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NONLOCAL PROBLEMS WITH DISPLACEMENT

FOR MATCHING TWO SECOND ORDER

HYPERBOLIC EQUATIONS

Zh.A. BALKIZOV

Abstract. In this work we study two nonlocal problems with a displacement for two second
order hyperbolic equations being a wave equation in one part of the domain and a degener-
ate hyperbolic equation of the first kind in the other. As a nonlocal boundary condition, in
the considered problems we use a linear combination with variable coefficients of the first de-
rivative and fractional derivative (in the Riemann-Liouville sense) of the unknown function
on one of the characteristics and one the line of the type changing. By using the methods
of integral equations, the solvability issue of the first problem is equivalently reduced to
the solvability of a Volterra equation of the second kind with a weak singularity, while the
solvability of the second problem is reduced to the solvability of aFredholm equation of the
second kind with a weak singularity. For the first problem we prove a uniform convergence
of the resolvent for the kernel of the obtained Volterra equation of the second kind and that
it solution belongs to a needed class. For the second problem we find sufficient conditions
for the given functions, which ensure the existence of the unique solution of the Fredholm
equation of the second kind with a weak singularity in the needed class. In some particular
cases the solutions of the problems are written explicitly.

Keywords: wave equation, degenerate hyperbolic equation of the first kind, Volterra inte-
gral equation, Fredholm integral equation, Trikomi method, method of integral equations,
methods of fractional calculus.
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1. Introduction. Formulation of problem

On the Euclidean plane of points (𝑥, 𝑦) we consider an equation

0 =

{︃
(−𝑦)𝑚𝑢𝑥𝑥 − 𝑢𝑦𝑦 + 𝜆(−𝑦)𝑚−2

2 𝑢𝑥, 𝑦 < 0,

𝑢𝑥𝑥 − 𝑢𝑦𝑦 + 𝑓, 𝑦 > 0,
(1.1)

where 𝑚, 𝜆 are given numbers and 𝑚 > 0, |𝜆| ⩽ 𝑚
2
; 𝑓 = 𝑓 (𝑥, 𝑦) is a given function and

𝑢 = 𝑢 (𝑥, 𝑦) is a sought function.
As 𝑦 < 0 equation (1.1) coincides with the equation

(−𝑦)𝑚𝑢𝑥𝑥 − 𝑢𝑦𝑦 + 𝜆(−𝑦)
𝑚−2

2 𝑢𝑥 = 0, (1.2)

while for 𝑦 > 0 equation (1.1) is an inhomogeneous wave equation

𝑢𝑥𝑥 − 𝑢𝑦𝑦 + 𝑓(𝑥, 𝑦) = 0. (1.3)

Equation (1.2) belongs to an important class of degenerate hyperbolic equations of first kind
[1]. An important property of equation (1.2) is the fact that as |𝜆| ⩽ 𝑚

2
, the Cauchy problem
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for it is well-defined in the usual formulation with the data on the curve of the parabolic degen-
eration 𝑦 = 0 despite the Protter condition is violated [2]. As 𝑚 = 2, equation (1.2) becomes
the Bitsadze-Lykov equation [3], [4], [5], while for 𝜆 = 0 equation (1.2) becomes Gellerstedt
equation, which, as it was shown in monograph [6], arises in the problem on determining the
shape of a dam cut. A particular case of equation (1.2) is also the Tricomi equation, which has
applications in the theory of transonic gas dynamics and aerodynamics [7], [8], [9].
Equation (1.1) is considered in the domain Ω = Ω1∪Ω2∪𝐼, where Ω1 is the domain enveloped

by the characteristics

𝜎1 = 𝐴𝐶 : 𝑥− 2

𝑚+ 2
(−𝑦)(𝑚+2)/2 = 0 and 𝜎2 = 𝐶𝐵 : 𝑥+

2

𝑚+ 2
(−𝑦)(𝑚+2)/2 = 𝑟

of equation (1.2) leaving the point

𝐶 = (𝑟/2, 𝑦𝐶) , 𝑦𝐶 = −
[︂
𝑟(𝑚+ 2)

4

]︂ 2
𝑚+2

,

passing respectively through the points 𝐴 = (0, 0) and 𝐵 = (𝑟, 0), and by the segment 𝐼 = 𝐴𝐵
on the straight line 𝑦 = 0. The symbol Ω2 denotes the domain enveloped by the characteristics
𝜎3 = 𝐴𝐷 : 𝑥− 𝑦 = 0, 𝜎4 = 𝐵𝐷 : 𝑥 + 𝑦 = 𝑟 of equation (1.3) leaving the points 𝐴 and 𝐵 and
intersecting at the point 𝐷 =

(︀
𝑟
2
, 𝑟
2

)︀
and by the segment 𝐼 = 𝐴𝐵.

