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SHARP JACKSON–STECHKIN TYPE

INEQUALITIES IN HARDY SPACE 𝐻2 AND

WIDTHS OF FUNCTIONAL CLASSES

M.Sh. SHABOZOV, Z.Sh. MALAKBOZOV

Abstract. In this work we obtain sharp Jackson–Stechkin type inequalities relating the
best joint polynomial approximation of functions analytic in the unit disk and a special
generalization of the continuity modulus, which is defined by means of the Steklov function.

While solving a series of problems in the theory on approximation of periodic functions
by trigonometric polynomials in the space 𝐿2, a modification of the classical definition of
the continuity modulus of 𝑚th order generated by the Steklov function was employed by
S.B. Vakarchuk, M.Sh. Shabozov and A.A. Shabozova . Here the proposed construction is
employed for defining a modification of the continuity modulus of 𝑚th order for functions
analytic in the unit disk generated by the Steklov function in the Hardy space 𝐻2.

By using this smoothness characteristic we solve a problem on finding a sharp constant
in the Jackson–Stechkin type inequalities for joint approximation of the functions and their
intermediate derivatives.

For the classes of function, averaged with a weight, the generalized continuity moduli
of which are bounded by a given majorant, we find exact values of various 𝑛-widths. We
also solve the problem on finding sharp upper bounds for best joint approximations of the
mentioned classes of functions in the Hardy space 𝐻2.

Keywords: Jackson–Stechkin type inequalities, continuity modulus, Steklov function, 𝑛-
width, Hardy space.
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1. Introduction

Extremal problems on the best polynomial approximation of functions analytic in the circle
were studied in many papers, see, for example, [1]–[18] and the references therein. Among these
problems, one of the most important is on finding exact constants in Jackson–Stechkin type
inequalities in various normed spaces. We recall that by inequalities of the Jackson–Stechkin
type in the considered normed space we mean ones, in which the approximation of a function
by a finite-dimensional subspace is estimated in terms of some characteristic of the smoothness
of the function or of its given derivative.
Recently, in solving a series of problems in the approximation theory, as a characteristic of

the smoothness of a function, various modifications of the classical definition of the modulus
of continuity are used. For instance, in the case of approximation of 2𝜋-periodic functions,
instead of classical shift operator 𝑇ℎ𝑓(𝑥) = 𝑓(𝑥 + ℎ), in [19], [20] the Steklov function 𝑆ℎ(𝑓)
was used. This article continues these studied and provides a generalization and development
of ideas presented in works [19]–[21].
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Let N, Z+ := N∪{0}, C be respectively the set of natural, non-negative integer and complex
numbers, 𝑈 := {𝑧 ∈ C : |𝑧| < 1} be an open unit circle in C and 𝐴(𝑈) be the set of functions
analytic in 𝑈 .
An analytic in the unit disk 𝑈 := {𝑧 ∈ C : |𝑧| < 1} function

𝑓(𝑧) =
∞∑︁
𝑘=0

𝑐𝑘(𝑓)𝑧
𝑘, 𝑧 = 𝜌𝑒𝑖𝑡, 0 ⩽ 𝜌 < 1, (1.1)

is said to belong to the Hardy space 𝐻2 [17] if

‖𝑓‖2 := ‖𝑓‖𝐻2 = lim
𝜌→1−0

(︂
1

2𝜋

∫︁ 2𝜋

0

|𝑓(𝜌𝑒𝑖𝑡)|2𝑑𝑡
)︂1/2

< ∞. (1.2)

It is well-known, see, for instance, [17], that the integral in (1.2) does not increases as 𝜌 increases
and almost everywhere on the circumference |𝑧| = 1 there exist angular values 𝑓(𝑒𝑖𝑡) := 𝐹 (𝑡).
At the same time, 𝐹 ∈ 𝐿2 := 𝐿2[0, 2𝜋] and

‖𝑓‖2 := ‖𝐹‖𝐿2 =

(︂
1

2𝜋

∫︁ 2𝜋

0

|𝑓(𝑒𝑖𝑡)|2𝑑𝑡
)︂1/2

. (1.3)

We define the derivative of a function 𝑓 ∈ 𝐴(𝑈) of 𝑟th order as usually:

𝑓 (𝑟)(𝑧) :=
𝑑(𝑟)𝑓

𝑑𝑧𝑟
=

∞∑︁
𝑘=𝑟

𝑘(𝑘 − 1) · · · (𝑘 − 𝑟 + 1)𝑐𝑘(𝑓)𝑧
𝑘−𝑟, 𝑟 ∈ N, (1.4)

while the angular value of the derivative is denoted by 𝑓 (𝑟)(𝑒𝑖𝑡). For the sake of brevity we
introduce the notation

𝛼𝑛,𝑚 := 𝑛(𝑛− 1) · · · (𝑛−𝑚+ 1) =
𝑛!

(𝑛−𝑚)!
, 𝑛,𝑚 ∈ N, 𝑛 ⩾ 𝑚.

Here we let 𝛼𝑛,0 ≡ 1, 𝛼𝑛,1 = 𝑛, 𝑛 ∈ N. Now we shortly write identity (1.4) as

𝑓 (𝑟)(𝑧) =
∞∑︁
𝑘=𝑟

𝛼𝑘,𝑟 𝑐𝑘(𝑓)𝑧
𝑘−𝑟. (1.5)

Hereinafter, by the symbol 𝐻
(𝑟)
2 (𝑟 ∈ Z+, 𝐻

(0)
2 = 𝐻2) we denote the set of functions 𝑓 ∈ 𝐴(𝑈)

belonging to the Hardy space 𝐻2, the derivative of which of 𝑟th order 𝑓 (𝑟)(𝑧) also belongs to
𝐻2, that is,

𝐻
(𝑟)
2 :=

{︁
𝑓 ∈ 𝐻2 : ‖𝑓 (𝑟)‖2 < ∞

}︁
.

