich Jung theorem [3] proved in 1901; according to this theorem, each compact
set 𝐾 of a diameter 𝑑 := max

{︀
|𝑧1 − 𝑧2| : 𝑧1, 𝑧2 ∈ 𝐾

}︀
in the complex plane C can be put in a

closed circle of a radius 𝑑/
√
3. For each flat compact set 𝐾 a corresponding closed circle of the

smallest radius 𝑟 is found uniquely, but there is a problem on exact calculating of the quantity
𝑟 in terms of appropriate geometric characteristics of the compact set 𝐾. For a single-point
compact set such circle obviously generates into a point, that is, 𝑟 = 0. Except for this trivial
case, we always have 𝑟 > 0. Simple examples like a segment and a regular triangle confirms the
shaprness of the two-sided estimate 𝑑/2 ⩽ 𝑟 ⩽ 𝑑/

√
3 for the extremal radius 𝑟. We also note

that for an acute triangle and a right triangle the extremal quantity 𝑟 is equal to the radius of
the circumscribed circle of a triangle, while for the obtuse triangle 𝑟 is the half of the greatest
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side, which is less then the radius of the circumscribed circle. A nice elementary introduction
in the corresponding part of the convex geometry was given in [4], [5].
Let us describe a connection of the Sylvester problem with the uniqueness issues in the

traditional classes of entire functions of one variable. By the symbol N we denote the set of all
natural numbers. We mostly use standard for the theory of entire functions terminology and
notation [6]. For an entire function 𝑓 on C we let

𝑀(𝑓 ; 𝑟) := max
|𝜆|⩽𝑟

|𝑓(𝜆)| = max
|𝜆|=𝑟

|𝑓(𝜆)|, 𝑟 ⩾ 0.

We recall that an entire function 𝑓 has an exponential type if the upper limit

𝜎(𝑓) := lim
𝑟→+∞

ln𝑀(𝑓 ; 𝑟)

𝑟

is finite. The quantity 𝜎(𝑓) is called an (exponential) type of entire function 𝑓 .
An entire function 𝑓 vanishes on a sequence Λ = {𝜆𝑛}𝑛∈N of complex numbers 𝜆𝑛 if the

multiplicity of the zero of the function 𝑓 at each point 𝜆 ∈ C does not less than the number of
points 𝜆𝑛 in Λ, which are equal to 𝜆. If the multiplicity of the zero of the function 𝑓 at each
point 𝜆 ∈ C coincides with the number of points 𝜆𝑛 in Λ equalling to 𝜆, then Λ is a sequence of

all zeroes of the function 𝑓 , which is denoted in what follows by Λ(𝑓). A sequence Λ is called
a uniqueness set for some class of entire function if each function from this class vanishing on
Λ is zero. Otherwise Λ is a non-uniqueness set for this class.
An indicator of an entire function 𝑓 of an exponential type is the characteristics

ℎ(𝑓 ; 𝜃) := lim
𝑟→+∞

ln |𝑓(𝑟𝑒𝑖𝜃)|
𝑟

, 0 ⩽ 𝜃 ⩽ 2𝜋. (1.1)

If in this definition for a fixed 𝜃 a limit is well-defined as 𝑟 → +∞ outside some set of zero
relative linear Lebesgue measure, then 𝑓 is a function of a completely regular growth on the
ray arg 𝜆 = 𝜃. A function has a completely regular growth (in the sense of Levin-Pfluger) if
such special limit is well-defined for each 𝜃 in the segment [0, 2𝜋].
A geometric counterpart of the function 𝑓 is its indicator diagram, which is a convex set

defined as

𝐷(𝑓) :=
⋂︁

0⩽𝜃⩽2𝜋

{︀
𝜆 ∈ C : Re (𝜆𝑒−𝑖𝜃) ⩽ ℎ(𝑓 ; 𝜃)

}︀
.

We also note an universal identity for all entire functions of exponential type

max
0⩽𝜃⩽2𝜋

ℎ(𝑓 ; 𝜃) = 𝜎(𝑓). (1.2)

For a number 𝜎 > 0 by Ent[1, 𝜎) we denote the class of entire functions 𝑓 of exponential type
𝜎(𝑓) < 𝜎. It is obvious that if Λ is a uniqueness set for a class Ent[1, 𝜎), then it is the same for
each class Ent[1, 𝜎′) as 0 < 𝜎′ < 𝜎. It is also clear that if Λ contains only finitely many elements,
then Λ can not serve as an uniqueness set for any class Ent[1, 𝜎). The condition Λ = {𝜆𝑛}𝑛∈N
excludes such situation from the definition of the uniqueness set. This is in formulation of our
results we suppose, not saying explicitly, that the generating function 𝑓 has infinitely many
zeroes forming the sequence Λ(𝑓). For the sake of definiteness, we arrange the elements of this
sequence in the non-ascending order of their absolute values and with the multiplicities taken
into account.
Our first result is as follows.

Theorem 1.1. Let 𝑓 ̸≡ 0 be an entire function of exponential type of a completely regular

growth, while 𝑟(𝑓) be the radius of the smallest circle containing the indicator diagram 𝐷(𝑓).
The sequence Λ(𝑓) is a uniqueness set for Ent[1, 𝜎) if and only if 𝜎 ⩽ 𝑟(𝑓).