In what follows we make use of the following notations:

𝜀1 =
𝑚− 2𝜆

2(𝑚+ 2)
, 𝜀2 =

𝑚+ 2𝜆

2(𝑚+ 2)
, 𝜀 = 𝜀1 + 𝜀2 =

𝑚

𝑚+ 2
, 𝛾1 =

Γ(𝜀)

Γ(𝜀2)
,

𝛾2 =
Γ(1− 𝜀)(2− 2𝜀)𝜀−1

Γ(1− 𝜀1)
, 𝑎(𝑥) =

𝛽(𝑥) + 𝛾1𝛼(𝑥)

𝛾(𝑥)− 𝛾2𝛼(𝑥)
, 𝑏(𝑥) =

1

𝑎(𝑥)
=
𝛾(𝑥)− 𝛾2𝛼(𝑥)

𝛽(𝑥) + 𝛾1𝛼(𝑥)
,

𝜃00(𝑥) =
(︁𝑥
2
,−(2− 2𝜀)𝜀−1𝑥1−𝜀

)︁
, 𝜃01(𝑥) =

(︁𝑥
2
,
𝑥

2

)︁
, 𝜃𝑟1(𝑥) =

(︂
𝑟 + 𝑥

2
,
𝑟 − 𝑥

2

)︂
are the affixes of the intersection points of the characteristics leaving the points (𝑥, 0) with
the characteristics 𝐴𝐶 of equation (1.2) and the characteristics 𝐴𝐷 and 𝐵𝐷 of equation (1.3),
respectively. The functions

𝐵(𝑝, 𝑞) =

1∫︁
0

𝑡𝑝−1(1− 𝑡)𝑞−1𝑑𝑡, Γ(𝑥) =

∞∫︁
0

exp(−𝑡)𝑡𝑥−1𝑑𝑡, 𝐵(𝑝, 𝑞) =
Γ(𝑝)Γ(𝑞)

Γ(𝑝+ 𝑞)

are the Euler integrals of the first and second kind and the relation between them;

𝐸𝜌(𝑧, 𝜇) =
∞∑︁
𝑛=0

𝑧𝑛

Γ (𝜇+ 𝑛𝜌−1)

is a function of Mittag-Leffler type [10], while as 𝜇 = 1 it coincides with the Mittag-Leffler
function 𝐸𝜌(𝑧, 1) = 𝐸1/𝜌(𝑧). The formula

𝐷𝛼
𝑐𝑥𝜙(𝑡) =

⎧⎨⎩
sgn(𝑥−𝑐)
Γ(−𝛼)

𝑥∫︀
𝑐

𝜙(𝑡) 𝑑𝑡
|𝑥−𝑡|1+𝛼 , 𝛼 < 0,

sgn[𝛼]+1(𝑥− 𝑐) 𝑑[𝛼]+1

𝑑𝑥[𝛼]+1
𝐷

𝛼−[𝛼]−1
𝑐𝑥 𝜙(𝑡), 𝛼 > 0,

defines an operator of Riemann-Liouville fractional integro-differentiation of order |𝛼|, where
[𝛼] is the integer part of a number 𝛼 [5], [11].
A regular in the domain Ω solution of equation (1.1) is a function 𝑢 = 𝑢 (𝑥, 𝑦) from the class

𝐶
(︀
Ω̄
)︀
∩ 𝐶1 (Ω) ∩ 𝐶2 (Ω1 ∪ Ω2), the substitution of which into equation (1.1) transforms the

latter into an identity.
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Problem 1. Find a regular in the domain Ω solution to equation (1.1) obeying the conditions

𝑢 [𝜃01 (𝑥)] = 𝜓1(𝑥), 0 ⩽ 𝑥 ⩽ 𝑟, (1.4)

𝛼(𝑥)𝑥𝜀1𝐷1−𝜀2
0𝑥 𝑢 [𝜃00(𝑡)] + 𝛽(𝑥)𝐷1−𝜀

0𝑥 𝑢(𝑡, 0) + 𝛾(𝑥)𝑢𝑦(𝑥, 0) = 𝜓2(𝑥), 0 < 𝑥 < 𝑟, (1.5)

where 𝛼(𝑥), 𝛽(𝑥), 𝛾(𝑥), 𝜓1(𝑥), 𝜓2(𝑥) are given function defined on the segment [0, 𝑟] and
𝛼2(𝑥) + 𝛽2(𝑥) + 𝛾2(𝑥) ̸= 0 as 𝑥 ∈ [0, 𝑟].
Problem 2. Find a regular in the domain Ω solution of equation (1.1) in the class

𝑢𝑥(𝑥, 0), 𝐷
1−𝜀
0𝑥 𝑢(𝑡, 0) ∈ 𝐿1 (0, 𝑟) satisfying nonlocal condition (1.5) and the boundary condition

𝑢 [𝜃𝑟1 (𝑥)] = 𝜓1(𝑥), 0 ⩽ 𝑥 ⩽ 𝑟, (1.6)

where 𝛼(𝑥), 𝛽(𝑥), 𝛾(𝑥), 𝜓1(𝑥), 𝜓2(𝑥) are given functions defined on the segment [0, 𝑟] and, as
in Problem 1, 𝛼2(𝑥) + 𝛽2(𝑥) + 𝛾2(𝑥) ̸= 0 as 𝑥 ∈ [0, 𝑟].
Goursat problem for a degenerating inside a domain hyperbolic equation was studied earlier

in works [12], [13]. In work [12] a uniqueness criterion was studied for the solution of the Goursat
problem for equation of form (1.2), while in [13] there was explicitly written a solution for the
Goursat problem for a degenerating inside a domain model equation. In work [14] the Dirichlet
problem for a degenerating inside a domain hyperbolic equation was considered. In works [15]–
[17], there were studied boundary value problems for degenerating hyperbolic equations in a
characteristic quadrilateral with the data on opposite characteristics. Problems with shift for
a degenerating inside a domain hyperbolic equations were studied in works [18]–[21]. Problems
with shift for a degenerating hyperbolic equation of first kind of form (1.2) as a generalization
of the Dirichlet and Neumann Darboux problems were studied in (1.1).
In the present work we study two nonlocal Problems 1 and 2, which belong to the class

of Zhegalov-Nakhushev boundary value problems with displacement [23]–[26] and are gener-
alizations of the Goursat problem and the problems with data on opposite characteristics for
equations of form (1.1). We find sufficient conditions for the given functions 𝛼(𝑥), 𝛽(𝑥), 𝛾(𝑥),
𝜓1(𝑥), 𝜓2(𝑥) and 𝑓(𝑥, 𝑦), under which there exists a unique regular in the considered domain

solution to Problems 1 and 2. In a particular case, when 𝑎(𝑥) = 𝛽(𝑥)+𝛾1𝛼(𝑥)
𝛾(𝑥)−𝛾2𝛼(𝑥)

= 𝑎 = 𝑐𝑜𝑛𝑠𝑡, the

solutions of Problems 1 and 2 are written explicitly.

