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ON GELFAND-SHILOV SPACES

A.V. LUTSENKO, I.Kh. MUSIN, R.S. YULMUKHAMETOV

Abstract. In this work we follow the scheme of constructing of Gelfand-Shilov spaces 𝑆𝛼

and 𝑆𝛽 by means of some family of separately radial weight functions in R𝑛 and define two
spaces of rapidly decreasing infinitely differentiable functions in R𝑛. One of them, namely,
the space 𝒮ℳ is an inductive limit of countable-normed spaces

𝒮ℳ𝜈 =

{︂
𝑓 ∈ 𝐶∞(R𝑛) : ‖𝑓‖𝑚,𝜈 = sup

𝑥∈R𝑛,𝛽∈Z𝑛+,

𝛼∈Z𝑛+:|𝛼|≤𝑚

|𝑥𝛽(𝐷𝛼𝑓)(𝑥)|
ℳ𝜈(𝛽)

< ∞, 𝑚 ∈ Z+

}︂
.

Similarly, starting with the normed spaces

𝒮ℳ𝜈
𝑚 =

{︂
𝑓 ∈ 𝐶∞(R𝑛) : 𝜌𝑚,𝜈(𝑓) = sup

𝑥∈R𝑛,𝛼∈Z𝑛
+

(1 + ‖𝑥‖)𝑚|(𝐷𝛼𝑓)(𝑥)|
ℳ𝜈(𝛼)

< ∞
}︂

we introduce the space 𝒮ℳ. We show that under certain natural conditions on weight
functions the Fourier transform establishes an isomorphism between spaces 𝒮ℳ and 𝒮ℳ.
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Introduction

In the mid-1950s, families of 𝑆-type spaces of infinitely differentiable functions in R𝑛 were
introduced, which, along with the Schwarz space, became one of the central objects of the theory
of generalized functions and the theory of partial differential equations and they had significant
applications in the theory of pseudodifferential operators and time-frequency analysis. Their
study was initiated in works by G.E. Shilova [1], I.M. Gelfand and G.E. Shilov [2]-[4]. They
characterized 𝑆-type spaces in terms of the Fourier transform of functions and then they applied
the resulting description to study the uniqueness of the Cauchy problem for partial differential
equations and their systems.
An essential development the theory of spaces of 𝑆-type was done in works by M.A. Soloviev

in studying problems of nonlocal field theory. In particular, he obtained [5, Sec. 4] a description
of the image of the space 𝑆𝑏(R

𝑛) under the Fourier transform; this space consists of the functions
𝑓 ∈ 𝐶∞(R𝑛) obeying the inequalities

|𝑥𝛽(𝐷𝛼𝑓)(𝑥)| ≤ 𝐶𝛼𝜇
|𝛽|𝑏|𝛽|, 𝑥 ∈ R𝑛, 𝛽 ∈ Z𝑛

+,

for some 𝐶 > 0 and 𝜇 > 0 depending on 𝑓 and 𝛼 ∈ Z𝑛
+, where, as usually, for the multi-index

𝛽 = (𝛽1, . . . , 𝛽𝑛) ∈ Z𝑛
+, |𝛽| = 𝛽1 + · · · + 𝛽𝑛, under the condition that a monotonically non-

decreasing sequence (𝑏𝑘)
∞
𝑘=0 of numbers 𝑏𝑘 > 0 satisfy the condition: there exist numbers 𝐵 > 0
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and ℎ > 0 such that

𝑏𝑘+1 ≤ 𝐵ℎ𝑘𝑏𝑘, 𝑘 = 0, 1, . . .

One of the aims of the present paper is to generalize this result to a wider class of Gelfand-
Shilov spaces of such type.

1. Spaces 𝒮ℳ and 𝒮ℳ. Main results.

Let ℳ = {ℳ𝜈}∞𝜈=1 be an arbitrary family of functions ℳ𝜈 : Z𝑛
+ → R such that for each

𝜈 ∈ N:
𝑖1) there exist numbers 𝑎1 = 𝑎1(𝜈) > 0, 𝑎2 = 𝑎2(𝜈) > 0 such that

ℳ𝜈(𝛼) ≥ 𝑎1𝑎
|𝛼|
2 , 𝛼 ∈ Z𝑛

+;

𝑖2) lim
|𝛼|→+∞

ℳ𝜈+1(𝛼)

ℳ𝜈(𝛼)
= +∞.

We define the space 𝑆ℳ following the scheme of constructing the Gelfand-Shilov space 𝑆𝛼

[3, Ch. 4]. For each 𝜈 ∈ N and 𝑚 ∈ Z+ let

𝒮𝑚,ℳ𝜈 =

⎧⎪⎨⎪⎩𝑓 ∈ 𝐶𝑚(R𝑛) : ‖𝑓‖𝑚,𝜈 = sup
𝑥∈R𝑛,𝛽∈Z𝑛+,

𝛼∈Z𝑛+:|𝛼|≤𝑚

|𝑥𝛽(𝐷𝛼𝑓)(𝑥)|
ℳ𝜈(𝛽)

< ∞

⎫⎪⎬⎪⎭ .