Let 𝒫𝑛−1 be the subspace of complex algebraic polynomials of degree at most 𝑛 − 1. Since

for 𝑓 ∈ 𝐻
(𝑟)
2 , all its derivatives 𝑓 (𝑠), 𝑠 = 1, 2, . . . , 𝑟 − 1, also belong to the space 𝐻2, see [18],

then it is of a natural interest to find exact values of joint approximations for the functions 𝑓
and their derivatives 𝑓 (𝑠), 𝑠 ⩾ 2, 𝑠 = 1, 𝑟 − 1,

𝐸𝑛−𝑠−1(𝑓
(𝑠))2 := inf

{︁
‖𝑓 (𝑠) − 𝑝

(𝑠)
𝑛−1‖2 : 𝑝𝑛−1 ∈ 𝒫𝑛−1

}︁
on some subset M(𝑟) ⊆ 𝐻

(𝑟)
2 or on the class 𝐻

(𝑟)
2 . Thus, we need to find an exact value of the

quantity

ℰ (𝑠)
𝑛−𝑠−1(M)2 := sup

{︁
𝐸𝑛−𝑠−1(𝑓

(𝑠))2 : 𝑓 ∈ M
}︁
. (1.6)

Since in the present work we use only the norms in the spaces 𝐻2 and 𝐿2, in view of relation
(1.3) hereinafter we omit the subscripts of the norms ‖ · ‖2 and ‖ · ‖𝐿2 . In the same way we
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do for the quantities defined by means of these norms, for instance, instead of 𝐸𝑛−𝑠−1

(︀
𝑓 (𝑠)
)︀
2
,

ℰ (𝑠)
𝑛−𝑠−1(M)2 we write 𝐸𝑛−𝑠−1

(︀
𝑓 (𝑠)
)︀
, ℰ (𝑠)

𝑛−𝑠−1(M).

2. Auxiliary statements

In what follows we shall make use the following known statements.

Lemma 2.1 ([21]). Let 𝑓 ∈ 𝐻
(𝑟)
2 , 𝑟, 𝑛 ∈ N, 𝑛 > 𝑟. Then for each 𝑠 ∈ Z+, 0 ⩽ 𝑠 ⩽ 𝑟 the

inequality holds:

𝐸𝑛−𝑠−1

(︀
𝑓 (𝑠)
)︀
=

(︃
∞∑︁
𝑘=𝑛

𝛼2
𝑘,𝑠|𝑐𝑘(𝑓)|2

)︃1/2

. (2.1)

Lemma 2.2 ([21]). For an arbitrary function 𝑓 ∈ 𝐻
(𝑟)
2 , 𝑟 ∈ N, for all 𝑛 ∈ N, 𝑠 ∈ Z+,

obeying the condition 𝑛 > 𝑟 ⩾ 𝑠 the inequality holds:

𝐸𝑛−𝑠−1

(︀
𝑓 (𝑠)
)︀
⩽

𝛼𝑛,𝑠

𝛼𝑛,𝑟

𝐸𝑛−𝑟−1

(︀
𝑓 (𝑟)
)︀
. (2.2)

There exists a function 𝑔 ∈ 𝐻
(𝑟)
2 , for which inequality (2.2) becomes the identity.

Let

𝑆ℎ𝑓(𝑒
𝑖𝑥) =

1

2ℎ

∫︁ 𝑥+ℎ

𝑥−ℎ

𝑓(𝑒𝑖𝑡)𝑑𝑡, ℎ > 0 (2.3)

be the Steklov function of the boundary value 𝑓(𝜌𝑒𝑖𝑡) of the function 𝑓 ∈ 𝐻2. We let 𝑆ℎ,𝑘(𝑓) :=
𝑆ℎ (𝑆ℎ,𝑘−1(𝑓)), where 𝑘 ∈ N and 𝑆ℎ,0(𝑓) ≡ 𝑓 , E is the identity mapping in the space 𝐻2.
Following [20], we denote the first and higher order differences by the relations̃︀∆1

ℎ𝑓(𝑒
𝑖𝑥) =𝑆ℎ𝑓(𝑒

𝑖𝑥)− 𝑓(𝑒𝑖𝑥) = (𝑆ℎ − E)𝑓(𝑒𝑖𝑥),

̃︀∆𝑚
ℎ 𝑓(𝑒

𝑖𝑥) =̃︀∆1
ℎ

(︀̃︀∆𝑚−1
ℎ 𝑓(𝑒𝑖𝑥)

)︀
=
(︀
𝑆ℎ − E

)︀𝑚
𝑓(𝑒𝑖𝑥) =

𝑚∑︁
𝑘=0

(−1)𝑚−𝑘

(︂
𝑚

𝑘

)︂
𝑆ℎ,𝑘(𝑓(𝑒

𝑖𝑥)),

where 𝑚 = 2, 3, . . . . Using the introduced notations, we consider a smoothness characteristics
of a function 𝑓 ∈ 𝐻2:

̃︀𝜔𝑚(𝑓, 𝑡) := ̃︀𝜔𝑚(𝑓, 𝑡)2 = sup
{︁⃦⃦̃︀∆𝑚

ℎ 𝑓(𝑒
𝑖(·))
⃦⃦
: 0 < ℎ ⩽ 𝑡

}︁
, (2.4)

which we call a generalized modulus of continuity of 𝑚th order. Hereinafter we let

sinc 𝑡 :=

⎧⎨⎩
sin 𝑡

𝑡
as 𝑡 ̸= 0,

1 as 𝑡 = 0.