2. Study of Problem 1

The following theorem is true.

Theorem 2.1. Let the given functions 𝛼(𝑥), 𝛽(𝑥), 𝛾(𝑥), 𝜓1(𝑥), 𝜓2(𝑥), 𝑓(𝑥, 𝑦) be such that

𝛼(𝑥), 𝛽(𝑥), 𝛾(𝑥) ∈ 𝐶1[0, 𝑟] ∩ 𝐶2(0, 𝑟), (2.1)

𝜓1(𝑥), 𝜓2(𝑥) ∈ 𝐶[0, 𝑟] ∩ 𝐶2(0, 𝑟), (2.2)

𝑓(𝑥, 𝑦) ∈ 𝐶1(Ω2), (2.3)

and one of the following conditions holds true: either

𝛾(𝑥)− 𝛾2𝛼(𝑥) ̸= 0 for all 𝑥 ∈ [0, 𝑟]; (2.4)

or

𝛾(𝑥)− 𝛾2𝛼(𝑥) ≡ 0, 𝛽(𝑥) + 𝛾1𝛼(𝑥) ̸= 0 for all 𝑥 ∈ [0, 𝑟]. (2.5)

Then there exists a unique regular in the domain Ω solution to Problem 1.

Proof. We prove by using the method of integral equations. We introduce the notations:

𝑢 (𝑥, 0) = 𝜏 (𝑥) , 0 ⩽ 𝑥 ⩽ 𝑟 and 𝑢𝑦 (𝑥, 0) = 𝜈 (𝑥) , 0 < 𝑥 < 𝑟. (2.6)

Let us find fundamental relations between the sought functions 𝜏 (𝑥) and 𝜈 (𝑥) brought from
the corresponding parts Ω1 and Ω2 of the domain Ω on the line 𝑦 = 0. First we consider the
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case |𝜆| < 𝑚
2
. In this case a regular in the domain Ω1 solution to Problem (2.6) for equation

(1.2) is written by the formula [27]:

𝑢 (𝑥, 𝑦) =
Γ(𝜀)

Γ (𝜀1) Γ (𝜀2)

1∫︁
0

𝜏
(︁
𝑥+ (1− 𝜀) (−𝑦)

1
1−𝜀 (2𝑡− 1)

)︁
𝑡𝜀2−1 (1− 𝑡)𝜀1−1 𝑑𝑡

+
Γ (2− 𝜀) 𝑦

Γ (1− 𝜀1) Γ (1− 𝜀2)

1∫︁
0

𝜈
(︁
𝑥+ (1− 𝜀) (−𝑦)

1
1−𝜀 (2𝑡− 1)

)︁
𝑡−𝜀1 (1− 𝑡)−𝜀2 𝑑𝑡,

(2.7)

where 𝜏(𝑥) ∈ 𝐶[0, 𝑟] ∩ 𝐶2(0, 𝑟), 𝜈(𝑥) ∈ 𝐶1(0, 𝑟) ∩ 𝐿1(0, 𝑟).
By (2.7) we find:

𝑢[𝜃00(𝑥)] =𝑢
(︁𝑥
2
,−(2− 2𝜀)𝜀−1𝑥1−𝜀

)︁
=

1

𝐵(𝜀1, 𝜀2)

1∫︁
0

𝜏(𝑥𝑡) 𝑡𝜀2−1 (1− 𝑡)𝜀1−1 𝑑𝑡

− (2− 2𝜀)𝜀−1𝑥1−𝜀

𝐵(1− 𝜀1, 1− 𝜀2)

1∫︁
0

𝜈(𝑥𝑡) 𝑡−𝜀1 (1− 𝑡)−𝜀2 𝑑𝑡.

Introducing a new variable of integration 𝑧 = 𝑥𝑡, we rewrite this identity as

𝑢 [𝜃00 (𝑥)] =
Γ (𝜀)

Γ (𝜀1) Γ (𝜀2)
𝑥1−𝜀

𝑥∫︁
0

𝜏 (𝑧) 𝑧𝜀2−1

(𝑥− 𝑧)1−𝜀1
𝑑𝑧

− Γ (2− 𝜀)

Γ (1− 𝜀1) Γ (1− 𝜀2)
(2− 2𝜀)𝜀−1

𝑥∫︁
0

𝑧−𝜀1𝜈 (𝑧)

(𝑥− 𝑧)𝜀2
𝑑𝑧.

