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ON STABILITY OF EQUILIBRIA OF NONLINEAR

CONTINUOUS-DISCRETE DYNAMICAL SYSTEMS

M.G. YUMAGULOV, S.V. AKMANOVA

Abstract. In this paper the main attention is paid to discussing the issues on sufficient
conditions for Lyapunov stability of nonlinear hybrid (continuous-discrete) systems, that
is, the systems, the processes in which have several levels of different descriptions and the
states involve both continuous and discrete components. It is well-known that by switchings
between unstable regimes in a continuous dynamical system one can achieve a stability and
vice versa, even when all regimes of the continuous system are stable, under the switching
there can appear unstable regimes in the system. This is why it is important to make a
detailed analysis on the stability issues while passing from continuous to the hybrid system.

In the present paper we propose new tests for Lyapunov stability of stationary regimes of
nonlinear hybrid system with a constant discretization step ℎ > 0. These tests are based on
the methods for studying the stability by the linear approximation and on the formulae from
the perturbation theory, which allow us to analyse the equilibria and cycles of the dynamical
systems depending on a small parameter. The proposed approaches are based on a passage
from the original hybrid system to equivalent in a natural sense dynamical system with a
discrete time. We discuss relations between dynamical characteristics of hybrid and discrete
systems. While studying the main problem on Lyapunov stability of an equilibrium of the
hybrid system, we consider two formulations: the stability for small ℎ > 0 and stability for
arbitrary fixed ℎ = ℎ0 > 0. Moreover, we discuss some questions on scenarios of bifurcation
behavior of the hybrid system under the stability loss of the equilibrium. We adduce an
example illustrating the efficiency of the obtained results in the problem on studying the
stability of the equilibria of the hybrid systems.

Keywords: continuous-discrete system, hybrid system, equilibrium, periodic solutions,
stability, bifurcation.
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1. Introduction and formulation of problem

Many theoretical and practical problems lead to the need to study hybrid (continuous-
discrete) systems, i.e. ones, the processes in which have several levels of heterogeneous de-
scription and the states contain both continuous and discrete components. Systems of this
type are widely used in applied control problems of mechanical and technological processes,
traffic in computer networks and in many other fields, see, for example, [1]–[5].
One of the main problems leading to hybrid systems is one on stabilizing the main regimes of

a system. There is a large class of systems that cannot be stabilized only by a continuous control
law with state feedback and, on the other hand, can be stabilized by an appropriate switching at
certain time moments. In other words, by switching unstable regimes, it is possible to achieve
their stability and vice versa, even when all modes of a continuous system are stable, their
switchings can produces unstable regimes [6]–[8]. This explains the ever-increasing interest of
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specialists from various fields in studying the stability of hybrid systems, see, for instance, [9]–
[16]. We note that most works are aimed at developing the method of Lyapunov functions and
relevant applications in the problem of stability analysis linear and nonlinear hybrid systems,
for a detailed review of works on this subject see [5].
This article proposes new Lyapunov stability tests in of stationary regimes of nonlinear hybrid

systems. These tests are based on the methods for studying stability by the first approximation
and formulas of the perturbations theory obtained in [17]. They allow us to analyze the stability
of equilibria and cycles of dynamical systems depending on a small parameter. The results
obtained in this work are a significant development of the results of the authors announced
in [18].
We consider a nonlinear hybrid system described by the equations [19]:{︃

𝑥′(𝑡) = 𝑓(𝑥(𝑡), 𝑦(𝑡𝑘)), 𝑡𝑘 ⩽ 𝑡 < 𝑡𝑘+1,

𝑦(𝑡𝑘+1) = 𝑔(𝑥(𝑡𝑘+1), 𝑦(𝑡𝑘)), 𝑘 = 0, 1, 2, . . . ,
(1.1)

where 𝑥 ∈ R𝑛, 𝑦 ∈ R𝑚 are vectors characterizing the behavior of respectively continuous and
discrete parts of the hybrid system; the time moments 𝑡𝑘 define on R a uniform grid with a
step ℎ > 0:

0 = 𝑡0 < 𝑡1 = 𝑡0 + ℎ < 𝑡2 = 𝑡1 + ℎ < . . . < 𝑡𝑘+1 = 𝑡𝑘 + ℎ < . . . (1.2)

The functions 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) in system (1.1) are continuously differentiable and generate
the operators 𝑓 : R𝑛 ×R𝑚 → R𝑛, 𝑔 : R𝑛 ×R𝑚 → R𝑚.
The evolution of system (1.1) follows a standard scheme:

1) Initial condition 𝑢0 = (𝑥0, 𝑦0) are prescribed;
2) By the solution 𝑥 = 𝜙0(𝑡) to the Cauchy problem 𝑥′ = 𝑓(𝑥, 𝑦0), 𝑥(𝑡0) = 𝑥0, we find the

vectors 𝑥1 = 𝜙0(𝑡1) and 𝑦1 = 𝑔(𝑥1, 𝑦0);
3) By the solution 𝑥 = 𝜙1(𝑡) to the Cauchy problem 𝑥′ = 𝑓(𝑥, 𝑦1), 𝑥(𝑡1) = 𝑥1, we find the

vectors 𝑥2 = 𝜙1(𝑡2) and 𝑦2 = 𝑔(𝑥2, 𝑦1);

and so forth.
Thus, a solution 𝑢(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) of hybrid system (1.1) starting from the point 𝑢0 = (𝑥0, 𝑦0)

is a function

𝑢(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝜙0(𝑡), 𝑦0), 𝑡0 ⩽ 𝑡 < 𝑡1,

(𝜙1(𝑡), 𝑦1), 𝑡1 ⩽ 𝑡 < 𝑡2,

(𝜙2(𝑡), 𝑦2), 𝑡2 ⩽ 𝑡 < 𝑡3,

. . . . . .