We also denote 𝒮ℳ𝜈 :=
∞⋂︀

𝑚=0

𝒮𝑚,ℳ𝜈 . The class 𝒮ℳ𝜈 is non-empty: it contains compactly sup-

ported functions with the support in [−𝑎2, 𝑎2]
𝑛. We equip 𝒮ℳ𝜈 with the topology defined by the

family of norms ‖ · ‖𝑚,𝜈 (𝑚 ∈ Z+). By Condition 𝑖2), the space 𝒮ℳ𝜈 is continuously embedded

into 𝒮ℳ𝜈+1 for each 𝜈 ∈ N. We let 𝒮ℳ :=
∞⋃︀
𝜈=1

𝒮ℳ𝜈 . Being equipped with usual summation and

multiplication by complex numbers, 𝒮ℳ is a linear space. We equip 𝒮ℳ with the topology of
inner inductive limit [6] of the spaces 𝒮ℳ𝜈 .
Let us define the space 𝒮ℳ. By 𝜈 ∈ N, 𝑚 ∈ Z+, we introduce the space

𝒮ℳ𝜈
𝑚 =

{︃
𝑓 ∈ 𝐶∞(R𝑛) : 𝜌𝑚,𝜈(𝑓) = sup

𝑥∈R𝑛,𝛼∈Z𝑛
+

(1 + ‖𝑥‖)𝑚|(𝐷𝛼𝑓)(𝑥)|
ℳ𝜈(𝛼)

< ∞

}︃
.

An equivalent topology in 𝒮ℳ𝜈
𝑚 can be introduced by means of the norms

𝑞𝑚,𝜈(𝑓) = sup
𝑥∈R𝑛,𝛼∈Z𝑛+,

𝛽∈Z𝑛+:|𝛽|≤𝑚

|𝑥𝛽(𝐷𝛼𝑓)(𝑥)|
ℳ𝜈(𝛼)

.

It is obvious that the normed space 𝒮ℳ𝜈
𝑚+1 is continuously embedded into 𝒮ℳ𝜈

𝑚 . Let 𝒮ℳ𝜈 :=
∞⋂︀

𝑚=0

𝒮ℳ𝜈
𝑚 . We equip the space 𝒮ℳ𝜈 by the topology defined by the family of the norms 𝜌𝑚,𝜈

(𝑚 ∈ Z+). In view of Condition 𝑖2), the space 𝒮ℳ𝜈 is continuously embedded into 𝒮ℳ𝜈+1 . We

let 𝒮ℳ :=
∞⋃︀
𝜈=1

𝒮ℳ𝜈 . In 𝒮ℳ we introduce a topology of inner inductive limit of the spaces 𝒮ℳ𝜈 .

The space 𝒮ℳ is constructed by analogy with the Gelfand-Shilov space 𝑆𝛽 [3, Ch. 4].

We shall employ the following definition of the Fourier transform 𝑓 of a function 𝑓 ∈ 𝑆(R𝑛):

𝑓(𝑥) =
1

(
√
2𝜋)𝑛

∫︁
R𝑛

𝑓(𝜉)𝑒𝑖⟨𝑥,𝜉⟩ 𝑑𝜉, 𝑥 ∈ R𝑛.

The following theorem holds true.
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Theorem 1.1. Let a family ℳ be such that for each 𝜈 ∈ N:

𝑖3) there exists a number 𝑑𝜈 > 0 such that for all 𝛼 ∈ Z𝑛
+, 𝛽 ∈ Z𝑛

+ ∩ [0, 1]𝑛

ℳ𝜈(𝛼 + 𝛽) ≤ 𝑑𝜈ℳ𝜈+1(𝛼);

𝑖4) for each 𝑚 ∈ N there exists a number 𝑑𝜈,𝑚 > 0 such that

ℳ𝜈+1(𝛼) ≥ 𝑑𝜈,𝑚ℳ𝜈(𝛼)
𝑛∏︁

𝑘=1

(1 + 𝛼𝑘)
𝑚, 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛

+.

Then the mapping ℱ : 𝑓 ∈ 𝑆ℳ → 𝑓 is an isomorphism between the spaces 𝒮ℳ and 𝒮ℳ.

Corollary 1.1. Under the assumptions of Theorem 1.1 the Fourier transform is an isomor-

phism between the spaces 𝒮ℳ and 𝒮ℳ.

Remark 1.1. If (𝑏𝑘)
∞
𝑘=0 is a monotonically non-decreasing sequence of numbers 𝑏𝑘 > 0 such

that for some 𝐵 > 0 and ℎ > 1, 𝑏𝑘+1 ≤ 𝐵ℎ𝑘𝑏𝑘 for all 𝑘 ∈ Z+, then the family {ℎ𝜈𝑛|𝛼|𝑏|𝛼|}∞𝜈=1

satisfies Conditions 𝑖1)−−𝑖4). In this case the space 𝒮ℳ coincides with the space 𝑆𝑏(R
𝑛).

Remark 1.2. If a monotonically non-decreasing sequence (𝑏𝑘)
∞
𝑘=0 of numbers 𝑏𝑘 > 0 is such

that lim
𝑘→∞

(︁
𝑏𝑘+1

𝑏𝑘

)︁ 1
𝑘
= 1, then the family {(𝜎−2−𝜈)|𝛼|𝑏|𝛼|}∞𝜈=1 with 𝜎 > 0 satisfies Conditions 𝑖1)−

−𝑖4).