In terms of the operator 𝐷𝛼
𝑐𝑥𝜙(𝑡) of the Riemann-Liouville fractional integro-differentiation, we

rewrite the latter identity as

𝑢 [𝜃00 (𝑥)] =
Γ (𝜀)𝑥1−𝜀

Γ (𝜀2)
𝐷−𝜀1

0𝑥

[︀
𝑡𝜀2−1𝜏(𝑡)

]︀
− (2− 2𝜀)𝜀−1 Γ (1− 𝜀)

Γ (1− 𝜀1)
𝐷𝜀2−1

0𝑥

[︀
𝑡−𝜀1𝜈(𝑡)

]︀
. (2.8)

Using the following composition law for the operators of fractional differentiation and integra-
tion [6], [11]

𝐷𝛼
0𝑥 𝑡

𝛼+𝛽 𝐷𝛽
0𝑡 𝑔 (𝑠) = 𝑥𝛽 𝐷𝛼+𝛽

0𝑥 𝑡𝛼𝑔 (𝑡) , 0 < 𝛼 ⩽ 1, 𝛽 < 0,

by (2.8) we find:

𝑥𝜀1𝐷1−𝜀2
0𝑥 𝑢 [𝜃00 (𝑡)] = 𝛾1𝐷

1−𝜀
0𝑥 𝜏(𝑡)− 𝛾2𝜈(𝑥). (2.9)

In view (2.9), condition (1.5) is rewritten as

[𝛾(𝑥)− 𝛾2𝛼(𝑥)] 𝜈(𝑥) + [𝛽(𝑥) + 𝛾1𝛼(𝑥)]𝐷
1−𝜀
0𝑥 𝜏(𝑡) = 𝜓2(𝑥). (2.10)

The obtained relation is exactly the fundamental relation between the sought functions 𝜏(𝑥)
and 𝜈(𝑥) brought from the domain Ω1 to the straight line 𝑦 = 0.
Let us find a fundamental relation between the functions 𝜏(𝑥) and 𝜈(𝑥) brought from the

domain Ω1 on the straight line 𝑦 = 0. In order to do this, we employ a representation for
a regular in the domain Ω1 solution to problem (2.6) for equation (1.3), which is written by
means of the D’Alambert formula [28]:

𝑢 (𝑥, 𝑦) =
𝜏 (𝑥+ 𝑦) + 𝜏 (𝑥− 𝑦)

2
+

1

2

𝑥+𝑦∫︁
𝑥−𝑦

𝜈 (𝑡) 𝑑𝑡+
1

2

𝑦∫︁
0

𝑥+𝑦−𝑡∫︁
𝑥−𝑦+𝑡

𝑓 (𝑠, 𝑡) 𝑑𝑠𝑑𝑡, (2.11)
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where 𝜏(𝑥) ∈ 𝐶[0, 𝑟]∩𝐶2(0, 𝑟), 𝜈(𝑥) ∈ 𝐶1(0, 𝑟)∩𝐿1(0, 𝑟). Substituting this representation into
condition (1.4), we get

𝑢 [𝜃01 (𝑥)] = 𝑢
(︁𝑥
2
,
𝑥

2

)︁
=
𝜏 (𝑥) + 𝜏 (0)

2
+

1

2

𝑥∫︁
0

𝜈 (𝑡) 𝑑𝑡+
1

2

𝑥
2∫︁

0

𝑥−𝑡∫︁
𝑡

𝑓 (𝑠, 𝑡) 𝑑𝑠𝑑𝑡 = 𝜓1(𝑥).

Differentiating this identity, we arrive at the relation

𝜈(𝑥) = 2𝜓′
1(𝑥)− 𝜏 ′(𝑥)−

𝑥
2∫︁

0

𝑓 (𝑥− 𝑡, 𝑡) 𝑑𝑡. (2.12)

Relation (2.12) is a fundamental relation between the functions 𝜏(𝑥) and 𝜈(𝑥) brought from
the domain Ω2 to the straight line 𝑦 = 0.
Excluding the sought function 𝜈 (𝑥) from (2.10) and (2.12), in view of the matching condition

𝜏(0) = 𝜓1(0) and condition (2.4) of Theorem 2.1, for the function 𝜏(𝑥) we obtain the following
problem for the first order ordinary differential equation involving a fractional derivative in the
lower order terms:

𝜏 ′(𝑥)− 𝑎(𝑥)𝐷1−𝜀
0𝑥 𝜏(𝑡) = 2𝜓′

1(𝑥)−
𝜓2(𝑥)

𝛾(𝑥)− 𝛾2𝛼(𝑥)
−

𝑥
2∫︁

0

𝑓 (𝑥− 𝑡, 𝑡) 𝑑𝑡, 0 < 𝑥 < 𝑟, (2.13)

𝜏(0) = 𝜓1(0). (2.14)

Integrating equation (2.13) in 𝑥 from 0 to 𝑥, we arrive at an integral equation associated
with problem (2.13), (2.14):

𝜏(𝑥)− 1

Γ(𝜀)

𝑥∫︁
0

𝐾(𝑥, 𝑡)𝜏(𝑡)𝑑𝑡 = 𝐹1(𝑥), (2.15)

where

𝐾(𝑥, 𝑡) =
𝑎(𝑥)

(𝑥− 𝑡)1−𝜀
−

𝑥∫︁
𝑡

𝑎′(𝑠)

(𝑠− 𝑡)1−𝜀
𝑑𝑠,

𝐹1(𝑥) = 2𝜓1(𝑥)− 𝜓1(0)−
𝑥∫︁

0

𝜓2(𝑡)

𝛾(𝑡)− 𝛾2𝛼(𝑡)
𝑑𝑡−

𝑥∫︁
0

𝑡
2∫︁

0

𝑓 (𝑡− 𝑠, 𝑠)𝑑𝑠 𝑑𝑡.