(1.3)

The first component 𝑥(𝑡) of the solution 𝑢(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) is continuous for all 𝑡 ⩾ 0, continu-
ously differentiable on each interval 𝑡𝑗 < 𝑡 < 𝑡𝑗+1 but it is not necessarily differentiable at the
switching moments 𝑡 = 𝑡𝑗. Concerning the second component, the function 𝑦(𝑡), it is piecewise
constant changing its values at the moments 𝑡 = 𝑡𝑗.
We assume that system (1.1) possesses an equilibrium at the point 𝑥 = 0, 𝑦 = 0, that is,

𝑓(0, 0) = 0, 𝑔(0, 0) = 0. (1.4)

The main problem of the present paper is to study the issue on sufficient conditions for the
Lyapunov stability of the equilibrium 𝑥 = 0, 𝑦 = 0 of system (1.1). We also discuss the issue
on the bifurcations in system (1.1) under the loss of stability of the equilibrium 𝑥 = 0, 𝑦 = 0.
The stability of the equilibria of system (1.1) is treated in the classical sense. Namely, the

equilibrium 𝑥 = 0, 𝑦 = 0 of hybrid system (1.1) is called Lyapunov stable if for each 𝜀 > 0 there
exists 𝛿 > 0 such that as ‖𝑢0‖ < 𝛿 the solution 𝑢(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) of system (1.1) starting from
the point 𝑢0 = (𝑥0, 𝑦0) satisfies the inequality ‖𝑢(𝑡)‖ < 𝜀 for all 𝑡 ⩾ 0. We call the equilibrium
𝑥 = 0, 𝑦 = 0 of system (1.1) asymptotically stable if it is Lyapunov stable and there exists
𝛿0 > 0 such that as ‖𝑢0‖ < 𝛿0, a solution 𝑢(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) of system (1.1) starting from the
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point 𝑢0 = (𝑥0, 𝑦0) satisfies the convergence ‖𝑢(𝑡)‖ → 0 as 𝑡 → ∞. Finally, the equilibrium
𝑥 = 0, 𝑦 = 0 of system (1.1) is called unstable if it is not Lyapunov stable. Hereinafter by ‖ · ‖
we denote Euclidean norms of the vectors in the spaces R𝑁 .

2. Passage from hybrid to discrete system

The main constructions of the present work are based on passing from hybrid system (1.1)
to an auxiliary discrete system. The construction of this discrete system and the study of its
properties is of an independent interest. In this section we provide the main points of this
passage.

2.1. Shift operator and discrete system. We denote by 𝑈(ℎ) the operator of shift along
the trajectories of system 𝑥′ = 𝑓(𝑥, 𝑦) in time from 𝑡 = 0 till 𝑡 = ℎ, see, for instance, [20]. The
operator 𝑈(ℎ) maps the vector (𝑥0, 𝑦0) ∈ R𝑛 ×R𝑚 into the vector 𝑥1 = 𝑥(ℎ) ∈ R𝑛; here 𝑥(𝑡) is
the solution of the Cauchy problem 𝑥′ = 𝑓(𝑥, 𝑦0), 𝑥(0) = 𝑥0. Thus, 𝑈(ℎ)(𝑥0, 𝑦0) = 𝑥1.
We consider a discrete system{︃

𝑥𝑘+1 = 𝑈(ℎ)(𝑥𝑘, 𝑦𝑘),

𝑦𝑘+1 = 𝑔(𝑈(ℎ)(𝑥𝑘, 𝑦𝑘), 𝑦𝑘), 𝑘 = 0, 1, 2, . . .
(2.1)

in which 𝑥𝑘 ∈ R𝑛, 𝑦𝑘 ∈ R𝑚.
Discrete system (2.1) is equivalent to original hybrid system (1.1) in the following sense.

System (2.1) fixes the values of solutions of hybrid system (1.1) at time moments 𝑡 = 0, 𝑡 = ℎ,
𝑡 = 2ℎ and so forth. In other words, the following lemma is true by the construction.

Lemma 2.1. Each solution (1.3) of hybrid system (1.1) generates the solution

(𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑘, 𝑦𝑘), . . . , (2.2)

of discrete system (2.1), in which 𝑥0 = 𝜙0(0), 𝑥1 = 𝜙1(ℎ), 𝑥2 = 𝜙2(2ℎ), . . .At the same time,
discrete system (2.1) possesses no other solutions.

Of course, while passing to discrete system (2.1) one loses the information on behavior of
hybrid system (1.1) at intervals 0 < 𝑡 < ℎ, ℎ < 𝑡 < 2ℎ and so forth, but the most part
of important questions on qualitative characteristics of the equilibria or cycles of the original
hybrid system (1.1) can be analyzed.
Let us show a relation between the equilibria and periodic solutions of systems (1.1) and

(2.1).