SYLVESTER PROBLEM, COVERINGS BY SHIFTS, AND UNIQUENESS THEOREMS . . . 33

We stress that earlier in similar statements instead of a geometric characteristics 𝑟(𝑓) usu-
ally various densities of the sequence Λ(𝑓) were employed. We also mention a possibility of
reformulating the theorem in terms of the completeness radius of a corresponding exponential
system. A theoretical base for such reformulation and main results in this direction by 2012
were presented in details in monograph-survey [7].
We consider two examples, in which Theorem 1.1 is characterized by simplicity and clarity.

More complicated constructions covered by this theorem can be found in [8], [9].

Example 1. We take an entire function of an exponential type of a completely regular growth

𝑓(𝜆) =
𝜆∈C

sin 𝜋𝜆. Then Λ(𝑓) = Z is the set of all integer numbers, 𝐷(𝑓) is the segment on the

imaginary axis with the end-points at ± 𝜋𝑖. Here 𝑟(𝑓) = 𝜋. Applying Theorem 1.1, we obtain a

well-known result by F. Carlson [10] stating that Z is the uniqueness set in the class Ent[1, 𝜋).

Example 2. Let a canonical product 𝑓 be constructed by the set Λ formed by ±Ω and

± 𝑖𝑀 , where Ω = {𝜔𝑛}𝑛∈N and 𝑀 = {𝜇𝑛}𝑛∈N are increasing sequences of positive numbers

with densities 𝜔 and 𝜇, respectively, that is, there exist limits

lim
𝑛→∞

𝑛

𝜔𝑛

= 𝜔 > 0, lim
𝑛→∞

𝑛

𝜇𝑛

= 𝜇 > 0.

Then the indicator diagram 𝐷(𝑓) is the rectangle |Re𝜆| ⩽ 𝜋𝜇, | Im𝜆| ⩽ 𝜋𝜔 and on the base of

Theorem 1.1 we conclude that Λ(𝑓) = Λ is the uniqueness set in the classes Ent[1, 𝜎), where

𝜎 ⩽ 𝑟(𝑓) = 𝜋
√︀

𝜔2 + 𝜇2.

Theorem 1.1 and Jung theorem yield the following statement.

Corollary 1.1. Let an entire function 𝑓 be the same as in Theorem 1.1 and 𝑑 be the diameter

of the indicator diagram 𝐷(𝑓). If 0 < 𝜎 ⩽ 𝑑/2, then Λ(𝑓) is a uniqueness set for Ent[1, 𝜎),
and if 𝜎 > 𝑑/

√
3, then Λ(𝑓) is a non-uniqueness set for Ent[1, 𝜎).

Indeed, if 0 < 𝜎 ⩽ 𝑑/2, then the Jung theorem gives 𝑟(𝑓) ⩾ 𝑑/2 ⩾ 𝜎 and Λ(𝑓) is a uniqueness
set for Ent[1, 𝜎) by Theorem 1.1. If 𝑑/

√
3 < 𝜎, then by the Jung theorem 𝑟(𝑓) ⩽ 𝑑/

√
3 < 𝜎.

In according with Theorem 1.1 this means that Λ(𝑓) is a non-uniqueness set for Ent[1, 𝜎).

1.2. Uniqueness sets for classes of entire functions of exponential type with re-

strictions for indicator. We proceed to inqueness theorems for the classes of entire functions
𝑓 of exponential type with restrictions for their growth not only for the type but also for a
more gentle characteristics, indicator (1.1), which is convenient to continue 2𝜋-periodically on

the entire real line R. This continuation will be denoted by ℎ𝑓 (𝜃)
(1.1)
:= ℎ(𝑓 ; 𝜃), where 𝜃 ∈ R.

An order completing of the set R by the supremum and infimum

+∞ := supR = inf ∅ /∈ R and −∞ := inf R = sup ∅ /∈ R,

where ∅ is the empty set, defines an extended real line R := R
⋃︀
{±∞}, where, in addition to

standard operations, we let 0 · (±∞) = (±∞) · 0 := 0.
For a support function of an arbitrary set 𝑆 ⊆ C we use the notation

ℎ𝑆(𝜃) := sup
𝑠∈𝑆

Re
(︀
𝑠𝑒−𝑖𝜃

)︀
∈ R, 𝜃 ∈ R, (1.3)

which cause no discrepancies with the notation ℎ𝑓 for the indicator, since in the latter case
subscript 𝑓 is a function, while in (1.3) the subscript 𝑆 is a set.
Let a 2𝜋-periodic function 𝐻 : R→ R be trigonometrically convex [6], [11], that is,

𝐻(𝜃) ⩽
sin(𝜃2 − 𝜃)

sin(𝜃2 − 𝜃1)
𝐻(𝜃1) +

sin(𝜃 − 𝜃1)

sin(𝜃2 − 𝜃1)
𝐻(𝜃2) for all 𝜃 ∈ (𝜃1, 𝜃2) ⊂ R, 0 < 𝜃2 − 𝜃1 < 𝜋.
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Each such function 𝐻 is a support function of a convex closed in C set

𝐷𝐻 :=
{︀
𝑧 ∈ C : Re(𝑧𝑒−𝑖𝜃) ⩽ 𝐻(𝜃)

}︀
, (1.4)

which becomes a non-empty compact set, when the function 𝐻 is finite, that is, 𝐻(R) ⊂ R.
We note that for each 𝑆 ⊆ C the support function ℎ𝑆 in (1.3) is trigonometrically convex and
2𝜋-periodic and if the set 𝑆 ̸= ∅ is bounded in C, then the support function ℎ𝑆 is finite.
A closed (open) triangle in C is a non-empty intersection of three closed (open) half-planes;

if it is unbounded in C, we postulate that the boundaries of two half-planes are parallel or
coincide.
By Ent[1, 𝐻] we denote the class of all entire functions 𝑓 of exponential type with the indicator

ℎ𝑓 (𝜃) ⩽ 𝐻(𝜃) for each 𝜃 ∈ R. (Non-)uniqueness sets for such classes of functions determined by
restrictions for the indicator were considered in details in survey [7, Ch. 3]; in terms of limiting
sets for entire and subharmonic functions they were studied in a monograph by V.S. Azarin
[12, Ch. 6] in 2009 and in more details and in more general setting and often in subharmonic
versions, they were studied in works [13, Sect. 3], [14, Thms. 2, 4, 5], [15, Thm. 3].
In the next criterion a key statement on the uniqueness set is formulated in the end since

this is more convenient for a more coherent structuring of the proof.