It follows from (2.1), (2.2), (2.3) that equation (2.15) is an integral Volterra equation of the
second kind with the kernel 𝐾(𝑥, 𝑡) ∈ 𝐿1 ([0, 𝑟]× [0, 𝑟]) having a weak singularity as 𝑥 = 𝑡 and
with the right hand side 𝐹1(𝑥) ∈ 𝐶[0, 𝑟] ∩ 𝐶2(0, 𝑟). In accordance with the general theory of
Volterra integral equations, equation (2.15) is uniquely solvable and is written by the formula

𝜏(𝑥) = 𝐹1(𝑥) +

𝑥∫︁
0

𝑅(𝑥, 𝑡)𝐹1(𝑡)𝑑𝑡, (2.16)

where

𝑅(𝑥, 𝑡) =
∞∑︁
𝑛=0

𝐾𝑛(𝑥, 𝑡)

Γ𝑛+1(𝜀)
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is the resolvent of the kernel 𝐾(𝑥, 𝑡);

𝐾0(𝑥, 𝑡) = 𝐾(𝑥, 𝑡), 𝐾𝑛+1(𝑥, 𝑡) =

𝑥∫︁
𝑡

𝐾(𝑥, 𝑠)𝐾𝑛(𝑠, 𝑡) 𝑑𝑠.

Let us show that the resolvent 𝑅(𝑥, 𝑡), as well as the kernel 𝐾(𝑥, 𝑡) of equation (2.15) satisfies
𝑅(𝑥, 𝑡) ∈ 𝐿1 ([0, 𝑟]× [0, 𝑟]) and has a weak singularity at 𝑥 = 𝑡, while a solution 𝜏(𝑥) to this
equation as well as its right hand side 𝐹1(𝑥) satisfies 𝜏(𝑥) ∈ 𝐶[0, 𝑟] ∩ 𝐶2(0, 𝑟).
Indeed, taking into consideration that 𝑎(𝑥) ∈ 𝐶1[0, 𝑟] ∩ 𝐶2(0, 𝑟), we find an estimate for the

iterated kernels 𝐾𝑛(𝑥,𝑡)
Γ𝑛+1(𝜀)

. Let |𝑎(𝑥)| ⩽ 𝑀1 and |𝑎′(𝑥)| ⩽ 𝑀2 for all 𝑥 ∈ [0, 𝑟]. Then the first

iterated kernel 𝐾0(𝑥,𝑡)
Γ(𝜀)

obeys the estimate

1

Γ(𝜀)
|𝐾0(𝑥, 𝑡)| =

1

Γ(𝜀)
|𝐾(𝑥, 𝑡)| = 1

Γ(𝜀)

⃒⃒⃒⃒
⃒⃒ 𝑎(𝑥)

(𝑥− 𝑡)1−𝜀
−

𝑥∫︁
𝑡

𝑎′(𝑠)

(𝑠− 𝑡)1−𝜀
𝑑𝑠

⃒⃒⃒⃒
⃒⃒

⩽
𝑀1(𝑥− 𝑡)𝜀−1

Γ(𝜀)
+
𝑀2(𝑥− 𝑡)𝜀

Γ(𝜀+ 1)
.

Then

1

Γ2(𝜀)
|𝐾1(𝑥, 𝑡)| =

1

Γ2(𝜀)

⃒⃒⃒⃒
⃒⃒

𝑥∫︁
𝑡

𝐾(𝑥, 𝑠)𝐾0(𝑠, 𝑡)𝑑𝑠

⃒⃒⃒⃒
⃒⃒

⩽

𝑥∫︁
𝑡

(︂
𝑀1

Γ(𝜀)(𝑥− 𝑠)1−𝜀
+
𝑀2(𝑥− 𝑠)𝜀

Γ(𝜀+ 1)

)︂(︂
𝑀1

Γ(𝜀)(𝑠− 𝑡)1−𝜀
+
𝑀2(𝑠− 𝑡)𝜀

Γ(𝜀+ 1)

)︂
𝑑𝑠

=
𝑀2

1

Γ2(𝜀)
(𝑥− 𝑡)2𝜀−1

1∫︁
0

𝑦𝜀−1(1− 𝑦)𝜀−1 𝑑𝑦

+
𝑀1𝑀2

𝜀Γ2(𝜀)
(𝑥− 𝑡)2𝜀

1∫︁
0

𝑦𝜀(1− 𝑦)𝜀−1 𝑑𝑦 +
𝑀1𝑀2

𝜀Γ2(𝜀)
(𝑥− 𝑡)2𝜀

1∫︁
0

𝑦𝜀−1(1− 𝑦)𝜀 𝑑𝑦

+
𝑀2

2

Γ2(𝜀+ 1)
(𝑥− 𝑡)2𝜀+1

1∫︁
0

𝑦𝜀(1− 𝑦)𝜀 𝑑𝑦

=
𝑀2

1 (𝑥− 𝑡)2𝜀−1

Γ(2𝜀)

+
2𝑀1𝑀2(𝑥− 𝑡)2𝜀

Γ(2𝜀+ 1)
+
𝑀2

2 (𝑥− 𝑡)2𝜀+1

Γ(2𝜀+ 2)
.