Since in view of identities (2.3) and (1.1)

̃︀∆1
ℎ(𝑓, 𝑒

𝑖𝑥) =
1

2ℎ

∫︁ ℎ

0

{︀
𝑓(𝑒𝑖(𝑥+𝑡)) + 𝑓(𝑒𝑖(𝑥−𝑡))− 2𝑓(𝑒𝑖𝑥)

}︀
𝑑𝑡

=
∞∑︁
𝑘=1

𝑐𝑘(𝑓)𝑒
𝑖𝑘𝑥 · 1

2ℎ

∫︁ ℎ

0

{︀
𝑒𝑖𝑘𝑡 + 𝑒−𝑖𝑘𝑡 − 2

}︀
𝑑𝑡

=
∞∑︁
𝑘=1

𝑐𝑘(𝑓)𝑒
𝑖𝑘𝑥 · 1

ℎ

∫︁ ℎ

0

(cos 𝑘𝑡− 1)𝑑𝑡 = −
∞∑︁
𝑘=1

𝑐𝑘(𝑓)𝑒
𝑖𝑘𝑥(1− sinc 𝑘ℎ)
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and by induction for each 𝑚 ∈ N, 𝑚 ⩾ 2, we have

̃︀∆𝑚
ℎ (𝑓, 𝑒

𝑖𝑥) = (−1)𝑚
∞∑︁
𝑘=1

𝑐𝑘(𝑓)𝑒
𝑖𝑘𝑥(1− sinc 𝑘ℎ)𝑚, (2.5)

by applying the Parseval identity to (2.5) we obtain⃦⃦ ̃︀∆𝑚
ℎ (𝑓)

⃦⃦
=

∞∑︁
𝑘=1

|𝑐𝑘(𝑓)|2(1− sinc 𝑘ℎ)2𝑚.

This allows us to write an explicit form for quantity (2.4)

̃︀𝜔𝑚(𝑓, 𝑡) = sup

⎧⎨⎩
(︃

∞∑︁
𝑘=1

|𝑐𝑘(𝑓)|2(1− sinc 𝑘ℎ)2𝑚

)︃1/2

: 0 < ℎ ⩽ 𝑡

⎫⎬⎭ . (2.6)

It follows from identities (1.5) and (1.1) that the coefficients 𝑐𝑘(𝑓
(𝑟)) in the Maclaurin series

of the derivative 𝑓 (𝑟) and the coefficients 𝑐𝑘(𝑓) in the Maclaurin series of the function 𝑓 are
related by the identity

𝑐𝑘(𝑓
(𝑟)) := 𝛼𝑘,𝑟 𝑐𝑘(𝑓). (2.7)

Taking into consideration (2.7) and (2.6), for an arbitrary function 𝑓 ∈ 𝐻
(𝑟)
2 we have:

̃︀𝜔𝑚(𝑓
(𝑟), 𝑡) = sup

⎧⎨⎩
(︃

∞∑︁
𝑘=𝑟

𝛼2
𝑘,𝑟|𝑐𝑘(𝑓)|2(1− sinc(𝑘 − 𝑟)ℎ)2𝑚

)︃1/2

: 0 < ℎ ⩽ 𝑡

⎫⎬⎭ . (2.8)

Lemma 2.3. Let 𝑚,𝑛 ∈ N, 𝑟, 𝑠 ∈ Z+, 𝑛 > 𝑟 ⩾ 𝑠. Then for each 𝑡 ∈ (0, 3𝜋
4(𝑛−𝑟)

] the inequality

̃︀𝜔𝑚(𝑓
(𝑟), 𝑡) ⩾

𝛼𝑛,𝑟

𝛼𝑛,𝑠

(1− sinc(𝑛− 𝑟)𝑡)𝑚𝐸𝑛−𝑠−1(𝑓
(𝑠)) (2.9)

holds true. This inequality is sharp in the sense that there exists a function 𝑓0 ∈ 𝐻
(𝑟)
2 , for which

this inequality becomes the identity.

Proof. Using the fact that for 0 < 𝑛ℎ ⩽ 3𝜋
4
[22]

max{sinc𝑥 : 0 < |𝑡| ⩽ 𝑛𝜏} = sinc𝑛𝜏,

min{(1− sinc𝑢)𝑚 : 𝑢 ⩾ 𝑛𝑡} = (1−max
𝑢⩾𝑛𝑡

sinc𝑢)𝑚 = (1− sinc𝑛𝜏)𝑚,

by (2.8) for an arbitrary function 𝑓 ∈ 𝐻
(𝑟)
2 we obtain

̃︀𝜔2
𝑚(𝑓

(𝑟), 𝑡) ⩾
∞∑︁
𝑘=𝑛

𝛼2
𝑘,𝑟|𝑐𝑘(𝑓)|2(1− sinc(𝑘 − 𝑟)ℎ)2𝑚

⩾ (1− sinc(𝑛− 𝑟)𝑡)2𝑚 ·
∞∑︁
𝑘=𝑛

𝛼2
𝑘,𝑟|𝑐𝑘(𝑓)|2

= (1− sinc(𝑛− 𝑟)𝑡)2𝑚 ·
∞∑︁
𝑘=𝑛

(︂
𝛼𝑘,𝑟

𝛼𝑘,𝑠

)︂2

𝛼2
𝑘,𝑠|𝑐𝑘(𝑓)|2

⩾ (1− sinc(𝑛− 𝑟)𝑡)2𝑚 ·min
𝑘⩾𝑛

(︂
𝛼𝑘,𝑟

𝛼𝑘,𝑠

)︂2

·
∞∑︁
𝑘=𝑛

𝛼2
𝑘,𝑠|𝑐𝑘(𝑓)|2

= (1− sinc(𝑛− 𝑟)𝑡)2𝑚 ·min
𝑘⩾𝑛

(︂
𝛼𝑘,𝑟

𝛼𝑘,𝑠

)︂2

· 𝐸2
𝑛−𝑠−1(𝑓

(𝑠)).