Let ℋ be an arbitrary family of non-negative functions ℎ𝜈 in R𝑛 such that for each 𝜈 ∈ N:
𝐻1) ℎ𝜈(𝑥) = ℎ𝜈(|𝑥1|, . . . , |𝑥𝑛|), 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛;
𝐻2) there exist numbers 𝑄1 = 𝑄1(𝜈) > 0, 𝑄2 = 𝑄2(𝜈) > 0 such that

ℎ𝜈(𝑥) ≤
∑︁

1≤𝑗≤𝑛:𝑥𝑗 ̸=0

𝑥𝑗 ln
𝑥𝑗

𝑄1

+𝑄2, 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ [0,∞)𝑛;

𝐻3) lim
𝑥→∞

(ℎ𝜈(𝑥)− ℎ𝜈+1(𝑥)) = +∞.

We observe that the functions ℳ𝜈(𝛼) = 𝛼!𝑒−ℎ𝜈(𝛼), 𝛼 ∈ Z𝑛
+, where ℎ𝜈 ∈ ℋ, satisfy Condi-

tions 𝑖1) and 𝑖2) imposed for the functions of family ℳ. Thus, if ℳ = {𝛼!𝑒−ℎ𝜈(𝛼)}𝜈∈N, then
the space 𝒮ℳ consists of the functions 𝑓 ∈ 𝐶∞(R𝑛), for which for some 𝜈 ∈ N and for each
𝛼 ∈ Z𝑛

+ there exists a number 𝐾𝛼 > 0 such that

|𝑥𝛽(𝐷𝛼𝑓)(𝑥)| ≤ 𝐾𝛼𝛽!𝑒
−ℎ𝜈(𝛽), 𝑥 ∈ R𝑛, 𝛽 ∈ Z𝑛

+,

while the space 𝒮ℳ consists of the functions 𝑓 ∈ 𝐶∞(R𝑛), for which for some 𝜈 ∈ N and for
each 𝛽 ∈ Z𝑛

+ there exists a number 𝐿𝛽 > 0 such that

|𝑥𝛽(𝐷𝛼𝑓)(𝑥)| ≤ 𝐿𝛽𝛼!𝑒
−ℎ𝜈(𝛼), 𝑥 ∈ R𝑛,

for all 𝛼 ∈ Z𝑛
+.

In order to select a particular case of the family ℳ, we shall denote the space 𝒮ℳ by Sℋ,
the space 𝒮ℳ𝜈 is denoted by S(ℎ𝜈), and the space 𝒮ℳ is denoted by Sℋ.
Then Theorem 1.1 implies one more corollary.

Corollary 1.2. Let the family ℳ consist of the functions ℳ𝜈(𝛼) = 𝛼!𝑒−ℎ𝜈(𝛼), 𝛼 ∈ Z𝑛
+,

where the functions ℎ𝜈 ∈ ℋ satisfy additional conditions:

𝐻4) for each 𝜈 ∈ N there exists a number 𝜏𝜈 > 0 such that

ℎ𝜈(𝑥+ 𝑦)− ℎ𝜈+1(𝑥) ≥
𝑛∑︁

𝑘=1

ln(1 + 𝑥𝑘)− 𝜏𝜈

for all 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ [0,∞)𝑛, 𝑦 ∈ [0, 1]𝑛;
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𝐻5) for all 𝜈,𝑚 ∈ N there exists a number 𝜏𝜈,𝑚 > 0 such that

ℎ𝜈(𝑥)− ℎ𝜈+1(𝑥) ≥ 𝑚

𝑛∑︁
𝑘=1

ln(1 + 𝑥𝑘)− 𝜏𝜈,𝑚

for all 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ [0,∞)𝑛, 𝑦 ∈ [0, 1]𝑛.

Then the mapping ℱ : 𝑓 ∈ Sℋ → 𝑓 is an isomorphism between the spaces Sℋ and Sℋ.

Indeed, Condition 𝐻4) ensures the validity of Condition 𝑖3), while Condition 𝐻5) guarantees
Condition 𝑖4).

Corollary 1.3. Let the family ℳ consist of the functions ℳ𝜈(𝛼) = 𝛼!𝑒−ℎ𝜈(𝛼), 𝛼 ∈ Z𝑛
+,

where non-decreasing in each variable on [0,∞)𝑛 functions ℎ𝜈 ∈ ℋ satisfy Condition 𝐻5).

Then the mapping ℱ : 𝑓 ∈ Sℋ → 𝑓 is an isomorphism between the spaces Sℋ and Sℋ.

It is interesting to consider the case, when all functions in the family ℋ obey the condition

𝐻6) lim
𝑥→∞

ℎ𝜈(𝑥)

‖𝑥‖
= +∞ (‖𝑥‖ is the Euclidean norm of 𝑥 ∈ R𝑛).