In the same way we obtain

1

Γ3(𝜀)
|𝐾2(𝑥, 𝑡)| =

1

Γ3(𝜀)

⃒⃒⃒⃒
⃒⃒

𝑥∫︁
𝑡

𝐾(𝑥, 𝑠)𝐾1(𝑠, 𝑡)𝑑𝑠

⃒⃒⃒⃒
⃒⃒ ⩽ 𝑀3

1 (𝑥− 𝑡)3𝜀−1

Γ(3𝜀)
+

3𝑀2
1𝑀2(𝑥− 𝑡)3𝜀

Γ(3𝜀+ 1)

+
3𝑀1𝑀

2
2 (𝑥− 𝑡)3𝜀+1

Γ(3𝜀+ 2)
+
𝑀3

2 (𝑥− 𝑡)3𝜀+2

Γ(3𝜀+ 3)
.
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It is clear that

1

Γ𝑛(𝜀)
|𝐾𝑛−1(𝑥, 𝑡)| ⩽

𝑛∑︁
𝑘=0

𝐶𝑘
𝑛𝑀

𝑛−𝑘
1 𝑀𝑘

2 (𝑥− 𝑡)𝑛𝜀+𝑘−1

Γ(𝑛𝜀+ 𝑘)
, (2.17)

where 𝐶𝑘
𝑛 = 𝑛!

𝑘! (𝑛−𝑘)!
is the number of 𝑘-combinations of 𝑛 elements. Observing that Γ(𝑛𝜀+𝑘) >

Γ(𝑛𝜀), by (2.17) we get the estimate

1

Γ𝑛(𝜀)
|𝐾𝑛−1(𝑥, 𝑡)| <

1

Γ(𝑛𝜀)

𝑛∑︁
𝑘=0

𝐶𝑘
𝑛𝑀

𝑛−𝑘
1 𝑀𝑘

2 (𝑥− 𝑡)𝑛𝜀+𝑘−1

=
1

Γ(𝑛𝜀)
(𝑀1 +𝑀2(𝑥− 𝑡))𝑛 (𝑥− 𝑡)𝑛𝜀−1.

(2.18)

For sufficiently large 𝑛, the exponent 𝑛𝜀−1 of (𝑥− 𝑡) in formula (2.18) is positive. At the same
time, the difference (𝑥− 𝑡) can be replaced by a large scalar quantity 𝑟. Thus, for the resolvent
𝑅(𝑥, 𝑡) of the kernel 𝐾(𝑥, 𝑡) we have the estimate

|𝑅(𝑥, 𝑡)| =

⃒⃒⃒⃒
⃒

∞∑︁
𝑛=1

𝐾𝑛−1(𝑥, 𝑡)

Γ𝑛(𝜀)

⃒⃒⃒⃒
⃒ <

∞∑︁
𝑛=1

(𝑀1 +𝑀2𝑟)
𝑛 𝑟𝑛𝜀−1

Γ(𝑛𝜀)
. (2.19)

Employing the Striling’s formula for the Gamma function

Γ(𝑛) =
1√
2𝜋𝑛

𝑛𝑛𝑒−𝑛+ 𝜂
12𝑛 , 0 < 𝜂 < 1,

and the Cauchy test for the convergence of the scalar series, we easily confirm that the series
in the right hand side of identity (2.19) converges. Thus, the series for the resolvent 𝑅(𝑥, 𝑡)
of the kernel 𝐾(𝑥, 𝑡) converges absolutely and uniformly and this implies the continuity of the
resolvent of the kernel for each 0 < 𝜀 < 1 and each 𝑥 ̸= 𝑡 ∈ [0, 𝑟] as well as a weak singularity
at 𝑥 = 𝑡.
Representation (2.18) and estimate (2.19) for a continuous right hand side 𝐹1(𝑥) ∈ 𝐶[0, 𝑟]

implies the following estimate for the solution:

|𝜏(𝑥)| =

⃒⃒⃒⃒
⃒⃒𝐹1(𝑥) +

1

Γ(𝜀)

𝑥∫︁
0

𝑅(𝑥, 𝑡)𝐹1(𝑡)𝑑𝑡

⃒⃒⃒⃒
⃒⃒ < 𝑀3

[︃
1 +

∞∑︁
𝑛=1

(𝑀1 +𝑀2𝑟)
𝑛 𝑟𝑛𝜀

Γ(𝑛𝜀)

]︃
, (2.20)

where 𝑀3 = max
𝑥∈[0,𝑟]

|𝐹1(𝑥)|.

The convergence of the majorizing scalar series in the right hand side of inequality (2.20))
by the Weierstrass M-test implies an absolute and uniform convergence of the solution. This
yields the continuity of the limiting function 𝜏(𝑥) ∈ 𝐶[0, 𝑟].
Let 𝐹1(𝑥) ∈ 𝐶2(0, 𝑟). In this case by a twice integration by parts in the integral in the

right hand side of representation (2.16) we easily confirm that 𝜏(𝑥) ∈ 𝐶2(0, 𝑟), that is, the
solution 𝜏(𝑥) of integral equation (2.15) as well as its right hand side 𝐹1(𝑥) belong to the class
𝜏(𝑥) ∈ 𝐶[0, 𝑟] ∩ 𝐶2(0, 𝑟).
As 𝑎(𝑥) = 𝑎 = 𝑐𝑜𝑛𝑠𝑡, the solution of equation (2.15) can be written explicitly:

𝜏(𝑥) = 𝐹1(𝑥) + 𝑎

𝑥∫︁
0

(𝑥− 𝑡)𝜀−1𝐸1⧸𝜀[𝑎(𝑥− 𝑡)𝜀; 𝜀]𝐹1(𝑡)𝑑𝑡. (2.21)
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If condition (2.5) is satisfied, then by system (2.10) and (2.12) we immediately find

𝜏(𝑥) = 𝐷𝜀−1
0𝑥

[︂
𝜓2(𝑡)

[𝛽(𝑡) + 𝛾1𝛼(𝑡)]

]︂
,

𝜈(𝑥) = −𝐷𝜀
0𝑥

[︂
𝜓2(𝑡)

[𝛽(𝑡) + 𝛾1𝛼(𝑡)]

]︂
+ 2𝜓′

1(𝑥)−

𝑥
2∫︁

0

𝑓 (𝑥− 𝑡, 𝑡) 𝑑𝑡.