(2.10)
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It was proved in [22] that for 𝑘 ⩾ 𝑛 > 𝑟 ⩾ 𝑠

min
𝑘⩾𝑛

𝛼𝑘,𝑟

𝛼𝑘,𝑠

=
𝛼𝑛,𝑟

𝛼𝑛,𝑠

, (2.11)

and this is why, taking into consideration (2.11), by (2.10) we obtain (2.9). For a function

𝑓0(𝑧) = 𝑧𝑛 ∈ 𝐻
(𝑟)
2 , which due to identities (2.1) and (2.8) satisfies

𝐸𝑛−𝑠−1(𝑓
(𝑠)
0 ) = 𝛼𝑛,𝑠, ̃︀𝜔𝑚(𝑓

(𝑟)
0 , 𝑡) = 𝛼𝑛,𝑟(1− sinc(𝑛− 𝑟)𝑡)𝑚, (2.12)

by (2.12) we obtain:

̃︀𝜔𝑚(𝑓
(𝑟)
0 , 𝑡) = 𝛼𝑛,𝑟(1− sinc(𝑛− 𝑟)𝑡)𝑚 =

𝛼𝑛,𝑟

𝛼𝑛,𝑠

(1− sinc(𝑛− 𝑟)𝑡)𝑚𝛼𝑛,𝑠

=
𝛼𝑛,𝑟

𝛼𝑛,𝑠

(1− sinc(𝑛− 𝑟)𝑡)𝑚𝐸𝑛−𝑠−1(𝑓
(𝑠)
0 ),

which implies the statement of the lemma. The proof is complete.

In what follows by a weight function on the segment [0, ℎ] we mean a non-negative summable
function 𝑞, which is non-equivalent to the zero on the same segment. The following theorem
holds true.

Theorem 2.1. Let 𝑚,𝑛 ∈ N, 𝑟, 𝑠 ∈ Z+, 𝑛 > 𝑟 ⩾ 𝑠, 0 < 𝑝 ⩽ ∞, 0 < ℎ ⩽ 3𝜋
4(𝑛−𝑟)

and 𝑞 be a

weight function on the segment [0, ℎ]. Then the identity holds:

sup
𝑓∈𝐻(𝑟)

2

(𝛼𝑛,𝑟/𝛼𝑛,𝑠) · 𝐸𝑛−𝑠−1(𝑓
(𝑠)){︂∫︁ ℎ

0

̃︀𝜔𝑝
𝑚(𝑓

(𝑟), 𝑡)𝑞(𝑡)𝑑𝑡

}︂1/𝑝
=

{︂∫︁ ℎ

0

(1− sinc(𝑛− 𝑟)𝑡)𝑚𝑝𝑞(𝑡)𝑑𝑡

}︂−1/𝑝

. (2.13)

Proof. We take the 𝑝th (0 < 𝑝 ⩽ ∞) power of the both sides of inequality (2.9), multiply by
the weight function 𝑞 and integrate from 0 to ℎ, where 0 < ℎ ⩽ 3𝜋

4(𝑛−𝑟)
. Taking then the root of

the power 1/𝑝, from the obtained identity we pass to the inequality(︂∫︁ ℎ

0

̃︀𝜔𝑝
𝑚(𝑓

(𝑟), 𝑡)𝑞(𝑡)𝑑𝑡

)︂1/𝑝

⩾ (𝛼𝑛,𝑟/𝛼𝑛,𝑠) · 𝐸𝑛−𝑠−1(𝑓
(𝑠))

(︂∫︁ ℎ

0

(1− sinc(𝑛− 𝑟)𝑡)𝑚𝑝𝑞(𝑡)𝑑𝑡

)︂1/𝑝

.

The obtained inequality holds true for an arbitrary function 𝑓 ∈ 𝐻
(𝑟)
2 and this is why it implies

an upper bound for the quantity in the left hand side of identity (2.13):

sup
𝑓∈𝐻(𝑟)

2

(𝛼𝑛,𝑟/𝛼𝑛,𝑠) · 𝐸𝑛−𝑠−1(𝑓
(𝑠))(︂∫︁ ℎ

0

̃︀𝜔𝑝
𝑚(𝑓

(𝑟), 𝑡)𝑞(𝑡)𝑑𝑡

)︂1/𝑝
⩽

(︂∫︁ ℎ

0

(1− sinc(𝑛− 𝑟)𝑡)𝑚𝑝𝑞(𝑡)𝑑𝑡

)︂−1/𝑝

. (2.14)

In order to obtain a similar lower bound for the mentioned quantity, we consider a function

𝑓0(𝑧) = 𝑧𝑛 ∈ 𝐻
(𝑟)
2 , which was introduced in the proof of Lemma 2.3 and for which identities