Theorem 1.2. Let an entire function 𝑓 be the same as in Theorem 1.1 and 𝐻 : R → R be

a trigonometrically convex 2𝜋-periodic function. Then the following statements are equivalent:

I. There is no shift of the indicator diagram 𝐷(𝑓) contained in 𝐷𝐻 from (1.4).
II. There exist two closed triangles, one contains 𝐷𝐻 , the other is contained in 𝐷(𝑓), such

that each shift of the first triangle does not contain the second triangle.

III. There exists a triple of numbers 𝑧1, 𝑧2, 𝑧3 ∈ C with the property 𝑧1+ 𝑧2+ 𝑧3 = 0, for which
3∑︁

𝑗=1

|𝑧𝑗|ℎ𝐷(𝑓)(arg 𝑧𝑗) >
3∑︁

𝑗=1

|𝑧𝑗|𝐻(arg 𝑧𝑗). (1.5)

IV. There exists 𝜃 ∈ R, for which ℎ𝑓 (𝜃)+ℎ𝑓 (𝜃+𝜋) > 𝐻(𝜃)+𝐻(𝜃+𝜋), or there exists a triple

𝜃1, 𝜃2, 𝜃3 ∈ R, for which the difference 𝜃2 − 𝜃1 is not a multiple of 𝜋 and the inequality

holds:

ℎ𝑓 (𝜃1)
sin(𝜃3 − 𝜃2)

sin(𝜃2 − 𝜃1)
+ ℎ𝑓 (𝜃3) + ℎ𝑓 (𝜃2)

sin(𝜃1 − 𝜃3)

sin(𝜃2 − 𝜃1)

>𝐻(𝜃1)
sin(𝜃3 − 𝜃2)

sin(𝜃2 − 𝜃1)
+𝐻(𝜃3) +𝐻(𝜃2)

sin(𝜃1 − 𝜃3)

sin(𝜃2 − 𝜃1)
.

V. The sequence Λ(𝑓) is the uniqueness set for the class Ent[1, 𝐻].

By Ent[1, 𝐻) we denote the class of all entire functions 𝑓 of exponential type, the indicator
of which satisfies ℎ𝑓 (𝜃) < 𝐻(𝜃) for each 𝜃 ∈ R. For instance, as 𝐻(𝜃) ≡ 𝜎 > 0, the class
Ent[1, 𝐻) is the previous class Ent[1, 𝜎) discussed in Subsection 1.1. If an addition condition

inf
𝜃∈R

(︀
𝐻(𝜃) +𝐻(𝜃 + 𝜋)

)︀
> 0 (1.6)

is satisfied, then 𝐻 is a support function of non-empty convex domain

𝑂𝐻 :=
{︀
𝑧 ∈ C : Re(𝑧𝑒−𝑖𝜃) < 𝐻(𝜃)

}︀
, (1.7)

and the class Ent[1, 𝐻) contains non-constant functions. Theorem 1.2 implies the following
fact.

Corollary 1.2. Let an entire function 𝑓 be the same as in Theorem 1.1, and 𝐻 : R→ R be

a trigonometrically convex 2𝜋-periodic function obeying condition (1.6). Then the following six

statements are equivalent.

I. There is no shift of the indicator diagram 𝐷(𝑓) contained in 𝑂𝐻 from (1.7).
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II. For each number 𝑐 ∈ (0, 1) ⊂ R there exists an open triangle circumscribed around 𝑐𝑂𝐻

and a closed triangle contained in 𝐷(𝑓), for which each shift of the open triangle does not

contain the closed triangle.

III. For each 𝑐 ∈ (0, 1) there exist 𝑧1, 𝑧2, 𝑧3 ∈ C with 𝑧1 + 𝑧2 + 𝑧3 = 0, |𝑧1|+ |𝑧2|+ |𝑧3| ≠ 0 and

3∑︁
𝑗=1

|𝑧𝑗|ℎ𝐷(𝑓)(arg 𝑧𝑗) ⩾ 𝑐

3∑︁
𝑗=1

|𝑧𝑗|𝐻(arg 𝑧𝑗). (1.8)

IV. For each 𝑐 ∈ (0, 1) there exists 𝜃 ∈ R, for which

ℎ𝑓 (𝜃) + ℎ𝑓 (𝜃 + 𝜋) > 𝑐𝐻(𝜃) + 𝑐𝐻(𝜃 + 𝜋),

or there exists a triple 𝜃1, 𝜃2, 𝜃3 ∈ R, for which the difference 𝜃2 − 𝜃1 is not a multiple of

𝜋 and

ℎ𝑓 (𝜃1)
sin(𝜃3 − 𝜃2)

sin(𝜃2 − 𝜃1)
+ ℎ𝑓 (𝜃3) + ℎ𝑓 (𝜃2)

sin(𝜃1 − 𝜃3)

sin(𝜃2 − 𝜃1)

⩾ 𝑐𝐻(𝜃1)
sin(𝜃3 − 𝜃2)

sin(𝜃2 − 𝜃1)
+ 𝑐𝐻(𝜃3) + 𝑐𝐻(𝜃2)

sin(𝜃1 − 𝜃3)

sin(𝜃2 − 𝜃1)
.