Theorem 2.1. Each equilibrium (𝑥*, 𝑦*) of system (1.1) is an equilibrium of system (2.1).
To each equilibrium (𝑥*, 𝑦*) of system (2.1), there corresponds an ℎ-periodic solution (𝜙0(𝑡), 𝑦

*)
of system (1.1) such that 𝜙0(0) = 𝜙0(ℎ) = 𝑥*. At the same time, the stability nature of the
mentioned solutions to systems (1.1) and (2.1) are similar.

The proof of this theorem and other main statements is provided in Section 7.
We note that the periodic function 𝑥 = 𝜙0(𝑡) mentioned in Theorem 2.1 is continuously

differentiable for all 𝑡. We also note that if the first equation of system (1.1) is scalar, then the
function 𝑥 = 𝜙0(𝑡) is constant. In other words, the following lemma holds.

Lemma 2.2. Let 𝑛 = 1. Then each equilibrium (𝑥*, 𝑦*) of system (2.1) is an equilibrium of
system (1.1) and vice versa.

The issue on relation between the cycles of systems (1.1) and (2.1) is clarified by the following
statement.
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Lemma 2.3. Each 𝑞ℎ-periodic solution (𝑥(𝑡), 𝑦(𝑡)) of system (1.1) forms a 𝑞-cycle

(𝑥*
0, 𝑦

*
0), (𝑥

*
1, 𝑦

*
1), . . . , (𝑥

*
𝑞−1, 𝑦

*
𝑞−1), (𝑥*

0, 𝑦
*
0), (𝑥

*
1, 𝑦

*
1), . . . , (𝑥

*
𝑞−1, 𝑦

*
𝑞−1), . . . . (2.3)

of system (2.1) so that

𝑥(0) = 𝑥*
0, 𝑦(0) = 𝑦*0, 𝑥(ℎ) = 𝑥*

1, 𝑦(ℎ) = 𝑦*1, . . . ,

𝑥((𝑞 − 1)ℎ) = 𝑥*
𝑞−1, 𝑦((𝑞 − 1)ℎ) = 𝑦*𝑞−1, 𝑥(𝑞ℎ) = 𝑥*

0, 𝑦(𝑞ℎ) = 𝑦*0. (2.4)

To each 𝑞-cycle (2.3) of system (2.1), there corresponds a 𝑞ℎ-periodic solution (𝑥(𝑡), 𝑦(𝑡)) of
system (1.1) so that identities (2.4) hold.

2.2. Transformation of discrete system. A passage to discrete system (2.1) will be more
effective if we provide formulas allowing to find constructively the shift operator 𝑈(ℎ).
In order to do this, we observe that by identities (1.4) the functions 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) can

be represented as

𝑓(𝑥, 𝑦) = 𝐴1𝑥+𝐵1𝑦+𝑎(𝑥, 𝑦), 𝑔(𝑥, 𝑦) = 𝐴2𝑥+𝐵2𝑦+𝑏(𝑥, 𝑦), (𝑥 ∈ R𝑛, 𝑦 ∈ R𝑚), (2.5)

where
𝐴1 = 𝑓 ′

𝑥(0, 0), 𝐵1 = 𝑓 ′
𝑦(0, 0), 𝐴2 = 𝑔′𝑥(0, 0), 𝐵2 = 𝑔′𝑦(0, 0),

and the smooth nonlinearities 𝑎(𝑥, 𝑦) and 𝑏(𝑥, 𝑦) satisfy the relations

𝑎(𝑥, 𝑦) = 𝑜(‖𝑥‖+ ‖𝑦‖), 𝑏(𝑥, 𝑦) = 𝑜(‖𝑥‖+ ‖𝑦‖) as ‖𝑥‖+ ‖𝑦‖ → 0. (2.6)

The matrices 𝐴1, 𝐵1, 𝐴2, 𝐵2 generate linear operators

𝐴1 : R
𝑛 → R𝑛, 𝐵1 : R

𝑚 → R𝑛, 𝐴2 : R
𝑛 → R𝑚, 𝐵2 : R

𝑚 → R𝑚.

The following lemma holds true.

Lemma 2.4. Let det𝐴1 ̸= 0. Then the shift operator 𝑈(ℎ) can be represented as

𝑈(ℎ)(𝑥0, 𝑦0) = 𝑒𝐴1ℎ𝑥0 + 𝐴−1
1 (𝑒𝐴1ℎ − 𝐼)𝐵1𝑦0 + 𝜀(𝑥0, 𝑦0;ℎ), (2.7)

where

𝜀(𝑥0, 𝑦0;ℎ) = 𝑒ℎ𝐴1

ℎ∫︁
0

𝑒−𝑠𝐴1𝑎(𝑥(𝑠, 𝑥0, 𝑦0), 𝑦0) 𝑑𝑠. (2.8)

Here 𝑥 = 𝑥(𝑡, 𝑥0, 𝑦0) is the solution of the Cauchy problem

𝑥′ = 𝐴1𝑥+𝐵1𝑦0 + 𝑎(𝑥, 𝑦0), 𝑥(0) = 𝑥0. (2.9)

This lemma implies that discrete system (2.1) can be represented as{︃
𝑥𝑘+1 = 𝑒𝐴1ℎ𝑥𝑘 + 𝐴−1

1 (𝑒𝐴1ℎ − 𝐼)𝐵1𝑦𝑘 + 𝜀(𝑥𝑘, 𝑦𝑘;ℎ),

𝑦𝑘+1 = 𝐴2𝑒
𝐴1ℎ𝑥𝑘 + (𝐴2𝐴

−1
1 (𝑒𝐴1ℎ − 𝐼)𝐵1 +𝐵2)𝑦𝑘 + 𝑐(𝑥𝑘, 𝑦𝑘;ℎ);

(2.10)

here the nonlinearity 𝑐(𝑥𝑘, 𝑦𝑘;ℎ) is given by the identity

𝑐(𝑥𝑘, 𝑦𝑘;ℎ) = 𝐴2𝜀(𝑥𝑘, 𝑦𝑘;ℎ) + 𝑏(𝑈(ℎ)(𝑥𝑘, 𝑦𝑘), 𝑦𝑘).