The matter is that in this case, whatever a function 𝑓 is Sℋ, for each 𝜀 > 0 there exists a
number 𝑐𝜀(𝑓) > 0 such that

|(𝐷𝛼𝑓)(𝑥)| ≤ 𝑐𝜀(𝑓)𝜀
|𝛼|𝛼!, 𝑥 ∈ R𝑛, 𝛼 ∈ Z𝑛

+,

and therefore, 𝑓 admits a unique continuation to an entire function in C𝑛. We denote this
continuation by 𝐹𝑓 , while by 𝒜 we denote the mapping 𝑓 ∈ Sℋ → 𝐹𝑓 . In a natural way
there arises a problem on describing the image Sℋ under the mapping 𝒜. Its solution is
obtained under additional conditions for ℋ, see Theorem 1.2. Let us introduce notation and
definitions involved in the formulation and proof of Theorem 1.2. For an arbitrary function

𝑔 : R𝑛 → (−∞,+∞) such that lim
𝑥→∞

𝑔(𝑥)

‖𝑥‖
= +∞ by 𝑔* and 𝑔 we denote functions defined on

R𝑛 by the rule:

𝑔*(𝑥) = sup
𝛼∈Z𝑛

(⟨𝛼, 𝑥⟩ − 𝑔(𝛼)), 𝑥 ∈ R𝑛,

𝑔(𝑥) = sup
𝑦∈R𝑛

(⟨𝑥, 𝑦⟩ − 𝑔(𝑦)), 𝑥 ∈ R𝑛.

The function 𝑔 is called the Young-Fenchel transform of the function 𝑔 [7]. Now for each 𝜈 ∈ N
we define a function 𝜙𝜈 in R𝑛 letting

𝜙𝜈(𝑥) = ℎ*
𝜈(ln

+ |𝑥1|, . . . , ln+ |𝑥𝑛|), 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛,

where ln+ 𝑡 = 0 as 𝑡 ∈ [0, 1) and ln+ 𝑡 = ln 𝑡 as 𝑡 ∈ [1,∞). Since a convex in R𝑛 function ℎ*
𝜈

take finite value, then it is continuous in R𝑛 [8, Sec. 11]. Thus, the function 𝜙𝜈 is continuous
in R𝑛. It is obvious that its restriction on [0,∞)𝑛 does not decrease in each variable. In view
of Condition 𝐻2) for some 𝑄3 = 𝑄3(𝜈) > 0 the inequality

𝜙𝜈(𝑥) ≥
𝑄1

𝑒

𝑛∑︁
𝑘=1

|𝑥𝑘| −𝑄3, 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛.

holds true. Owing to Conditions 𝐻6) and 𝐻3),

lim
𝑥→∞

(ℎ*
𝜈+1(𝑥)− ℎ*

𝜈(𝑥)) = +∞.

Therefore,

lim
𝑥→∞

(𝜙𝜈+1(𝑥)− 𝜙𝜈(𝑥)) = +∞. (1.1)
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Then, for arbitrary 𝜈 ∈ N and 𝑚 ∈ Z+ we introduce the space

𝒫𝑚(𝜙𝜈) =

{︂
𝑓 ∈ 𝐻(C𝑛) : 𝑝𝜈,𝑚(𝑓) = sup

𝑧∈C𝑛

|𝑓(𝑧)|(1 + ‖𝑧‖)𝑚

𝑒𝜙𝜈(𝐼𝑚𝑧)
< ∞

}︂
.

It is obvious that the space 𝒫𝑚+1(𝜙𝜈) is continuously embedded into 𝒫𝑚(𝜙𝜈). Let 𝒫(𝜙𝜈) be the
intersection of the spaces 𝒫𝑚(𝜙𝜈). We equip 𝒫(𝜙𝜈) with a topology of projective limit of the
spaces 𝒫𝑚(𝜙𝜈). By (1.1) the space 𝒫(𝜙𝜈) is continuously embedded into 𝒫(𝜙𝜈+1). We denote

the family {𝜙𝜈}∞𝜈=1 by 𝛷. Let 𝒫(𝛷) :=
∞⋃︀
𝜈=1

𝒫(𝜙𝜈). We equip 𝒫(𝛷) by the topology of interior

inductive limit of the spaces 𝒫(𝜙𝜈). In Section 4 we prove the following theorem.

Theorem 1.2. Let the functions of the family ℋ be convex and apart of Condition 𝐻6)
satisfy the conditions:

𝐻7) for each 𝑎 > 0 there exists a number 𝑙𝜈,𝑎 > 0 such that

ℎ𝜈+1(𝑥+ 𝑦) ≤ ℎ𝜈(𝑥) + 𝑙𝜈,𝑎, 𝑥 ∈ [0,∞)𝑛, 𝑦 ∈ [0, 𝑎]𝑛;

𝐻8) for each 𝜈 ∈ N there exists a number 𝑠 ∈ N such that∑︁
|𝛼|≥0

𝑒ℎ𝜈+𝑠(𝛼)−ℎ𝜈(𝛼) < ∞.

Then the mapping 𝒜 is an isomorphism between the spaces Sℋ and 𝒫(𝛷).

By these two theorems the following statement holds true.

Theorem 1.3. Let the functions of the family ℋ be convex and satisfy Conditions 𝐻5)−𝐻7).
Then the mapping 𝒜ℱ is an isomorphism between the spaces Sℋ and 𝒫(𝛷).

2. Auxiliary result

In the proof of Theorem 1.2 we shall need a corollary from the following statement.

Proposition 2.1. Let the functions of the family ℋ satisfy Conditions 𝐻6) and 𝐻7), while
𝑚 ∈ N is arbitrary and �̃� = (𝑚, . . . ,𝑚) ∈ N𝑛. Then for each 𝜈 ∈ N

ℎ*
𝜈+1(𝑥) ≥ ℎ*

𝜈(𝑥) + ⟨𝑥, �̃�⟩ − 𝑙𝜈,𝑚, 𝑥 ∈ R𝑛
+,

where 𝑙𝜈,𝑚 is the same as in Condition 𝐻7).