V. The sequence Λ(𝑓) is the uniqueness set in Ent[1, 𝑐𝐻] for each 𝑐 ∈ (0, 1).
VI. The sequence Λ(𝑓) is the uniqueness set for the class Ent[1, 𝐻).

Corollary 1.2 will be derived from Theorem 1.2 after its proof in Section 2.

1.3. Uniqueness sets for classes of entire functions of arbitrary growth order. Here
we provide a result of a different nature admitting a rather arbitrary growth of entire functions.
We recall that the order of an entire function 𝑓 is the quantity

𝜌(𝑓) := lim
𝑟→+∞

ln ln𝑀(𝑓 ; 𝑟)

ln 𝑟
.

As Valiron already showed, for each entire function 𝑓 of a finite positive order 𝜌, there exists an
unboundedly growing differential on some ray of the positive semi-axis function 𝜈(𝑟), in what
follows called weight function, for which the limit

lim
𝑟→+∞

𝑟𝜈 ′(𝑟)

𝜈(𝑟)
= 𝜌 (1.9)

is well-defined and the quantity

lim
𝑟→+∞

ln 𝑀(𝑓 ; 𝑟)

𝜈(𝑟)

is finite and positive. The original statement by Valiron was extended for entire functions of
zero and infinite orders, see [16]. Thus, for each entire function 𝑓 of order 𝜌, where 0 ⩽ 𝜌 ⩽ +∞,
there exists an entire function 𝜈 obeying condition (1.9) such that

0 < 𝜎𝜈(𝑓) := lim
𝑟→+∞

ln𝑀(𝑓 ; 𝑟)

𝜈(𝑟)
< +∞. (1.10)

The quantity 𝜎𝜈(𝑓) is called 𝜈-type of an entire function 𝑓 . Chapter II of thesis [17] was devoted
to various approaches to describing the growth of entire functions and many references were
provided.
In what follows we always assume that the function 𝜈 increases to +∞, satisfies (1.9) with

some 0 ⩽ 𝜌 ⩽ +∞ and is such that

ln 𝑟 = 𝑜(𝜈(𝑟)), 𝑟 → +∞. (1.11)
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Let Λ = {𝜆𝑛}𝑛∈N be an arbitrary sequence of complex numbers with no finite accumulation
points arranged in the ascending order of their absolute values. By 𝑛Λ(𝑟) = max {𝑛 : |𝜆𝑛| ⩽ 𝑟},
𝑟 ⩾ 0, we denote its counting function, while an averaged counting function for Λ is defined as

𝑁Λ(𝑟) =

𝑟∫︁
0

𝑛Λ(𝑡)− 𝑛Λ(0)

𝑡
𝑑𝑡, 𝑟 > 0.

If a number 𝜀 > 0 is less than the absolute value of the first non-zero term in the sequence Λ,
then

𝑁Λ(𝑟) =

𝑟∫︁
𝜀

𝑛Λ(𝑡)

𝑡
𝑑𝑡 − 𝑛Λ(0) ln

𝑟

𝜀
, 𝑟 > 𝜀.

As an asymptotic characteristics of the quantity 𝑁Λ(𝑟) we consider an averaged upper 𝜈-density

∆
*
𝜈 (Λ) := lim

𝑟→+∞

𝑁Λ(𝑟)

𝜈(𝑟)
= lim

𝑟→+∞

1

𝜈(𝑟)

𝑟∫︁
𝜀

𝑛Λ(𝑡)

𝑡
𝑑𝑡 (1.12)

for mentioned choice of 𝜀. The coincidence of the upper limits in (1.12) is based on (1.11).
For 𝜎 > 0 by Ent[𝜈, 𝜎) we denote the class of all entire functions, the 𝜈-type of which is

less than 𝜎. Owing to (1.11), the class Ent[𝜈, 𝜎) involves functions not being polynomials. A
classical Jensen formula [6, Ch. I, Sect. 5] allows us to write the inequality

𝜎𝜈(𝑓) ⩾ ∆
*
𝜈 (Λ) (1.13)

relating 𝜈-type (1.10) of an entire function 𝑓 with an averaged upper 𝜈-density (1.12) of the
sequence of its zeroes Λ = Λ(𝑓). The following simple and at the same time rather general fact
is immediately implied by inequality (1.13) but we did not see it in the literature.

Theorem 1.3. If the 𝜈-type of an entire function 𝑓 with the sequence of zeroes Λ := Λ(𝑓)
and an averaged upper 𝜈-density of the sequence Λ coincide and are non-zero, that is,

0 < 𝜎 := 𝜎𝜈(𝑓) = ∆
*
𝜈 (Λ), (1.14)

then Λ is the uniqueness set for Ent[𝜈, 𝜎), but it is not for Ent[𝜈, 𝜎′) for each 𝜎′ > 𝜎.