(2.12) hold. Using identities (2.12), we write the lower bound

sup
𝑓∈𝐻(𝑟)

2

(𝛼𝑛,𝑟/𝛼𝑛,𝑠) · 𝐸𝑛−𝑠−1(𝑓
(𝑠))(︂∫︁ ℎ

0

̃︀𝜔𝑝
𝑚(𝑓

(𝑟), 𝑡)𝑞(𝑡)𝑑𝑡

)︂1/𝑝
⩾

(𝛼𝑛,𝑟/𝛼𝑛,𝑠) · 𝐸𝑛−𝑠−1(𝑓
(𝑠)
0 )(︂∫︁ ℎ

0

̃︀𝜔𝑝
𝑚(𝑓

(𝑟)
0 , 𝑡)𝑞(𝑡)𝑑𝑡

)︂1/𝑝

=

(︂∫︁ ℎ

0

(1− sinc(𝑛− 𝑟)𝑡)𝑚𝑝𝑞(𝑡)𝑑𝑡

)︂−1/𝑝

.

(2.15)

We obtain needed identity (2.13) by comparing upper bound (2.14) with lower bound (2.15)
and this completes the proof of the theorem.
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Theorem 2.1 implies a series of corollaries.

Corollary 2.1. Suppose that, under the assumptions of Theorem 2.1, 𝑚,𝑛 ∈ N, 𝑟, 𝑠 ∈ Z+,

𝑛 > 𝑟 ⩾ 𝑠, 𝑝 = 1/𝑚, 0 < ℎ ⩽ 3𝜋
4(𝑛−𝑟)

, 𝑞(𝑡) ≡ 1. Then

sup
𝑓∈𝐻(𝑟)

2

(𝛼𝑛,𝑟/𝛼𝑛,𝑠) · 𝐸𝑛−𝑠−1(𝑓
(𝑠))(︂∫︁ ℎ

0

̃︀𝜔1/𝑚
𝑚 (𝑓 (𝑟), 𝑡)𝑑𝑡

)︂𝑚 =

{︂
𝑛− 𝑟

(𝑛− 𝑟)ℎ− 𝑆𝑖(𝑛− 𝑟)ℎ

}︂𝑚

,

where 𝑆𝑖(𝑡) :=

∫︁ 𝑡

0

sinc 𝑢 𝑑𝑢 is the integral sine.

If, under the same assumptions, 𝑞(𝑡) = 𝑡, by (2.15) we then have

sup
𝑓∈𝐻(𝑟)

2

(𝛼𝑛,𝑟/𝛼𝑛,𝑠) · 𝐸𝑛−𝑠−1(𝑓
(𝑠))(︂∫︁ ℎ

0

𝑡 ̃︀𝜔1/𝑚
𝑚 (𝑓 (𝑟), 𝑡)𝑑𝑡

)︂𝑚 =
(𝑛− 𝑟)2𝑚

2𝑚

{︃[︂
(𝑛− 𝑟)ℎ

2

]︂2
− sin2

[︂
(𝑛− 𝑟)ℎ

2

]︂}︃−𝑚

. (2.16)

In particular, it follows from (2.16) with ℎ = 𝜋
2(𝑛−𝑟)

that

sup
𝑓∈𝐻(𝑟)

2

(𝛼𝑛,𝑟/𝛼𝑛,𝑠) · 𝐸𝑛−𝑠−1(𝑓
(𝑠))(︃

(𝑛− 𝑟)2
∫︁ 𝜋/2(𝑛−𝑟)

0

𝑡 ̃︀𝜔1/𝑚
𝑚 (𝑓 (𝑟), 𝑡)𝑑𝑡

)︃𝑚 =

(︂
4

𝜋2 − 8

)︂𝑚

.

3. Widths of some classes of functions

In order to formulate further results, we first introduce needed notation and definitions. Let
ℬ be a unit ball in the space 𝐻2; ℳ be a convex centrally symmetric subset in 𝐻2; Λ𝑛 ⊂ 𝐻2

be an 𝑛-dimensional subspace; Λ𝑛 ⊂ 𝐻2 be a subspace of codimension 𝑛; ℒ : 𝐻2 → Λ𝑛 be a
continuous linear operator mapping the elements of the space 𝐻2 into Λ𝑛; ℒ⊥ : 𝐻2 → Λ𝑛 be a
continuous operator of linear projecting of 𝐻2 onto the subspace Λ𝑛. The quantities

𝑏𝑛(ℳ, 𝐻2) := sup {sup {𝜀 > 0; 𝜀ℬ ∩ Λ𝑛+1 ⊂ ℳ} : Λ𝑛+1 ⊂ 𝐻2} ,
𝑑𝑛(ℳ, 𝐻2) := inf {sup {inf {‖𝑓 − 𝑔‖2 : 𝑔 ∈ Λ𝑛} : 𝑓 ∈ ℳ} : Λ𝑛 ⊂ 𝐻2} ,
𝛿𝑛(ℳ, 𝐻2) := inf {sup {inf {‖𝑓 − ℒ(𝑓)‖2 : 𝑓 ∈ ℳ} : ℒ𝐻2 ⊂ Λ𝑛} : Λ𝑛 ⊂ 𝐻2} ,
𝑑𝑛(ℳ, 𝐻2) := inf {sup {‖𝑓‖2 : 𝑓 ∈ ℳ∩ Λ𝑛} : Λ𝑛 ⊂ 𝐻2} ,
Π𝑛(ℳ, 𝐻2) := inf