We represent system (2.10) in a more compact form:

𝑢𝑘+1 = 𝐴(ℎ)𝑢𝑘 + 𝜉(𝑢𝑘, ℎ), 𝑘 = 0, 1, 2, . . . , (2.11)

where

𝑢𝑘 =

[︂
𝑥𝑘

𝑦𝑘

]︂
, 𝜉(𝑢𝑘, ℎ) =

[︂
𝜀(𝑥𝑘, 𝑦𝑘;ℎ)
𝑐(𝑥𝑘, 𝑦𝑘;ℎ)

]︂
,

and 𝐴(ℎ) is a square matrix of order 𝑛+𝑚:

𝐴(ℎ) =

[︂
𝑒𝐴1ℎ 𝐴−1

1 (𝑒𝐴1ℎ − 𝐼)𝐵1

𝐴2𝑒
𝐴1ℎ 𝐴2𝐴

−1
1 (𝑒𝐴1ℎ − 𝐼)𝐵1 +𝐵2

]︂
. (2.12)
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Lemma 2.5. The function 𝜉(𝑢, ℎ) satisfies the relation

𝜉(𝑢, ℎ) = 𝑜(‖𝑢‖) as ‖𝑢‖ → 0. (2.13)

3. Stability of zero equilibrium of system (1.1)

We return back to the main problem, the question on conditions ensuring the Lyapunov
stability of zero equilibrium 𝑥 = 0, 𝑦 = 0 of hybrid system (1.1). In what follows, to shorten
formulations, we shall employ the following notation:

∙ 𝐴 < 0 ⇔ all eigenvalues of a square matrix 𝐴 have negative real parts;
∙ |𝐴| < 1 ⇔ all eigenvalues 𝜆 of the square matrix 𝐴 satisfies the inequality |𝜆| < 1.

The notations 𝐴 ⩽ 0 and |𝐴| ⩽ 1 have the similar meanings.

3.1. Stability for a fixed ℎ > 0. We first discuss the stability of the equilibrium 𝑥 = 0,
𝑦 = 0 of hybrid system (1.1) for a fixed ℎ = ℎ0 > 0.
We begin with the following statement, in which 𝐴1, 𝐵1, 𝐴2, 𝐵2 are the matrices from

identities (2.5); this statement was announced in [18].

Theorem 3.1. Let 𝐴1 < 0 and |𝐵2| < 1. Then for ℎ = ℎ0 > 0 there exists 𝛿 = 𝛿(ℎ0) > 0
such that if ‖𝐴2‖ < 𝛿 and ‖𝐵1‖ < 𝛿, then the equilibrium 𝑥 = 0, 𝑦 = 0 of hybrid system (1.1)
for ℎ = ℎ0 is asymptotically stable.

In other words, if 𝐴1 < 0 and |𝐵2| < 1, then the equilibrium 𝑥 = 0, 𝑦 = 0 of hybrid system
(1.1) is asymptotically stable once the quantities ‖𝐴2‖ and ‖𝐵1‖ are small enough.
We observe that Theorem 3.1 states the following simple fact. As 𝐴2 = 0 and 𝐵1 = 0, the

linearized in the vicinity of equilibrium 𝑥 = 0, 𝑦 = 0 system associated with (1.1) splits into
two uncoupled linear equations:

𝑥′(𝑡) = 𝐴1𝑥(𝑡) (3.1)

and

𝑦(𝑡𝑘+1) = 𝐵2𝑦(𝑡𝑘), 𝑘 = 0, 1, 2, . . . . (3.2)

Conditions 𝐴1 < 0 and |𝐵2| < 1 mean that each of these linear equations is asymptotically
stable. This is why it is natural to expect that the zero solution of system (1.1) for a given
ℎ = ℎ0 > 0 is asymptotically stable if the norms ‖𝐴2‖ and ‖𝐵1‖ are small enough.
Now we provide another stability condition for the equilibrium 𝑥 = 0, 𝑦 = 0 of system (1.1),

which also was announced in [18].

Theorem 3.2. Let the matrix 𝐴1 be invertible, that is,

det𝐴1 ̸= 0. (3.3)

Let for ℎ = ℎ0 > 0 matrix (2.12) satisfy condition |𝐴(ℎ0)| < 1. Then the equilibrium 𝑥 = 0,
𝑦 = 0 of hybrid system (1.1) as ℎ = ℎ0 is asymptotically stable. If the absolute value of at least
one eigenvalue of the matrix 𝐴(ℎ0) exceeds 1, then the equilibrium 𝑥 = 0, 𝑦 = 0 of system (1.1)
as ℎ = ℎ0 is unstable.