As 𝜆 = ±𝑚
2
, the sought function 𝜏(𝑥) is again determined by one of the formulas (2.16) or

(2.21), but

𝜀2 = 0, 𝜀 = 𝜀1 =
𝑚

𝑚+ 2
, 𝛾1 = 0, 𝛾2 =

(2− 2𝜀)𝜀

2
as 𝜆 = −𝑚

2

and

𝜀1 = 0, 𝜀 = 𝜀2 =
𝑚

𝑚+ 2
, 𝛾1 = 1, 𝛾2 = (2− 2𝜀)𝜀−1Γ(2− 𝜀) as 𝜆 =

𝑚

2
.

Once the function 𝜏(𝑥) is found, the second sought function 𝜈(𝑥) is determined by one of
formulas (2.10) and (2.12). Then the regular in the domain Ω1 solution of the studied problem
is written by formula (2.7) or by one of the following formulas [27]:

𝑢 (𝑥, 𝑦) =
2𝑦

𝑚+ 2

1∫︁
0

𝜈

(︂
𝑥− 2

𝑚+ 2
(−𝑦)

𝑚+2
2 (2𝑡− 1)

)︂
(1− 𝑡)−

𝑚
𝑚+2 𝑑𝑡

+ 𝜏

(︂
𝑥− 2

𝑚+ 2
(−𝑦)

𝑚+2
2

)︂
, 𝜆 = −𝑚

2
,

(2.22)

𝑢 (𝑥, 𝑦) =
2𝑦

𝑚+ 2

1∫︁
0

𝜈

[︂
𝑥+

2

𝑚+ 2
(−𝑦)

𝑚+2
2 (2𝑡− 1)

]︂
(1− 𝑡)−

𝑚
𝑚+2 𝑑𝑡

+ 𝜏

(︂
𝑥+

2

𝑚+ 2
(−𝑦)

𝑚+2
2

)︂
, 𝜆 =

𝑚

2
,

(2.23)

while in the domain Ω2 the solution to the Cauchy problem for equation (1.3) is found by
formula (2.11). The proof is complete.

3. Study of Problem 2

We proceed to studying Problem 2. Writing condition (1.6) for (2.11), we get

𝑢 [𝜃𝑟1 (𝑥)] = 𝑢

(︂
𝑟 + 𝑥

2
,
𝑟 − 𝑥

2

)︂
=
𝜏 (𝑥) + 𝜏 (𝑟)

2
+

1

2

𝑟∫︁
𝑥

𝜈 (𝑡) 𝑑𝑡+
1

2

𝑟−𝑥
2∫︁

0

𝑟−𝑡∫︁
𝑥+𝑡

𝑓 (𝑠, 𝑡) 𝑑𝑠𝑑𝑡 = 𝜓1(𝑥).

Differentiating this identity, we arrive at the relation

𝜈(𝑥) = 𝜏 ′(𝑥)− 2𝜓′
1(𝑥)−

𝑟−𝑥
2∫︁

0

𝑓 (𝑥+ 𝑡, 𝑡) 𝑑𝑡. (3.1)

This identity is a fundamental relation between the functions 𝜏(𝑥) and 𝜈(𝑥) brought from the
domain Ω2 on the straight line 𝑦 = 0 in the case of Problem 2.
Thus, for the sought functions 𝜏(𝑥) and 𝜈(𝑥) we obtain a system of equations expressed

by relations (2.10) and (3.1). Excluding the function 𝜈(𝑥) from (2.10) and (3.1), in view of
matching condition 𝜏(𝑟) = 𝜓1(𝑟), as in studying Problem 1, for 𝜏(𝑥) we obtain a boundary
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value problem for a first order ordinary differential equation involving a fractional derivative in
the lower order terms:

𝜏 ′(𝑥) + 𝑎(𝑥)𝐷1−𝜀
0𝑥 𝜏(𝑡) = 2𝜓′

1(𝑥) +
𝜓2(𝑥)

𝛾(𝑥)− 𝛾2𝛼(𝑥)
+

𝑟−𝑥
2∫︁

0

𝑓 (𝑥+ 𝑡, 𝑡) 𝑑𝑡, 0 < 𝑥 < 𝑟, (3.2)

𝜏(𝑟) = 𝜓1(𝑟). (3.3)

Integrating equation (3.2) in 𝑥 from 0 to 𝑥, in view of condition (3.3), we arrive at an integral
equation corresponding to problem (3.2), (3.3):

𝜏(𝑥)− 1

Γ(𝜀)

𝑟∫︁
0

𝐿(𝑥, 𝑡)𝜏(𝑡)𝑑𝑡 = 𝐹2(𝑥), (3.4)

where

𝐿(𝑥, 𝑡) =

{︃
𝐾(𝑟, 𝑡), 0 ⩽ 𝑥 < 𝑡,

𝐾(𝑟, 𝑡)−𝐾(𝑥, 𝑡), 𝑡 < 𝑥 ⩽ 𝑟,

𝐹2(𝑥) = 2𝜓1(𝑥)− 𝜓1(𝑟)−
𝑟∫︁

𝑥

𝜓2(𝑡)

𝛾(𝑡)− 𝛾2𝛼(𝑡)
𝑑𝑡−

𝑟∫︁
𝑥

𝑟−𝑡
2∫︁

0

𝑓 (𝑡+ 𝑠, 𝑠) 𝑑𝑠 𝑑𝑡.