Let us discuss how essential is the condition in Theorem 1.3 that the sequence Λ is a zero
set of some entire function. We first consider the classes of entire functions of zero order, when
the value 𝜌 in condition (1.9) is zero. Appropriate examples of weight functions satisfying
also (1.11) are 𝜈(𝑟) = exp(ln𝛼 𝑟) with the parameter 𝛼 ∈ (0, 1) and 𝜈(𝑟) = ln𝛽 𝑟 with the
parameter 𝛽 > 1. In such cases for each sequence Λ with a finite averaged upper 𝜈-density
∆

*
𝜈 (Λ) > 0 there exists an entire function 𝑓 with the zero set Λ(𝑓) = Λ. Such function is

defined by a canonical Weierstrass-Hadamard product. At the same time, as it was shown in
thesis [17, Sect. 2.2], equality (1.14) is true. In view of the made remarks, by Theorem 1.3 we
get the following statement.

Corollary 1.3. Let an increasing to +∞ function 𝜈 satisfies condition (1.9) with the

value 𝜌 = 0 and condition (1.11). Then each sequence of complex numbers with an averaged

upper 𝜈-density ∆
*
𝜈 (Λ) =: 𝜎 > 0 is the uniqueness set for the class Ent[𝜈, 𝜎).

For the functions of finite positive order the situation is different. If the weight function 𝜈
satisfies condition (1.9) with a finite 𝜌 > 0 (then (1.11) holds as well), then not each sequence
of complex numbers Λ with a finite averaged upper 𝜈-density can serve as a set of zeroes of an
entire function of a finite 𝜈-type. The Weierstrass-Hadamard product constructed by Λ defines
an entire function of a finite 𝜈-type if 𝜌 is a non-integer number. If the number 𝜌 is integer,
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then for constructing an entire function the sequence Λ should possess a certain balance in the
spirit of Lindelöf condition [18].
It is important to note that as 𝜌 > 0, condition (1.14) in Theorem 1.3 is rather strict and it

makes the entire function 𝑓 to have a constant 𝜈-indicator

ℎ𝜈(𝑓 ; 𝜃) := lim
𝑟→+∞

ln |𝑓(𝑟𝑒𝑖𝜃)|
𝜈(𝑟)

≡ 𝜎, 0 ⩽ 𝜃 ⩽ 2𝜋. (1.15)

In fact, a simple idea to employ property (1.14) in the uniqueness issues was founded in sur-
vey [19, Sect. 2], which involves also an additional information related with restriction (1.15).
For a fixed 𝜎 > 0 condition (1.14) selects in the class of entire functions with 𝜈-type 𝜎𝜈(𝑓) = 𝜎

those, the sequence of zeroes Λ(𝑓) has a maximal possible averaged upper 𝜈-density. Let us
provide one more observation demonstrating a connection between Theorems 1.1 and 1.3. Let
𝑓 be an entire function of exponential type with 𝜎(𝑓) = 𝜎 > 0. Suppose that the sequence of
its zeroes Λ := Λ(𝑓) is measurable, that is, there exists a limit

∆*(Λ) := lim
𝑟→+∞

𝑁Λ(𝑟)

𝑟
,

and the identity ∆*(Λ) = 𝜎 holds true. Then, see [19, Sect. 2], [20], the function 𝑓 has a
completely regular growth and the indicator diagram 𝐷(𝑓) exactly coincides with the smallest
containing it circle

{︀
𝜆 ∈ C : |𝜆| ⩽ 𝜎 = 𝑟(𝑓)

}︀
. By Theorem 1.1 such sequence Λ forms a

uniqueness set for the class [1, 𝜎).
Following [17, Ch. 2] and [20], one can check identity (1.14) straightforwardly expressing it

in terms of the Taylor coefficients and zeroes of an entire function 𝑓 .

Corollary 1.4. Let a strictly increasing to +∞ function 𝜈 satisfy condition (1.9) with a

finite value 𝜌 > 0 and 𝜙 be the inverse function for 𝜈, while Λ = {𝜆𝑛}𝑛∈N be the sequence of

all zeroes of the entire function 𝑓(𝜆) =
∞∑︀
𝑛=0

𝑎𝑛𝜆
𝑛, 𝜆 ∈ C. If the condition

lim
𝑛→∞

𝜙(𝑛)
𝑛
√︀
|𝜆1 𝜆2 . . . 𝜆𝑛|

= lim
𝑛→∞

𝜙(𝑛) 𝑛
√︀

|𝑎𝑛| = (𝜎𝑒𝜌)1/𝜌

is satisfied, then Λ is the uniqueness set for the class Ent[𝜈, 𝜎).

2. Proof of main results

Proof of Theorem 1.1. In the case 𝑟(𝑓) = 0 the indicator diagram 𝐷(𝑓) = {𝑎} is a single-point
set and 𝜎 > 𝑟(𝑓) = 0. At the same time Λ(𝑓) is not the uniqueness set for Ent[1, 𝜎) since a
non-zero entire function 𝜆 ↦−→

𝜆∈C
𝑓(𝜆) 𝑒−𝑎𝜆 (the bar stands for the complex conjugation) possesses

a zero type, still vanishes on Λ(𝑓) and belongs to the class Ent[1, 𝜎) for each 𝜎 > 0. We see
that in this case Theorem 1.1 is true and in what follows we consider only the case 𝑟(𝑓) > 0.
Let us show that under the assumptions of the theorem the sequence Λ(𝑓) is the uniqueness

set for the class Ent
[︀
1, 𝑟(𝑓)

)︀
and at the same time it is not the uniqueness set for any class

Ent[1, 𝜎) as 𝜎 > 𝑟(𝑓). Let 𝑎 ∈ C be the center of the smallest circle of the radius 𝑟(𝑓) containing
the indicator diagram 𝐷(𝑓) of the function 𝑓 . We consider a function 𝑓−𝑎(𝜆) ≡

𝜆∈C
𝑓(𝜆) 𝑒−𝑎𝜆.