In what follows condition (3.3) is supposed to be satisfied.
From the practical point of view, the following question is important. Let the matrix 𝐴1

possess at least one eigenvalue with a real positive part, then linear system (3.1) is unstable.
Whether it is possible, for a given ℎ = ℎ0 > 0, to choose matrices 𝐴2, 𝐵1 and 𝐵2 so that
the matrix (2.12) satisfies the condition |𝐴(ℎ0)| < 1? The answer is positive and this is
demonstrated by appropriate formulas in Section 4.
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3.2. Stability for small ℎ > 0. We shall say that the equilibrium 𝑥 = 0, 𝑦 = 0 of hybrid
system (1.1) is Lyapunov stable (asymptotically stable, unstable) for small ℎ > 0 if there exists
ℎ0 > 0 such that for each ℎ ∈ (0, ℎ0) the equilibrium 𝑥 = 0, 𝑦 = 0 of system (1.1) is Lyapunov
stable (asymptotically stable, unstable).
To discuss the issue on stability of the equilibrium 𝑥 = 0 and 𝑦 = 0 of system (1.1) for small

ℎ > 0, by matrix (2.12) we define new matrices:

𝐴0 = 𝐴(0) =

[︂
𝐼 0
𝐴2 𝐵2

]︂
, (3.4)

and

𝐴′ = 𝐴′(0) =

[︂
𝐴1 𝐵1

𝐴2𝐴1 𝐴2𝐵1

]︂
. (3.5)

The above matrix is the derivative of the matrix (2.12) for ℎ = 0.
The next lemma is obvious.

Lemma 3.1. The matrix 𝐴0 possesses an eigenvalue 𝜆0 = 1, the multiplicity of which is at
least 𝑛. This eigenvalue is semi-simple of multiplicity 𝑛 if the matrix 𝐵2 has no eigenvalue 1.
Other eigenvalues of the matrix 𝐴0 coincides with ones of the matrix 𝐵2.

In particular, if |𝐵2| < 1, then the matrix 𝐴0 and the corresponding transposed matrix 𝐴*
0

possesses a semi-simple eigenvalue 𝜆0 = 1 of multiplicity 𝑛.
The next statement gives a necessary stability condition for zero solution of hybrid system

(1.1) for small ℎ > 0.

Theorem 3.3. Let the zero condition of system (1.1) be stable for small ℎ > 0. Then
|𝐵2| ⩽ 1.

We observe that the condition |𝐵2| ⩽ 1 is also necessary for the stability of linear discrete
system (3.2). We also note that condition 𝐴1 ⩽ 0, which is necessary for the stability of linear
continuous system (3.1) is not necessary for stability of system (1.1) for small ℎ > 0. We also
discuss this issue below.
In what follows we suppose that |𝐵2| < 1. Since the matrix 𝐴0 has a semi-simple eigenvalue

𝜆0 = 1 of multiplicity 𝑛, then there exists a linearly independent system of eigenvectors 𝑒𝑖:
𝐴0𝑒𝑖 = 𝑒𝑖, 𝑖 = 1, 𝑛. The transposed matrix 𝐴*

0 also has a semi-simple eigenvalue 1 of multiplicity
𝑛 with associated eigenvectors 𝑒*𝑖 : 𝐴

*
0𝑒

*
𝑖 = 𝑒*𝑖 , 𝑖 = 1, 𝑛. The vectors 𝑒𝑖 and 𝑒*𝑗 can be chosen by

the relations

(𝑒𝑖, 𝑒
*
𝑖 ) = 1, (𝑒𝑖, 𝑒

*
𝑗) = 0 as 𝑖 ̸= 𝑗, 𝑖 = 1, 𝑛, 𝑗 = 1, 𝑛. (3.6)

We define a matrix

𝐷 =

⎡⎢⎢⎣
(𝐴′𝑒1, 𝑒

*
1) (𝐴′𝑒2, 𝑒

*
1) · · · (𝐴′𝑒𝑛, 𝑒

*
1)

(𝐴′𝑒1, 𝑒
*
2) (𝐴′𝑒2, 𝑒

*
2) · · · (𝐴′𝑒𝑛, 𝑒

*
2)

...
...

. . .
...

(𝐴′𝑒1, 𝑒
*
𝑛) (𝐴′𝑒2, 𝑒

*
𝑛) · · · (𝐴′𝑒𝑛, 𝑒

*
𝑛)

⎤⎥⎥⎦ . (3.7)

Theorem 3.4. Let |𝐵2| < 1 and 𝐷 < 0. Then the zero solution of hybrid system (1.1) is
asymptotically stable for all ℎ > 0.