Proof. Let 𝑚 ∈ N and 𝑥 ∈ R𝑛
+. Then

ℎ*
𝜈+1(𝑥) = sup

𝛼∈Z𝑛

(⟨𝑥, 𝛼⟩ − ℎ𝜈+1(𝛼)) = sup
𝛼∈Z𝑛

+

(⟨𝑥, 𝛼⟩ − ℎ𝜈+1(𝛼))

≥ sup
𝛼≥�̃�

(⟨𝑥, 𝛼⟩ − ℎ𝜈+1(𝛼)) = sup
𝛼∈Z𝑛

+

(⟨𝑥, 𝛼+ �̃�⟩ − ℎ𝜈+1(𝛼 + �̃�)).

Employing Condition 𝐻7) on ℋ, we then have

ℎ*
𝜈+1(𝑥) ≥ ⟨𝑥, �̃�⟩+ sup

𝛼∈Z𝑛
+

(⟨𝑥, 𝛼⟩ − ℎ𝜈(𝛼))− 𝑙𝜈,𝑚

= ⟨𝑥, �̃�⟩+ sup
𝛼∈Z𝑛

(⟨𝑥, 𝛼⟩ − ℎ𝜈(𝛼))− 𝑙𝜈,𝑚 = ℎ*
𝜈(𝑥) + ⟨𝑥, �̃�⟩ − 𝑙𝜈,𝑚.

The proof is complete.

Under the assumptions of Proposition 2.1 the following corollary holds.

Corollary 2.1. For all 𝜈,𝑚 ∈ N
𝜙𝜈(𝑥) +𝑚 ln(1 + ‖𝑥‖) ≤ 𝜙𝜈+1(𝑥) + 𝑏𝜈,𝑚 > 0, 𝑥 ∈ R𝑛,

where 𝑏𝜈,𝑚 = 𝑙𝜈,𝑚 + 2𝑚𝑛 ln 2.
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3. Proof of Theorem 1.1

Let us show first that the mapping ℱ acts from 𝒮ℳ into 𝒮ℳ. Let 𝑔 ∈ 𝒮ℳ. Then 𝑔 ∈ 𝒮ℳ𝜈

for some 𝜈 ∈ N. This is why whatever 𝑚 ∈ Z+ is, for all 𝛾 ∈ Z𝑛
+ with |𝛾| ≤ 𝑚, 𝜇 ∈ Z𝑛

+, 𝑥 ∈ R𝑛

the inequality holds:

|𝑥𝜇(𝐷𝛾𝑔)(𝑥)| ≤ ‖𝑔‖𝑚,𝜈ℳ𝜈(𝜇). (3.1)

Let us show that 𝑔 ∈ 𝒮ℳ. Let 𝜉 ∈ R𝑛, 𝛼 = (𝛼1, . . . , 𝛼𝑛), 𝛽 = (𝛽1, . . . , 𝛽𝑛) ∈ Z𝑛
+ be arbitrary.

We denote 𝜅𝑠 := min(𝛼𝑠, 𝛽𝑠) for 𝑠 = 1, . . . , 𝑛 and 𝜅 := (𝜅1, . . . , 𝜅𝑛). Since

(𝑖𝜉)𝛽(𝐷𝛼𝑔)(𝜉) =
(−1)|𝛽|

(
√
2𝜋)𝑛

∫︁
R𝑛

∑︁
𝑗∈Z𝑛

+:𝑗≤𝜅

𝐶𝑗
𝛽(𝐷

𝛽−𝑗𝑔)(𝑥)(𝐷𝑗(𝑖𝑥)𝛼)𝑒𝑖⟨𝑥,𝜉⟩ 𝑑𝑥,

then

|𝜉𝛽(𝐷𝛼𝑔)(𝜉)| ≤ 1

(
√
2𝜋)𝑛

∑︁
𝑗∈Z𝑛

+:𝑗≤𝜅

𝐶𝑗
𝛽

∫︁
R𝑛

|(𝐷𝛽−𝑗𝑔)(𝑥)||𝐷𝑗(𝑥𝛼)| 𝑑𝑥. (3.2)

According to [5], if 𝑢 ∈ 𝑆(R𝑛), then for all 𝜇, 𝑗 ∈ Z𝑛
+ the inequality holds:∫︁

R𝑛

|𝐷𝑗(𝑥𝜇)||𝑢(𝑥)| 𝑑𝑥 ≤
√
2

∫︁
R𝑛

|𝑥𝜇||(𝐷𝑗𝑢)(𝑥)| 𝑑𝑥. (3.3)

Employing this inequality, by (3.2) we obtain:

|𝜉𝛽(𝐷𝛼𝑔)(𝜉)| ≤
√
2

(
√
2𝜋)𝑛

∑︁
𝑗∈Z𝑛

+:𝑗≤𝜅

𝐶𝑗
𝛽

∫︁
R𝑛

|𝑥𝛼(𝐷𝛽𝑔)(𝑥)| 𝑑𝑥. (3.4)

We continue estimate 3.4) following [5]. Namely,
1) we represent

∫︀
R𝑛

|𝑥𝛼(𝐷𝛽𝑔)(𝑥)| 𝑑𝑥 as a sum of 2𝑛 integrals over non-intersecting sets R𝑛

described by 𝑛 inequalities of form |𝑥𝑘| ≤ 1 or |𝑥𝑘| > 1;
2) in the integrals over the sets, in description of which the inequality |𝑥𝑘| > 1 is involved,

we multiply and divide the integrand by 𝑥2
𝑘.