This entire function also possesses an exponential type and its indicator diagram 𝐷(𝑓−𝑎) is
located in the circle {︀

𝜆 ∈ C : |𝜆| ⩽ 𝑟(𝑓)
}︀
. (2.1)

Taking into consideration the extremal nature of such circle and property (1.2), we conclude
that the exponential type 𝜎(𝑓−𝑎) of the auxiliary entire function 𝑓−𝑎 is equal to 𝑟(𝑓). Since
𝑓−𝑎 ∈ Ent[1, 𝜎) for each 𝜎 > 𝑟(𝑓), the sequence Λ(𝑓−𝑎) = Λ(𝑓) is not a uniqueness set for
Ent[1, 𝜎) for each 𝜎 > 𝑟(𝑓). We observe that the necessary part of the theorem holds with no
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additional requirement on the regularity of growth of the function 𝑓 . This requirement will be
needed in the proof of sufficiency.
So, let the generating entire function 𝑓 of exponential type have a completely regular growth.

Let us show that the sequence of its zeros Λ(𝑓) forms a uniqueness set for the class Ent
[︀
1, 𝑟(𝑓)

)︀
,

where 𝑟(𝑓) is the radius of the smallest circle containing the indicator diagram 𝐷(𝑓). As
above, we work with the auxiliary function 𝑓−𝑎, which has the same sequence of zeros as
𝑓 . The indicator diagram 𝐷(𝑓−𝑎) is contained in circle (2.1), but cannot be placed into any
circle of a smaller radius. Let 𝐹 ∈ Ent

[︀
1, 𝑟(𝑓)

)︀
and let 𝐹 vanish on Λ(𝑓). Then the quotient

𝑔(𝜆) ≡
𝜆∈C

𝐹 (𝜆)/𝑓−𝑎(𝜆) defines an entire function of exponential type. Since 𝑓−𝑎 has a completely

regular growth, the rule for adding indicators applies:

ℎ(𝑔𝑓−𝑎 ; 𝜃) = ℎ(𝑔; 𝜃) + ℎ(𝑓−𝑎 ; 𝜃) = ℎ(𝐹 ; 𝜃), 0 ⩽ 𝜃 ⩽ 2𝜋. (2.2)

An extremal with respect to a compact set 𝐷(𝑓−𝑎) nature of circle (2.1) indicates that at least
one of the following situations is realized.
1. There exist a direction 𝜃0 ∈ [0, 𝜋], for which

ℎ(𝑓−𝑎 ; 𝜃0) = ℎ(𝑓−𝑎 ; 𝜃0 + 𝜋) = 𝜎(𝑓−𝑎) = 𝑟(𝑓).

Due to (2.2) and view of (1.2) and the choice of 𝐹 , in such case we have

ℎ(𝑔; 𝜃0) = ℎ(𝐹 ; 𝜃0)− ℎ(𝑓−𝑎 ; 𝜃0) ⩽ 𝜎(𝐹 )− 𝑟(𝑓) < 0,

ℎ(𝑔; 𝜃0 + 𝜋) = ℎ(𝐹 ; 𝜃0 + 𝜋)− ℎ(𝑓−𝑎 ; 𝜃0 + 𝜋) ⩽ 𝜎(𝐹 )− 𝑟(𝑓) < 0.

Here ℎ(𝑔; 𝜃0) + ℎ(𝑔; 𝜃0 + 𝜋) < 0 and by a known property of indicator this can not hold for a
non-zero function 𝑔.
2. There exist three directions 𝜃1 < 𝜃2 < 𝜃3 on [0, 2𝜋] such that

𝜃2 − 𝜃1 < 𝜋, 𝜃3 − 𝜃2 < 𝜋, 𝜃3 − 𝜃1 > 𝜋,

for which

ℎ(𝑓−𝑎 ; 𝜃1) = ℎ(𝑓−𝑎 ; 𝜃2) = ℎ(𝑓−𝑎 ; 𝜃3) = 𝜎(𝑓−𝑎) = 𝑟(𝑓).

In this case, using again (2.2), we obtain that the values ℎ(𝑔; 𝜃) are negative as 𝜃 = 𝜃𝑗, where
𝑗 = 1, 2, 3. By general properties of the indicator, the location of the mentioned points allows
us to conclude that in this case 𝑔(𝜆) ≡ 0. Thus, in each case 𝑔(𝜆) ≡ 0 and hence 𝐹 (𝜆) ≡ 0.
Therefore, Λ(𝑓) is the uniqueness set for the class Ent

[︀
1, 𝑟(𝑓)

)︀
. The proof is complete.

Proof of Theorem 1.2. First we are going to the prove the equivalence of the negations of State-
ments V and I. Let for some 𝑎 ∈ C the shift 𝐷(𝑓) + 𝑎 be contained in 𝐷𝐻 . This means that
the indicator diagram of an entire function 𝑓 𝑎(𝜆) ≡

𝜆∈C
𝑓(𝜆) 𝑒 𝑎𝜆 is located in the compact set

𝐷𝐻 , that is, the convex compact 𝐷(𝑓 𝑎) is contained in the convex compact set 𝐷𝐻 . By the
definition of the indicator diagram this implies the inequality ℎ𝑓 𝑎