4. Stability of zero equilibrium of system (1.1) in case 𝑛 = 𝑚 = 1

Here we consider an important case of system (1.1) when 𝑛 = 𝑚 = 1. In this case identities
(2.5) and (2.6) become

𝑓(𝑥, 𝑦) = 𝑎1𝑥+ 𝑏1𝑦 + 𝑎(𝑥, 𝑦), 𝑔(𝑥, 𝑦) = 𝑎2𝑥+ 𝑏2𝑦 + 𝑏(𝑥, 𝑦), 𝑥 ∈ R1, 𝑦 ∈ R1, (4.1)
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where the numbers 𝑎1, 𝑏1, 𝑎2, 𝑏2 are determined by the identities 𝑎1 = 𝑓 ′
𝑥(0, 0), 𝑏1 = 𝑓 ′

𝑦(0, 0),
𝑎2 = 𝑔′𝑥(0, 0), 𝑏2 = 𝑔′𝑦(0, 0), while the nonlinearities 𝑎(𝑥, 𝑦) and 𝑏(𝑥, 𝑦) satisfy the relations

𝑎(𝑥, 𝑦) = 𝑜(|𝑥|+ |𝑦|), 𝑏(𝑥, 𝑦) = 𝑜(|𝑥|+ |𝑦|) as |𝑥|+ |𝑦| → 0. (4.2)

Then system (1.1) casts into the form{︃
𝑥′(𝑡) = 𝑎1𝑥(𝑡) + 𝑏1𝑦(𝑡𝑘) + 𝑎(𝑥(𝑡), 𝑦(𝑡𝑘)), 𝑡𝑘 ⩽ 𝑡 < 𝑡𝑘+1,

𝑦(𝑡𝑘+1) = 𝑎2𝑥(𝑡𝑘+1) + 𝑏2𝑦(𝑡𝑘) + 𝑏(𝑥(𝑡𝑘+1), 𝑦(𝑡𝑘)).
(4.3)

We first provide an analogue of Theorem 3.2.

Theorem 4.1. Let 𝑎1 ̸= 0 and for ℎ = ℎ0 > 0 the inequalities hold:

|𝑏2𝑒𝑎1ℎ0| < 1,

⃒⃒⃒⃒
𝑎2𝑏1
𝑎1

(𝑒𝑎1ℎ0 − 1) + 𝑏2 + 𝑒𝑎1ℎ0

⃒⃒⃒⃒
< 𝑏2𝑒

𝑎1ℎ0 + 1. (4.4)

Then the zero solution of hybrid system (4.3) for ℎ = ℎ0 is asymptotically stable. If at least one
of inequalities (4.4) holds with an opposite sign, then the zero solution of hybrid system (4.3)
as ℎ = ℎ0 is unstable.

A simple analysis of inequalities (4.4) gives a positive answer to the above formulated ques-
tion: if 𝑎1 > 0, whether it is possible, for a given ℎ = ℎ0 > 0, to choose the numbers 𝑎2, 𝑏1
and 𝑏2 to ensure inequalities (4.4)?
Now we provide an analogue of Theorem 3.4. We let

𝛾 = 𝑎1(1− 𝑏2) + 𝑎2𝑏1. (4.5)

Theorem 4.2. Let |𝑏2| < 1 and 𝛾 < 0 (𝛾 > 0). Then the zero solution of hybrid system
(4.3) is asymptotically stable (unstable) for all small ℎ > 0.

This statement implies a series of important corollaries.

1. If 𝑎1 < 0 and |𝑏2| < 1, and the quantity |𝑎2𝑏1| is small enough, then the zero solution of
hybrid system (4.3) is asymptotically stable for all small ℎ > 0.

2. At the same time, conditions 𝑎1 < 0 and |𝑏2| < 1 (that is, as linear systems 𝑥′ = 𝑎1𝑥
and 𝑦𝑘+1 = 𝑏2𝑦𝑘 are stable) do not ensure the stability of zero solution of hybrid system
(4.3) for small ℎ > 0.

3. And vice versa, if 𝑎1 > 0 (that is, as the linear system 𝑥′ = 𝑎1𝑥 is unstable), nevertheless,
the zero solution of hybrid system (4.3) can turn out to be stable for small ℎ > 0.

Similar corollaries are true for system (1.1) in the general setting.

5. Bifurcation of equilibria

The evolution of hybrid system (1.1) depends on the quantity ℎ, which can be regarded as
a parameter of the system. In particular, as ℎ varies, the zero solution of this system can
change its stability character and this leads to various bifurcations scenarios. According to
Theorem 3.2, the stability character of this solution can change as ℎ passes ℎ0 such that matrix
(2.12) satisfies condition |𝐴(ℎ0)| = 1.
Following the classical theory of bifurcations, see, for instance, [21], a value ℎ = ℎ0 is called

a bifurcation point of system (1.1) if the matrix 𝐴(ℎ0) possesses at least one eigenvalue 𝜇0 such
that |𝜇0| = 1.
One more interesting question is on possible bifurcation scenarios in the vicinity of the zero

solution of hybrid system (1.1) as the parameter ℎ passes the bifurcation point ℎ0. Let us
discuss this issues in the case when the matrix 𝐴(ℎ0) possesses a simple eigenvalue 1 or −1.
We denote by 𝑒 and 𝑔 the eigenvectors of the matrix 𝐴0 = 𝐴(ℎ0) and the adjoint matrix

𝐴*
0 = 𝐴*(ℎ0) associated with a simple eigenvalue 1 (eigenvalue −1).



92 M.G. YUMAGULOV, S.V. AKMANOVA

Theorem 5.1. Let the matrix 𝐴0 = 𝐴(ℎ0) possesses a simple eigenvalue 1 (simple eigenvalue
−1), while absolute values of its eigenvalues are less than one. Let (𝐴′(ℎ0)𝑒, 𝑔) ̸= 0; here 𝐴′(ℎ)
is the matrix of the derivatives of the entries of the matrix 𝐴(ℎ). Then as the parameter ℎ passes
ℎ0, the matter of a qualitative restructuring of the behavior of system (1.1) in the vicinity of the
equilibrium 𝑥 = 0, 𝑦 = 0 is the appearance of non-zero periodic solution: there exist ℎ𝑘 → ℎ0

such that, as ℎ = ℎ𝑘, system (1.1) has a non-zero ℎ𝑘-periodic (2ℎ𝑘-periodic) solution (𝑥𝑘(𝑡), 𝑦𝑘)
so that (𝑥𝑘(𝑡), 𝑦𝑘) → (0, 0) as 𝑘 → ∞.