If the given functions 𝛼(𝑥), 𝛽(𝑥), 𝛾(𝑥), 𝜓1(𝑥), 𝜓2(𝑥), 𝑓(𝑥, 𝑦) possess properties (2.1), (2.2),
(2.3) formulated in Theorem 2.1, then equation (3.4) is a Fredholm integral equation of second
kind with the kernel 𝐿(𝑥, 𝑡) ∈ 𝐿1 ([0, 𝑟]× [0, 𝑟]) and the right hand side 𝐹2(𝑥) ∈ 𝐶[0, 𝑟]∩𝐶2(0, 𝑟).
Let us find sufficient conditions for the given functions ensuring the unique solvability of

equation (3.4). In order to do this, we consider a homogeneous problem corresponding to
Problem by letting 𝜓1(𝑥) = 𝜓2(𝑥) ≡ 0 for all 𝑥 ∈ [0, 𝑟], 𝑓(𝑥, 𝑦) ≡ 0 for all (𝑥, 𝑦) ∈ Ω2. Then
problem (3.2), (3.3) becomes a corresponding homogeneous problem

𝑏(𝑥)𝜏 ′(𝑥) +𝐷1−𝜀
0𝑥 𝜏(𝑡) = 0, 0 < 𝑥 < 𝑟, (3.5)

𝜏(𝑟) = 0. (3.6)

We multiply equation (3.5) by the function 𝜏(𝑥) and integrate by parts the obtained identity
in 𝑥 from 0 to 𝑟 taking into consideration condition (3.6). This gives

𝑟∫︁
0

𝑏(𝑥)𝜏(𝑥)𝜏 ′(𝑥)𝑑𝑥+

𝑟∫︁
0

𝜏(𝑥)𝐷1−𝜀
0𝑥 𝜏(𝑡) 𝑑𝑥

=− 𝑏(0)𝜏 2(0)

2
− 1

2

𝑟∫︁
0

𝑏′(𝑥)𝜏 2(𝑥) 𝑑𝑥+

𝑟∫︁
0

𝜏(𝑥)𝐷1−𝜀
0𝑥 𝜏(𝑡) 𝑑𝑥 = 0.

It is known [5] that
𝑟∫︁

0

𝜏(𝑥)𝐷1−𝜀
0𝑥 𝜏(𝑡) 𝑑𝑥 ⩾ 0,

and
𝑟∫︁

0

𝜏(𝑥)𝐷1−𝜀
0𝑥 𝜏(𝑡)𝑑𝑥 = 0

if and only if 𝜏(𝑥) ≡ 0 for all 𝑥 ∈ [0, 𝑟]. Hence, if the function 𝑏(𝑥) is decaying and negative, the
latter identity can hold if and only if 𝜏(𝑥) ≡ 0 for all 𝑥 ∈ [0, 𝑟]. Therefore, under the mentioned
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conditions for the given functions equation (3.4) can possess only a unique solution 𝜏 in the
class 𝐶[0, 𝑟] ∩ 𝐶2(0, 𝑟).
Thus, we have proved the following theorem.

Theorem 3.1. Let the given functions 𝛼(𝑥), 𝛽(𝑥), 𝛾(𝑥), 𝜓1(𝑥), 𝜓2(𝑥), 𝑓(𝑥, 𝑦) possess prop-
erties (2.1), (2.2), (2.3) formulated in Theorem 2.1 and

[𝛽(𝑥) + 𝛾1𝛼(𝑥)] [𝛾(𝑥)− 𝛾2𝛼(𝑥)] ̸= 0 for all 𝑥 ∈ [0, 𝑟],

𝑏′(𝑥) ⩽ 0, 𝑏(0) < 0 for all 𝑥 ∈ [0, 𝑟].

Then there exists a unique regular in the domain Ω solution to Problem 2.

In the case 𝑎(𝑥) = 𝑎 = 𝑐𝑜𝑛𝑠𝑡 the solution of problem (3.2), (3.3) can be written explicitly:

𝜏(𝑥) =
𝐸𝜀 [−𝑎𝑥𝜀]
𝐸𝜀 [−𝑎𝑟𝜀]

(︃
𝜓1(𝑟) + 𝐹2(𝑥)− 𝐹2(𝑟) + 𝑎

𝑟∫︁
0

(𝑟 − 𝑡)𝜀−1𝐸1/𝜀 [−𝑎(𝑟 − 𝑡)𝜀; 𝜀]𝐹2(𝑡)𝑑𝑡

− 𝑎

𝑥∫︁
0

(𝑥− 𝑡)𝜀−1𝐸1/𝜀 [−𝑎(𝑥− 𝑡)𝜀; 𝜀]𝐹2(𝑡)𝑑𝑡

)︃
,

and
𝐸𝜀 [−𝑎𝑟𝜀] ̸= 0. (3.7)

It follows from Theorem 3.1 that inequality (3.7) holds true for instance for all 𝑎 < 0.
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