Then by (3.4), employing inequality (3.1), we obtain that

|𝜉𝛽(𝐷𝛼𝑔)(𝜉)| ≤ (
√
2)3𝑛+1

(
√
𝜋)𝑛

2|𝛽|‖𝑔‖|𝛽|,𝜈 sup
𝜔=(𝜔1,...,𝜔𝑛)∈Z𝑛+:

𝜔𝑗≤2,𝑗=1,...,𝑛

ℳ𝜈(𝛼 + 𝜔).

Then, owing to Condition 𝑖3) on ℳ, we have

|𝜉𝛽(𝐷𝛼𝑔)(𝜉)| ≤ 𝐶1‖𝑔‖|𝛽|,𝜈2|𝛽|ℳ𝜈+2(𝛼),

where 𝐶1 =
(
√
2)3𝑛+1

(
√
𝜋)𝑛

𝑑𝜈𝑑𝜈+1. Then for each 𝑘 ∈ Z+ we can find a constant 𝐶2 > 0 such that

(1 + ‖𝜉‖)𝑘|(𝐷𝛼𝑔)(𝜉)| ≤ 𝐶2‖𝑔‖𝑘,𝜈ℳ𝜈+2(𝛼), 𝛼 ∈ Z𝑛
+. (3.5)

Therefore, 𝑔 ∈ 𝒮ℳ𝜈+2 . Thus, 𝑔 ∈ 𝒮ℳ. By inequality (3.5),

𝜌𝑘,𝜈+2(𝑔) ≤ 𝐶2‖𝑔‖𝑘,𝜈 , 𝑔 ∈ 𝒮ℳ𝜈 , 𝑘 ∈ Z+.

This implies that the mapping ℱ acts continuously from 𝑆ℳ into 𝒮ℳ.
It is obvious that the linear mapping ℱ acts injectively from 𝒮ℳ into 𝒮ℳ.
We are going to show that ℱ is a mapping onto. Let 𝐹 ∈ 𝒮ℳ. Then 𝐹 ∈ 𝒮ℳ𝜈 for some

𝜈 ∈ N. This is why whatever 𝑚 ∈ Z+, for all 𝛾 ∈ Z𝑛
+, 𝑥 ∈ R𝑛,

(1 + ‖𝑥‖)𝑚|(𝐷𝛾𝐹 )(𝑥)| ≤ 𝜌𝑚,𝜈(𝐹 )ℳ𝜈(𝛾). (3.6)
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We let 𝑓(𝑥) := 𝐹 (−𝑥), 𝑥 ∈ R𝑛. Then for each 𝛼 = (𝛼1, . . . , 𝛼𝑛), 𝛽 = (𝛽1, . . . , 𝛽𝑛) ∈ Z𝑛
+,

𝜉 ∈ R𝑛,

(𝑖𝜉)𝛽(𝐷𝛼𝑓)(𝜉) =
(−1)|𝛼|

(
√
2𝜋)𝑛

∫︁
R𝑛

𝐷𝛽(𝐹 (𝑥)(𝑖𝑥)𝛼)𝑒−𝑖⟨𝑥,𝜉⟩ 𝑑𝑥.

That is,

(𝑖𝜉)𝛽(𝐷𝛼𝑓)(𝜉) =
(−1)|𝛼|

(
√
2𝜋)𝑛

∫︁
R𝑛

∑︁
𝑗∈Z𝑛

+:𝑗≤𝜅

𝐶𝑗
𝛽(𝐷

𝛽−𝑗𝐹 )(𝑥)(𝐷𝑗(𝑖𝑥)𝛼)𝑒−𝑖⟨𝑥,𝜉⟩ 𝑑𝑥,

where 𝜅 := (𝜅1, . . . , 𝜅𝑛), 𝜅𝑠 := min(𝛼𝑠, 𝛽𝑠) for 𝑠 = 1, . . . , 𝑛. This implies

|𝜉𝛽(𝐷𝛼𝑓)(𝜉)| ≤ 1

(
√
2𝜋)𝑛

∑︁
𝑗∈Z𝑛

+:𝑗≤𝜅

𝐶𝑗
𝛽

∫︁
R𝑛

|(𝐷𝛽−𝑗𝐹 )(𝑥)||𝐷𝑗(𝑥𝛼)| 𝑑𝑥.

Using inequality (3.3), we get:

|𝜉𝛽(𝐷𝛼𝑓)(𝜉)| ≤
√
2

(
√
2𝜋)𝑛

∑︁
𝑗∈Z𝑛

+:𝑗≤𝜅

𝐶𝑗
𝛽

∫︁
R𝑛

|(𝐷𝛽𝐹 )(𝑥)||𝑥𝛼| 𝑑𝑥.