We note that the ℎ𝑘-periodic function 𝑥𝑘(𝑡) involved in this theorem for the case of the
eigenvalue 1 is continuously differentiable for all 𝑡. Therefore, as 𝑛 = 1, this function is
constant. In other words, in the mentioned case in system (1.1) there is a bifurcation of a
multiple equilibrium: as the parameter ℎ passes ℎ0, in the vicinity of the zero equilibrium
𝑥 = 0, 𝑦 = 0 nonzero equilibria appear.
The discussion of some directions of developing the results of Theorem 5.1 is provided below

in its proof.

6. Examples

6.1. Problems on stability of unstable equilibrium of dynamical system. As a first
illustration of the obtained results we consider the problem on stability of the zero equilibrium
𝜙 = 0, 𝑦 = 0 of a hybrid system described by the equations{︃

𝜙′′(𝑡) = sin𝜙(𝑡) + 𝑦(𝑡𝑘), 𝑡𝑘 ⩽ 𝑡 < 𝑡𝑘+1,

𝑦(𝑡𝑘+1) = 𝛼𝜙(𝑡𝑘+1) + 𝛽𝜙′(𝑡𝑘+1), 𝑘 = 0, 1, 2, . . . ,
(6.1)

where 𝛼 and 𝛽 are real parameters, while the time moments 𝑡𝑘 form on R uniform grid (1.2)
with the step ℎ > 0. We restrict ourselves by discussing the stability of the equilibrium 𝜙 = 0,
𝑦 = 0 for small ℎ > 0.
The above issue can be interpreted as a question of stabilization of the zero solution 𝜙 = 0 to a

continuous dynamical system 𝜙′′ = sin𝜙 by means of fast switching at the time moments 𝑡 = 𝑡𝑘,
𝑘 = 1, 2, 3, . . . The questions of such kind arise, for instance, in the problem on stabilization of
the upper unstable pendulum position, which was widely studied in literature, see, for instance,
[22].
Letting 𝑥1 = 𝜙, 𝑥2 = 𝜙′, we pass from (6.1) to system⎧⎪⎨⎪⎩

𝑥′
1 = 𝑥2,

𝑥′
2 = sin𝑥1 + 𝑦(𝑡𝑘), 𝑡𝑘 ⩽ 𝑡 < 𝑡𝑘+1,

𝑦(𝑡𝑘+1) = 𝛼𝑥1(𝑡𝑘+1) + 𝛽𝑥2(𝑡𝑘+1), 𝑘 = 0, 1, 2, . . .

(6.2)

This is a system of form (1.1) with 𝑛 = 2, 𝑚 = 1 and

𝐴1 =

[︂
0 1
1 0

]︂
, 𝐵1 =

[︂
0
1

]︂
, 𝐴2 =

[︀
𝛼 𝛽

]︀
, 𝐵2 = 0.

Here matrices (3.4) and (3.5) are respectively of the form

𝐴0 =

⎡⎣1 0 0
0 1 0
𝛼 𝛽 0

⎤⎦ , 𝐴′ =

⎡⎣0 1 0
1 0 1
𝛽 𝛼 𝛽

⎤⎦ .

The vectors involved in formulas (3.6) can be chosen as

𝑒1 =

⎡⎣10
𝛼

⎤⎦ , 𝑒2 =

⎡⎣01
𝛽

⎤⎦ , 𝑒*1 =

⎡⎣10
0

⎤⎦ , 𝑒*2 =

⎡⎣01
0

⎤⎦ .
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Then matrix (3.7) is of the form

𝐷 =

[︂
0 1

1 + 𝛼 𝛽

]︂
.

This matrix satisfies the condition 𝐷 < 0 if 𝛼 < −1 and 𝛽 < 0.
By Theorem 3.4 this implies that the zero solution of hybrid system (6.1) is asymptotically

stable for small ℎ > 0 if 𝛼 < −1 and 𝛽 < 0. If it least one of these inequalities holds with an
opposite sign, then the mentioned solution is unstable for all small ℎ > 0.

6.2. Doubling period bifurcation. As a second illustration we consider a problem on
bifurcations in hybrid systems under the change of the stability nature of the equilibrium.
Namely, we consider hybrid system (4.3) of form{︃

𝑥′(𝑡) = −𝑥(𝑡) + 𝑦(𝑡𝑘) + 𝑎(𝑥(𝑡), 𝑦(𝑡𝑘)), 𝑡𝑘 ⩽ 𝑡 < 𝑡𝑘+1,

𝑦(𝑡𝑘+1) = 2𝑥(𝑡𝑘+1)− 2𝑦(𝑡𝑘) + 𝑏(𝑥(𝑡𝑘+1), 𝑦(𝑡𝑘)),
(6.3)

in which the switching moments 𝑡𝑘 form on R a uniform grid (1.2) with step ℎ > 0.
Matrix (2.12) for system (6.3) reads as

𝐴(ℎ) =

[︂
𝑒−ℎ 1− 𝑒−ℎ

2𝑒−ℎ −2𝑒−ℎ

]︂
.