{︀
inf
{︀
sup

{︀
‖𝑓 − ℒ⊥(𝑓)‖2 : 𝑓 ∈ ℳ

}︀
: ℒ⊥𝐻2 ⊂ Λ𝑛

}︀
: Λ𝑛 ⊂ 𝐻2

}︀
are respectively called Bernstein, Kolmogorov, linear, Gelfand, projection 𝑛-width. In the
Hilbert space 𝐻2 these quantities are related as follows, see [23], [24]:

𝑏𝑛(ℳ, 𝐻2) ⩽ 𝑑𝑛(ℳ, 𝐻2) ⩽ 𝑑𝑛(ℳ, 𝐻2) = 𝛿𝑛(ℳ, 𝐻2) = Π𝑛(ℳ, 𝐻2). (3.1)

Using smoothness characteristics (2.4), we define the following classes of functions. Let Φ(𝑡), 𝑡 ∈
R+, be a continuous non-decreasing function such that Φ(0) = 0. By the symbol 𝑊

(𝑟)
𝑝 (𝜔𝑚,Φ),

0 < 𝑝 ⩽ ∞, 𝑟 ∈ Z+, we denote the class of functions 𝑓 ∈ 𝐻
(𝑟)
2 , which for each 𝑡 ∈ R+ obeys

the inequality (︂
1

𝑡

∫︁ 𝑡

0

̃︀𝜔𝑝
𝑚(𝑓

(𝑟), 𝜏)𝑑𝜏

)︂1/𝑝

⩽ Φ(𝑡).
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By 𝑡* we denote the point, at which the function sinc 𝑡 attains its minimal value on R+. This
point 𝑡*, 4.49 < 𝑡* < 4.51, is the smallest positive root of the equation 𝑡 = tan 𝑡. Following
[19], we introduce the notation

(1− sinc 𝑡)* :=

{︃
1− sinc 𝑡 as 0 ⩽ 𝑡 ⩽ 𝑡*,

1− sinc 𝑡* as 𝑡* ⩽ 𝑡 < ∞.

We also let

𝐸𝑛−1(M) := sup
{︁
𝐸𝑛−1(𝑓) : 𝑓 ∈ M

}︁
,

where M is some class of functions in 𝐻2.

Theorem 3.1. Let 𝑚,𝑛 ∈ N, 𝑟 ∈ Z+, 𝑛 > 𝑟, 0 < 𝑝 ⩽ ∞ and the function Φ for all values

𝑡 ∈ R+ obeys the restriction

(︂
Φ(𝑡)

Φ(𝜋/(𝑛− 𝑟))

)︂𝑝

⩾
𝜋

2(𝑛− 𝑟)𝑡

∫︁ (𝑛−𝑟)𝑡

0

(1− sinc 𝜏)𝑚𝑝
* 𝑑𝜏∫︁ 𝜋/2

0

(1− sinc 𝜏)𝑚𝑝 𝑑𝜏

. (3.2)

Then the identities hold

𝜆𝑛(𝑊
(𝑟)
𝑝 (𝜔𝑚,Φ);𝐻2) = 𝐸𝑛−1(𝑊

(𝑟)
𝑝 (𝜔𝑚,Φ))

=

(︃
2

𝜋

∫︁ 𝜋/2

0

(1− sinc 𝑡)𝑚𝑝𝑑𝑡

)︃−1/𝑝

· 1

𝛼𝑛,𝑟

· Φ
(︁ 𝜋

2(𝑛− 𝑟)

)︁
,

(3.3)

where 𝜆𝑛(·) is an arbitrary of the aforementioned 𝑛-widths. The set of majorants Φ obeying

condition (3.2) is non-empty.

Proof. Using relation (2.13), in which we let 𝑠 = 0, 𝑞(𝑡) ≡ 1, ℎ = 𝜋
2(𝑛−𝑟)

, for an arbitrary

function 𝑓 ∈ 𝐻
(𝑟)
2 we write an upper bound for the quantity 𝐸𝑛−1(𝑓) :

𝐸𝑛−1(𝑓)2 ⩽
1

𝛼𝑛,𝑟

⎛⎝ 𝜋/2(𝑛−𝑟)∫︁
0

(︀
1− sinc(𝑛− 𝑟)𝑡

)︀𝑚𝑝
𝑑𝑡

⎞⎠−1/𝑝⎛⎝ 𝜋/2(𝑛−𝑟)∫︁
0

̃︀𝜔𝑝
𝑚(𝑓

(𝑟), 𝑡) 𝑑𝑡

⎞⎠1/𝑝

=
1

𝛼𝑛,𝑟

⎛⎝ 2

𝜋

𝜋/2∫︁
0

(1− sinc t)𝑚𝑝 𝑑𝑡

⎞⎠−1/𝑝⎛⎝2(𝑛− 𝑟)

𝜋

𝜋/2(𝑛−𝑟)∫︁
0

̃︀𝜔𝑝
𝑚(𝑓

(𝑟), 𝑡) 𝑑𝑡

⎞⎠1/𝑝

.

(3.4)

Taking into consideration the definition of the class 𝑊
(𝑟)
𝑝 (̃︀𝜔𝑚,Φ), on the base of relation (2.16)

between the 𝑛-widths and inequality (3.4), we find:

𝜆𝑛(𝑊
(𝑟)
𝑝 (̃︀𝜔𝑚,Φ), 𝐻2) ⩽ 𝐸𝑛−1(𝑊

(𝑟)
𝑝 (̃︀𝜔𝑚,Φ))

⩽
1

𝛼𝑛,𝑟

{︃
2

𝜋

∫︁ 𝜋/2

0

(1− sinc 𝑡)𝑚𝑝𝑑𝑡

}︃−1/𝑝

· Φ
(︁ 𝜋

2(𝑛− 𝑟)

)︁
.