This yields:

|𝜉𝛽(𝐷𝛼𝑓)(𝜉)| ≤
√
2

(
√
2𝜋)𝑛

∑︁
𝑗∈Z𝑛

+:𝑗≤𝜅

𝐶𝑗
𝛽

∫︁
R𝑛

|(𝐷𝛽𝐹 )(𝑥)|(1 + ‖𝑥‖)|𝛼| 𝑑𝑥.

Let 𝑚 ∈ Z+ be arbitrary. Then, for all 𝛼 ∈ Z𝑛
+ with |𝛼| ≤ 𝑚,

|𝜉𝛽(𝐷𝛼𝑓)(𝜉)| ≤
√
2

(
√
2𝜋)𝑛

∑︁
𝑗∈Z𝑛

+:𝑗≤𝜅

𝐶𝑗
𝛽

∫︁
R𝑛

|(𝐷𝛽𝐹 )(𝑥)|(1 + ‖𝑥‖)𝑚+2𝑛 𝑑𝑥
𝑛∏︀

𝑘=1

(1 + 𝑥2
𝑘)
.

Employing estimate (3.6), for each 𝛼 ∈ Z𝑛
+ with |𝛼| ≤ 𝑚 we have

|𝜉𝛽(𝐷𝛼𝑓)(𝜉)| ≤
√
2

(︂√︂
𝜋

2

)︂𝑛

𝜌𝑚+2𝑛,𝜈(𝐹 )ℳ𝜈(𝛽)
∑︁

𝑗∈Z𝑛
+:𝑗≤𝜅

𝐶𝑗
𝛽

≤
√
2

(︂√︂
𝜋

2

)︂𝑛

𝜌𝑚+2𝑛,𝜈(𝐹 )(𝑚+ 1)𝑛(1 + 𝛽1)
𝑚 · · · (1 + 𝛽𝑛)

𝑚ℳ𝜈(𝛽).

Finally, employing Condition 𝑖4) on ℳ, we obtain that for some 𝐶3 = 𝐶3(𝜈,𝑚) > 0 for 𝛼 ∈ Z𝑛
+

with |𝛼| ≤ 𝑚 and all 𝛽 ∈ Z𝑛
+

|𝜉𝛽(𝐷𝛼𝑓)(𝜉)| ≤ 𝐶3𝜌𝑚+2𝑛,𝜈(𝐹 )ℳ𝜈+1(𝛽), 𝜉 ∈ R𝑛. (3.7)

Therefore, 𝑓 ∈ 𝒮ℳ𝜈+1 . Hence, 𝑓 ∈ 𝒮ℳ. It is clear that 𝑓 = 𝐹 . Thus, the mapping ℱ acts from
𝒮ℳ onto 𝒮ℳ. Estimate (3.7) means that

‖𝑓‖𝑚,𝜈+1 ≤ 𝐶3𝜌𝑚+2𝑛,𝜈(𝐹 ), 𝐹 ∈ 𝒮ℳ𝜈 .

It implies that the inverse mapping ℱ−1 is continuous.
The proven facts imply that the mapping ℱ is an isomorphism between 𝒮ℳ and 𝒮ℳ.
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4. Proof of Theorem 1.2

Let 𝑓 ∈ Sℋ. We are going to prove 𝐹𝑓𝑢 ∈ 𝒫(𝛷). Let 𝑚 ∈ Z+ be arbitrary. Employing the
expansion 𝐹𝑓 (𝑧) (𝑧 = 𝑥 + 𝑖𝑦, 𝑥, 𝑦 ∈ R𝑛) into the Taylor series about the point 𝑥 and the fact
that 𝑓 ∈ S(ℎ𝜈) for some 𝜈 ∈ N, we have:

(1 + ‖𝑧‖)𝑚|𝐹𝑓 (𝑧)| ≤ 𝜌𝑚,𝜈(𝑓)(1 + ‖𝑦‖)𝑚
∑︁
|𝛼|≥0

𝑒−ℎ𝜈(𝛼)

𝑛∏︁
𝑗=1

(|𝑦𝑗|+)𝛼𝑗

≤ 𝐵𝜈,𝑠𝜌𝑚,𝜈(𝑓)(1 + ‖𝑦‖)𝑚𝑒
sup

𝑡=(𝑡1,...,𝑡𝑛)∈R𝑛
(𝑡1 ln

+ |𝑦1|+···+𝑡𝑛 ln+ |𝑦𝑛|−ℎ𝜈+𝑠(𝑡))

,

where 𝐵𝜈,𝑠 :=
∑︁
|𝛼|≥0

𝑒ℎ𝜈+𝑠(𝛼)−ℎ𝜈(𝛼), 𝑠 is from Condition 𝐻8). Therefore,

(1 + ‖𝑧‖)𝑚|𝐹𝑓 (𝑧)| ≤ 𝐵𝜈,𝑠𝜌𝑚,𝜈(𝑓)(1 + ‖𝑦‖)𝑚𝑒𝜙𝜈+𝑠(𝐼𝑚𝑧), 𝑧 ∈ C𝑛.

By this estimate, employing Corollary 1.1, we obtain that, for some 𝐾𝜈,𝑚 > 0,

(1 + ‖𝑧‖)𝑚|𝐹𝑓 (𝑧)| ≤ 𝐾𝜈,𝑚𝜌𝑚,𝜈(𝑓)𝑒
𝜙𝜈+𝑠+1(𝐼𝑚𝑧), 𝑧 ∈ C𝑛.