(𝜃) ⩽ 𝐻(𝜃) for each 𝜃 ∈ R.
Therefore, Λ(𝑓 𝑎) = Λ(𝑓) is the non-uniqueness set in the class Ent[1, 𝐻].
And vice versa, let Λ(𝑓) be a non-uniqueness set for Ent[1, 𝐻]. Then there exists a non-zero

entire function 𝐹 of exponential type vanishing on the sequence Λ(𝑓) such that ℎ𝐹 (𝜃) ⩽ 𝐻(𝜃)
for each 𝜃 ∈ R. This means that the indicator diagram 𝐷(𝐹 ) is contained in 𝐷𝐻 and 𝐹 is
divisible by the function 𝑓 , that is, 𝐹 = 𝑔𝑓 for some non-zero entire function 𝑔. At the same
time, 𝑔 is an entire function of exponential type as the quotient of such functions. Since 𝑓 is
a completely regular growth, by the well-known theorem an addition indicators as in (2.2) we
obtain

ℎ𝑓 (𝜃) + ℎ𝑔(𝜃) ≡ ℎ𝑔𝑓 (𝜃) ≡ ℎ𝐹 (𝜃) ⩽ 𝐻(𝜃)

for all 𝜃 ∈ R. In terms of the indicator diagram and the convex compact set 𝐷𝐻 with the
support function 𝐻 this means that 𝐷(𝑓)+𝐷(𝑔) ⊆ 𝐷𝐻 . In particular, for each point 𝑧 ∈ 𝐷(𝑔)
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the inclusion 𝐷(𝑓)+𝑧 ⊆ 𝐷𝐻 holds. Thus, some shift of 𝐷(𝑓) is located in 𝐷𝐻 . The equivalence
of Statements V and I is proven.
In proving the equivalence of Statement I to remaining three Statements II–IV we again

employ their negations. A main role is played by the following result from [21].

Theorem 2.1 ([21, Thm. 2]). Let 𝐶 be a convex bounded set in C, S be a family of sets

from C, and 𝑆 be the union of all sets from S. Suppose that 𝐶 is a closed set or 𝑆 is an open

set. Then the following four statements are pairwise equivalent:

(i) some shift of the set 𝑆 is contained in 𝐶;

(ii) for each triple of sets 𝑆1, 𝑆2, 𝑆3 from S and each closed non-empty triangle circumscribed

around 𝐶 there exists a point 𝑧 ∈ C, for which all three shifts 𝑆1 + 𝑧, 𝑆2 + 𝑧, 𝑆3 + 𝑧 are

contained in this triangle;

(iii) for each triple of sets 𝑆1, 𝑆2, 𝑆3 ∈ S and all triples of real numbers 𝜃1, 𝜃2, 𝜃3 ∈ R and

numbers 𝑞1, 𝑞2, 𝑞3 ⩾ 0 under the condition 𝑞1𝑒
𝑖𝜃1 + 𝑞2𝑒

𝑖𝜃2 + 𝑞3𝑒
𝑖𝜃3 = 0 the inequality holds:

𝑞1ℎ𝑆1(𝜃1) + 𝑞2ℎ𝑆2(𝜃2) + 𝑞3ℎ𝑆3(𝜃3) ⩽ 𝑞1ℎ𝐶(𝜃1) + 𝑞2ℎ𝐶(𝜃2) + 𝑞3ℎ𝐶(𝜃3);

(iv) for each triple of sets 𝑆1, 𝑆2, 𝑆3 ∈ S and each set of numbers 𝜃1, 𝜃2, 𝜃3 ∈ R such that

each mutual difference is a multiple of 𝜋, as 𝜃𝑗 − 𝜃𝑘 is not a multiple of 2𝜋, the inequality

ℎ𝑆1(𝜃𝑘) + ℎ𝑆2(𝜃𝑗) ⩽ ℎ𝐶(𝜃𝑘) + ℎ𝐶(𝜃𝑗)

holds, while if the difference 𝜃2 − 𝜃1 is not a multiple of 𝜋, then the inequality

ℎ𝑆1(𝜃1)
sin(𝜃3 − 𝜃2)

sin(𝜃2 − 𝜃1)
+ ℎ𝑆3(𝜃3) + ℎ𝑆2(𝜃2)

sin(𝜃1 − 𝜃3)

sin(𝜃2 − 𝜃1)

⩽ℎ𝐶(𝜃1)
sin(𝜃3 − 𝜃2)

sin(𝜃2 − 𝜃1)
+ ℎ𝐶(𝜃3) + ℎ𝐶(𝜃2)

sin(𝜃1 − 𝜃3)

sin(𝜃2 − 𝜃1)

holds true.

We let 𝑆 := 𝐷(𝑓) and 𝐶 := 𝐷𝐻 . Under such choice both sets 𝑆 and 𝐶 are convex compact
sets in C. At the same time we immediately see that Statement (i) of Theorem 2.1 is the
negation of Statement I in Theorem 1.2.
We proceed to Statement (ii). In Theorem 2.1 one can treat 𝑆 as the union of all sets from

the family S =
{︀
{𝑠} : 𝑠 ∈ 𝑆

}︀
of all single-point sets contained in 𝑆. Then Statement (ii) means

that for each triple of points 𝑠1, 𝑠2, 𝑠3 ∈ 𝑆 and each closed non-empty triangle circumscribed
around 𝐶, there exists a point 𝑧 ∈ C, for which all three shifts 𝑠1+𝑧, 𝑠2+𝑧, 𝑠3+𝑧 are contained
in this triangle. Due to the convexity of 𝑆, this means that each closed triangle with arbitrary
vertices 𝑠1, 𝑠2, 𝑠3 ∈ 𝑆 can be placed in the mentioned closed triangle circumscribed around 𝐶.
This easily shows that Statement (ii) is the negation of Statement II in Theorem 1.2 for the
specified choice of the family S.
We proceed to (iii). In Theorem 2.1 we regard 𝑆 as the union of all sets from the family