(3.5)

To obtain lower bounded for the aforementioned 𝑛-widths, it is sufficient to estimate from
below the Bernstein 𝑛-width of the conisdered class. In order to do this, we introduce a ball

ℬ𝑛+1 :=

⎧⎪⎨⎪⎩𝑝𝑛 ∈ 𝒫𝑛 : ‖𝑝𝑛‖ ⩽
1

𝛼𝑛,𝑟

⎛⎝ 2

𝜋

𝜋/2∫︁
0

(1− sinc 𝑡)𝑚𝑝𝑑𝑡

⎞⎠−1/𝑝

Φ
(︁ 𝜋

2(𝑛− 𝑟)

)︁⎫⎪⎬⎪⎭ .
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By formula (2.8) for an arbitrary function 𝑓 ∈ 𝐻
(𝑟)
2 we have

‖̃︀∆𝑚
ℎ (𝑝

(𝑟)
𝑛 , ·)‖2 =

𝑛∑︁
𝑘=𝑟

𝛼2
𝑘,𝑟|𝑐𝑘(𝑝𝑛)|2(1− sinc(𝑘 − 𝑟)ℎ)2𝑚

⩽ 𝛼2
𝑛,𝑟

𝑛∑︁
𝑘=𝑟

(1− sinc(𝑘 − 𝑟)ℎ)2𝑚|𝑐𝑘(𝑝𝑛)|2 ⩽ 𝛼2
𝑛,𝑟(1− sinc(𝑛− 𝑟)ℎ)2𝑚* · ‖𝑝𝑛‖2.

This yields ̃︀𝜔𝑝
𝑚(𝑝

(𝑟)
𝑛 , 𝜏) ⩽ (𝛼𝑛,𝑟)

𝑝(1− sinc(𝑛− 𝑟)𝜏)𝑚𝑝
* ‖𝑝𝑛‖𝑝. (3.6)

Using inequality (3.6) and restrictions (3.2), for an arbitrary polynomial 𝑝𝑛 ⊂ ℬ𝑛+1 we write

1

𝑡

𝑡∫︁
0

̃︀𝜔𝑝
𝑚(𝑝

(𝑟)
𝑛 , 𝜏) 𝑑𝜏 ⩽(𝛼𝑛,𝑟)

𝑝‖𝑝𝑛‖𝑝
1

𝑡

𝑡∫︁
0

(1− sinc(𝑛− 𝑟)𝜏)𝑚𝑝
* 𝑑𝜏

⩽

⎛⎝ 2

𝜋

𝜋/2∫︁
0

(1− sinc 𝑡)𝑚𝑝𝑑𝑡

⎞⎠−1

1

(𝑛− 𝑟)𝑡

(𝑛−𝑟)𝑡∫︁
0

(1− sinc 𝜏)𝑚𝑝
* 𝑑𝜏 · Φ𝑝

(︁ 𝜋

2(𝑛− 𝑟)

)︁
⩽Φ𝑝(𝑡).

Therefore, ℬ𝑛+1 ⊂ 𝑊
(𝑟)
𝑝 (̃︀𝜔𝑚,Φ), and using relations (3.1) and the definition of the Bernstein

𝑛-width, we obtain

𝜆𝑛(𝑊
(𝑟)
𝑝 (̃︀𝜔𝑚,Φ);𝐻2) ⩾ 𝑏𝑛(𝑊

(𝑟)
𝑝 (̃︀𝜔𝑚,Φ), 𝐻2) ⩾ 𝑏𝑛(ℬ𝑛+1, 𝐻2)

⩾
1

𝛼𝑛,𝑟

(︃
2

𝜋

∫︁ 𝜋/2

0

(1− sinc 𝑡)𝑚𝑝𝑑𝑡

)︃−1/𝑝

Φ
(︁ 𝜋

2(𝑛− 𝑟)

)︁
.

(3.7)

Comparing inequalities (3.5) and (3.7), we obtain identity (3.3). The proof is complete.

It was shown in [19], that the set of majorants obeying restriction (3.2) is non-empty and for
instance, this restriction is satisfied by the majorant Φ*(𝑡) := 𝑡𝑚𝛼/2, where

𝛼 :=
(𝜋 − 2)2

2𝜋

∫︁ 𝜋/2

0

(1− sinc 𝜏)2𝑑𝜏

− 1.

4. Solution to extremal problem (1.6) for class 𝑊
(𝑟)
𝑝 (𝜔𝑚,Φ)

There is a certain interest is in studying the behavior of the quantities 𝐸𝑛−1(𝑓
(𝑠)), 𝑠 =

0, 1, . . . , 𝑟, on the class of functions 𝑊
(𝑟)
𝑝 (̃︀𝜔𝑚,Φ), 𝑚 ∈ N, 𝑟 ∈ Z+, 0 < 𝑝 ⩽ ∞. In other words,

one needs to find an exact value of quantity (1.6) as M(𝑟) = 𝑊
(𝑟)
𝑝 (𝜔𝑚,Φ).