That is,

𝑝𝜈+𝑠+1,𝑚(𝐹𝑓 ) ≤ 𝐾𝜈,𝑚𝜌𝑚,𝜈(𝑓), 𝑓 ∈ S(ℎ𝜈).

In view of the arbitrariness of 𝑚 ∈ Z+, 𝐹𝑓 ∈ 𝒫(𝜙𝜈+𝑠+1). Thus, 𝐹𝑓 ∈ 𝒫(𝛷). Moreover, the
latter inequality means that the linear mapping 𝒜 is continuous.
It is obvious that 𝒜 is a one-to-one correspondence from Sℋ into 𝒫(𝛷).
The mapping 𝒜 is surjective. Indeed, let 𝐹 ∈ 𝒫(𝛷). Then 𝐹 ∈ 𝒫(𝜙𝜈) for some 𝜈 ∈ N.

Let 𝑚 ∈ Z+, 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛
+. Employing the Cauchy integral formula and the non-

decreasing of 𝜙𝜈 in each variable [0,∞)𝑛, we obtain, proceeding as in the proof of Theorem 1
in [9], that for each 𝑅 ∈ (0,∞)𝑛 and each 𝑥 ∈ R𝑛

(1 + ‖𝑥‖)𝑚|(𝐷𝛼𝐹 )(𝑥)| ≤ 𝛼!𝑝𝜈,𝑚(𝐹 )(1 + ‖𝑅‖)𝑚𝑒𝜙𝜈(𝑅)

𝑅𝛼
.

Then, emplyoing Corollary 1.1, we have:

(1 + ‖𝑥‖)𝑚|(𝐷𝛼𝐹 )(𝑥)| ≤ 𝑒𝑏𝜈,𝑚𝛼!𝑝𝜈,𝑚(𝐹 )
𝑒𝜙𝜈+1(𝑅)

𝑅𝛼
.

For the brevity we let 𝜙𝜈+1[𝑒](𝑟) := 𝜙𝜈+1(𝑒
𝑟1 , . . . , 𝑒𝑟𝑛), 𝑟 = (𝑟1, . . . , 𝑟𝑛) ∈ R𝑛. Then

(1 + ‖𝑥‖)𝑚|(𝐷𝛼𝐹 )(𝑥)| ≤ 𝑒𝑏𝜈,𝑚𝛼!𝑝𝜈,𝑚(𝐹 ) inf
𝑅∈(0,∞)𝑛

𝑒𝜙𝜈+1(𝑅)

𝑅𝛼

=
𝑒𝑏𝜈,𝑚𝛼!𝑝𝜈,𝑚(𝐹 )

exp( sup
𝑟∈R𝑛

(⟨𝛼, 𝑟⟩ − 𝜙𝜈+1[𝑒](𝑟)))
≤ 𝑒𝑏𝜈,𝑚𝛼!𝑝𝜈,𝑚(𝐹 )

exp( sup
𝑟∈R𝑛

+

(⟨𝛼, 𝑟⟩ − 𝜙𝜈+1[𝑒](𝑟)))

=
𝑒𝑏𝜈,𝑚𝛼!𝑝𝜈,𝑚(𝐹 )

exp( sup
𝑟=(𝑟1,...,𝑟𝑛)∈R𝑛

+

(⟨𝛼, 𝑟⟩ − ℎ*
𝜈+1(ln

+ 𝑒𝑟1 , . . . , ln+ 𝑒𝑟𝑛)))

=
𝑒𝑏𝜈,𝑚𝛼!𝑝𝜈,𝑚(𝐹 )

exp( sup
𝑟∈R𝑛

+

(⟨𝛼, 𝑟⟩ − ℎ*
𝜈+1(𝑟)))

=
𝑒𝑏𝜈,𝑚𝛼!𝑝𝜈,𝑚(𝐹 )

exp( sup
𝑟∈R𝑛

(⟨𝛼, 𝑟⟩ − ℎ*
𝜈+1(𝑟)))

= 𝑒𝑏𝜈,𝑚𝛼!𝑝𝜈,𝑚(𝐹 ) exp(−̃︂ℎ*
𝜈+1(𝛼))) = 𝑒𝑏𝜈,𝑚𝛼!𝑝𝜈,𝑚(𝐹 ) exp(−ℎ𝜈+1(𝛼)).
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In the end of this estimate we have employed the fact that due to the convexity of the function

ℎ𝜈+1 we have ̃︂ℎ*
𝜈+1(𝛼) = ℎ𝜈+1(𝛼) for each 𝛼 ∈ Z𝑛 according to Proposition 1 in [10]. By the

obtained estimate it follows that

𝜌𝑚,𝜈+1(𝐹|R𝑛) ≤ 𝑒𝑏𝜈,𝑚𝑝𝜈,𝑚(𝐹 ), 𝐹 ∈ 𝒫(𝜙𝜈). (4.1)

Therefore, 𝐹|R𝑛 ∈ S(ℎ𝜈+1). Thus, 𝐹|R𝑛 ∈ Sℋ. It is obvious that 𝒜(𝐹|R𝑛) = 𝐹 and inequality
(4.1) ensures the continuity of the mapping 𝒜−1. Thus, the mapping 𝒜 is an isomorphism
between Sℋ and 𝒫(𝛷).
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