S = {𝑆} consisting of one set 𝑆. Then Statement (iii) means that for each triple of complex
numbers in polar form 𝑧1 = 𝑞1𝑒

𝑖𝜃1 , 𝑧2 = 𝑞2𝑒
𝑖𝜃2 , 𝑧3 = 𝑞3𝑒

𝑖𝜃3 , provided 𝑧1+𝑧2+𝑧3 = 0, a non-strict
inequality opposite to strict inequality (1.5) from Statement III of Theorem 1.2 holds. Thus,
(iii) is the negation of III in Theorem 1.2.
We proceed to (iv). In Theorem 2.1 we again treat 𝑆 as the union of all sets from the family

S = {𝑆} consisting of one set 𝑆, that is, 𝑆1 = 𝑆2 = 𝑆3 = 𝑆 in two non-strict inequalities of
Statement (iv), which are opposite to the strict inequalities in Statement IV of Theorem 1.2.
Thus, Statement (iv) is a negation of Statement IV of Theorem 1.2.
By Theorem 2.1 Statements (i)–(iv) in the above described versions are equivalent and this

means that their negations I–IV from Theorem 1.2 are equivalent. This completes the proof.
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Derivation of Corollary 1.2 from Theorem 1.2. First we are going to justify the equivalence of
Statements V and VI in Corollary 1.2 through the equivalence of their negations. The negation
of Statement VI of Corollary 1.2 is that Λ := Λ(𝑓) is a non-uniqueness set for the class Ent[1, 𝐻).
In other words, there is an entire function 𝐹 ̸≡ 0 of exponential type, vanishing on Λ, with
a compact indicator diagram 𝐷(𝐹 ) lying inside the convex region 𝑂𝐻 . In particular, Λ is a
non-uniqueness set for Ent[1, ℎ𝐹 ]. Therefore, there exists 𝑐 ∈ (0, 1), for which some shift of
the convex compact set 𝐷𝑐𝐻 with the support function 𝑐𝐻 includes 𝐷(𝐹 ) and is contained in
𝑂𝐻 . Applying a shift to 𝐷𝑐𝐻 means that for some 𝑎𝑐 an entire function of exponential type
𝐹 (𝜆) 𝑒𝑎𝑐𝜆 ̸≡ 0 for 𝜆 ∈ C still vanishes on Λ and belongs to the class Ent[1, 𝑐𝐻]. In this way
we obtain that Λ is a non-uniqueness set for Ent[1, 𝑐𝐻], and the negation of Statement VI of
Corollary 1.2 implies the negation of Statement V of Corollary 1.2. Reversing this arguing, we
see that the negation of Statement V of Corollary 1.2 yields the negation of Statement VI of
Corollary 1.2. Thus, Statements V and VI of Corollary 1.2 are equivalent.
Equivalence of Statement V of Corollary 1.2 to all previous statements I–IV of Corollary

1.2 is exactly the equivalence of Statements V of Theorem 1.2 to preceding Statements I–IV
of Theorem 1.2 for 𝑐𝐻 replaced by 𝐻. In this case, the replacement of strict inequalities >
from (1.5) and inequalities in Statement IV of Theorems 1.2 for non-strict ⩾ in (1.8) and
Statement IV in Corollary 1.2 is possible owing to the fact that the number 𝑐 ∈ (0, 1) admits
certain variations within (0, 1). The same applies to the open triangle described around 𝑐𝑂𝐻

in Statement II of Corollary 1.2 instead of the seemingly claimed closed triangle according to
Statement II of Theorem 1.2 described around 𝐷𝑐𝐻 . The proof is complete.

Proof of Theorem 1.3. Under the assumptions of the theorem let 𝐹 be an entire function of
𝜈-type 𝜎𝜈(𝐹 ) < 𝜎 vanishing on Λ. Suppose that 𝐹 is not identically zero. Then 𝐹 possesses
infinitely many zero forming a sequence Λ(𝐹 ), for which Λ = Λ(𝑓) ⊆ Λ(𝐹 ). Here the embedding
means that the number of appearance of each value 𝜆 ∈ C into Λ(𝐹 ) is at least the number of
appearance in Λ. Therefore, for the counting functions of these sequence we have the inequality
𝑛Λ(𝐹 )(𝑟) ⩾ 𝑛Λ(𝑟) for all 𝑟 ⩾ 0. Using (1.12)–(1.14), we have

𝜎𝜈(𝐹 )
(1.13)

⩾ ∆
*
𝜈

(︀
Λ(𝐹 )

)︀ (1.12)
= lim

𝑟→+∞

𝑁Λ(𝐹 )(𝑟)

𝜈(𝑟)
⩾ lim

𝑟→+∞

𝑁Λ(𝑟)

𝜈(𝑟)

(1.12)
= ∆

*
𝜈 (Λ)

(1.14)
= 𝜎𝜈(𝑓)

(1.14)
= 𝜎,

and this contradicts the condition 𝜎𝜈(𝐹 ) < 𝜎. Therefore, 𝐹 (𝜆) ≡ 0 on C and Λ is the uniqueness
set for the class Ent[1, 𝜎). If we take 𝜎′ > 𝜎, then the class Ent[1, 𝜎′) contains the function 𝑓
and this does not allow the sequence of its zeroes Λ = Λ(𝑓) to be the uniqueness set for such
class Ent[1, 𝜎′) with 𝜎′ > 𝜎. The proof is complete.
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