Theorem 4.1. Let 𝑚,𝑛 ∈ N, 𝑟, 𝑠 ∈ Z+, 𝑛 > 𝑟 ⩾ 𝑠. If for each 𝑡 ∈ (0, 2𝜋] the majorant Φ
obeys restriction (3.2), then for each 𝑠 = 0, 1, 2 . . . , 𝑟 the identity holds:

ℰ (𝑠)
𝑛−𝑠−1

(︀
𝑊 (𝑟)

𝑝 (𝜔𝑚,Φ)
)︀
=

𝛼𝑛,𝑠

𝛼𝑛,𝑟

{︃
2

𝜋

∫︁ 𝜋/2

0

(1− sinc 𝑡)𝑚𝑝𝑑𝑡

}︃−1/𝑝

Φ
(︁ 𝜋

2(𝑛− 𝑟)

)︁
. (4.1)
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Proof. By inequality (2.15) with 𝑞(𝑡) ≡ 1 and ℎ = 𝜋/2(𝑛−𝑟) for an arbitrary function 𝑓 ∈ 𝐻
(𝑟)
2

we obtain

𝐸𝑛−𝑠−1(𝑓
(𝑠)) ⩽

𝛼𝑛,𝑠

𝛼𝑛,𝑟

⎛⎝ 𝜋/2(𝑛−𝑟)∫︁
0

(1− sinc(𝑛− 𝑟)𝑡)𝑚𝑝𝑑𝑡

⎞⎠−1/𝑝⎛⎝ 𝜋/2(𝑛−𝑟)∫︁
0

̃︀𝜔𝑝
𝑚(𝑓

(𝑟), 𝑡) 𝑑𝑡

⎞⎠1/𝑝

=
𝛼𝑛,𝑠

𝛼𝑛,𝑟

⎛⎝ 2

𝜋

𝜋/2∫︁
0

(1− sinc 𝑡)𝑚𝑝𝑑𝑡

⎞⎠−1/𝑝⎛⎝2(𝑛− 𝑟)

𝜋

𝜋/2(𝑛−𝑟)∫︁
0

̃︀𝜔𝑝
𝑚(𝑓

(𝑟), 𝑡) 𝑑𝑡

⎞⎠1/𝑝

.

Taking into consideration the definition of the class 𝑊
(𝑟)
𝑝 (𝜔𝑚,Φ), we hence have

ℰ (𝑠)
𝑛−𝑠−1

(︀
𝑊 (𝑟)

𝑝 (𝜔𝑚,Φ)
)︀

⩽
𝛼𝑛,𝑠

𝛼𝑛,𝑟

⎛⎝ 2

𝜋

𝜋/2∫︁
0

(1− sinc 𝑡)𝑚𝑝 𝑑𝑡

⎞⎠−1/𝑝

Φ
(︁ 𝜋

2(𝑛− 𝑟)

)︁
. (4.2)

It has been established in the proof of Theorem 3.1 that the set of algebraic complex-valued
polynomials 𝑝𝑛 ∈ 𝒫𝑛 obeying the condition

‖𝑝𝑛‖ ⩽
1

𝛼𝑛,𝑟

(︃
2

𝜋

∫︁ 𝜋/2

0

(1− sinc 𝑡)𝑚𝑝𝑑𝑡

)︃−1/𝑝

Φ
(︁ 𝜋

2(𝑛− 𝑟)

)︁
,

belongs to the class 𝑊
(𝑟)
𝑝 (𝜔𝑚,Φ). We consider the function

𝑔(𝑧) =
1

𝛼𝑛,𝑟

(︃
2

𝜋

∫︁ 𝜋/2

0

(1− sinc 𝑡)𝑚𝑝𝑑𝑡

)︃−1/𝑝

Φ
(︁ 𝜋

2(𝑛− 𝑟)

)︁
𝑧𝑛.

For each 𝑠 = 0, 1, . . . , 𝑟 this function satisfies

𝑔(𝑠)(𝑧) =
𝛼𝑛,𝑠

𝛼𝑛,𝑟

(︃
2

𝜋

∫︁ 𝜋/2

0

(1− sinc 𝑡)𝑚𝑝𝑑𝑡

)︃−1/𝑝

Φ
(︁ 𝜋

2(𝑛− 𝑟)

)︁
𝑧𝑛−𝑠,

𝐸𝑛−𝑠−1(𝑔
(𝑠)) =

𝛼𝑛,𝑠

𝛼𝑛,𝑟

(︃
2

𝜋

∫︁ 𝜋/2

0

(1− sinc 𝑡)𝑚𝑝𝑑𝑡

)︃−1/𝑝

Φ
(︁ 𝜋

2(𝑛− 𝑟)

)︁ (4.3)

and since

‖𝑔‖ =
1

𝛼𝑛,𝑟

(︃
2

𝜋

∫︁ 𝜋/2

0

(1− sinc 𝑡)𝑚𝑝𝑑𝑡

)︃−1/𝑝

Φ
(︁ 𝜋

2(𝑛− 𝑟)

)︁
,

then 𝑔 ∈ 𝑊
(𝑟)
𝑝 (𝜔𝑚,Φ), and this is why by (4.3) we have

ℰ (𝑠)
𝑛−𝑠−1

(︀
𝑊 (𝑟)

𝑝 (𝜔𝑚,Φ)
)︀
⩾ 𝐸𝑛−𝑠−1(𝑔

(𝑠))

=
𝛼𝑛,𝑠

𝛼𝑛,𝑟

·

(︃
2

𝜋

∫︁ 𝜋/2

0

(1− sinc 𝑡)𝑚𝑝𝑑𝑡

)︃−1/𝑝

Φ
(︁ 𝜋

2(𝑛− 𝑟)

)︁
.

(4.4)

Comparing relations (4.2) and (4.4), we arrive at required identities (4.1). The proof is complete.
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