As ℎ = ℎ0 = ln 3 this matrix is

𝐴0 = 𝐴(ℎ0) =
1

3

[︂
1 2
2 −2

]︂
.

The matrix 𝐴0 possesses eigenvalues 𝜆1 = −1 and 𝜆2 = 2/3. As the eigenvectors 𝑒 and 𝑔 of
the matrices 𝐴0 and 𝐴*

0 associated with the eigenvalue 𝜆1 = −1 we can take the vectors

𝑒 = 𝑔 =

[︂
1
−2

]︂
.

We then have (𝐴′(ℎ0)𝑒, 𝑔) = 3 ̸= 0.
Thus, all assumptions of Theorem 5.1 for system (6.3) are satisfied and therefore, as the

parameter ℎ passes the value ℎ0 = ln 3, in the vicinity of the equilibrium 𝑥 = 0, 𝑦 = 0 of
this system there arise non-zero periodic solutions with the period 𝑇 so that 𝑇 ≈ 2 ln 3. The
bifurcation directions, that is, for what values of ℎ (smaller or greater than ℎ0) there arise
periodic solutions as well as the stability nature of periodic solutions depend on the properties
of nonlinearities 𝑎(𝑥, 𝑦) and 𝑏(𝑥, 𝑦) involved in the right hand sides of system (6.3). The
corresponding study can be done on the base of works [23] and [24].

7. Proof of main statements

7.1. Proof of Theorem 2.1. We consider an autonomous system

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦), 𝑥 ∈ R𝑛, (7.1)

depending on the parameter 𝑦 ∈ R𝑚, in which 𝑓(𝑥, 𝑦) is a smooth functions such that 𝑓(0, 0) =
0, that is, as 𝑦 = 0, system (7.1) possesses a zero equilibrium 𝑥 = 0. We suppose that for all
𝑥0 and 𝑦0 the solution 𝑥 = 𝑥(𝑡) of the Cauchy problem 𝑥′ = 𝑓(𝑥, 𝑦0), 𝑥(0) = 𝑥0, is well-defined
for all 𝑡 ⩾ 0.
In order to prove Theorem 2.1, we shall need the following auxiliary statement.
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Lemma 7.1. For all 𝜌 > 0 and ℎ > 0 there exists 𝑟, 0 < 𝑟 < 𝜌, such that if ‖𝑢0‖ < 𝑟 ,
𝑢0 = (𝑥0, 𝑦0), then the solution 𝑥(𝑡) of the Cauchy problem{︃

𝑥′ = 𝑓(𝑥, 𝑦0),

𝑥(0) = 𝑥0,
(7.2)

satisfies the inequality ‖𝑥(𝑡)‖ ⩽ 𝜌 for all 𝑡 ∈ [0, ℎ].

Proof. We argue by contradiction assuming that there exist numbers 𝜌0 > 0 and ℎ0 > 0 as well
as a sequence of vectors 𝑢𝑛 = (𝑥𝑛, 𝑦𝑛) → (0, 0) such that the solutions 𝑥𝑛(𝑡) of the Cauchy
problem {︃

𝑥′ = 𝑓(𝑥, 𝑦𝑛),

𝑥(0) = 𝑥𝑛,
(7.3)

for some 𝑡 = 𝑡𝑛 ∈ [0, ℎ0] satisfy the inequality ‖𝑥𝑛(𝑡𝑛)‖ > 𝜌0. Since (𝑥𝑛, 𝑦𝑛) → (0, 0), by
theorem on the continuous dependence of the solution of the Cauchy problem on parameters
and initial data, the solution 𝑥𝑛(𝑡) of the Cauchy problem (7.3) uniformly in 𝑡 ∈ [0, ℎ0] tends
to the solution Cauchy problems 𝑥′ = 𝑓(𝑥, 0), 𝑥(0) = 0, that is, to the function 𝑥(𝑡) ≡ 0. In
other words, max

0⩽𝑡⩽ℎ0

‖𝑥𝑛(𝑡)‖ → 0 as 𝑛 → ∞. This contradicts the inequality ‖𝑥𝑛(𝑡𝑛)‖ > 𝜌0 > 0.

The proof is complete.

We proceed to proving Theorem 2.1.

Proof. The first assertion of this theorem follows from Lemma 2.1. Let us show the validity of
the second assertion. Let the system (2.1) possesses an equilibrium point (𝑥*, 𝑦*), that is,{︃

𝑥* = 𝑈(ℎ)(𝑥*, 𝑦*),

𝑦* = 𝑔(𝑈(ℎ)(𝑥*, 𝑦*), 𝑦*).
(7.4)

The first of these identities means that the solution 𝑥 = 𝜙0(𝑡) of the Cauchy problem 𝑥′ =
𝑓(𝑥, 𝑦*), 𝑥(0) = 𝑥*, possesses the property 𝜙0(0) = 𝜙0(ℎ) = 𝑥*, that is, it is ℎ-periodic. The
second of identities (7.4) is of the form 𝑦* = 𝑔(𝑥*, 𝑦*), which means that (𝑥*, 𝑦*) is a constant
solution of the second equation in original hybrid system (1.1). Finally we get that hybrid
system (1.1) has an ℎ-periodic solution (𝜙0(𝑡), 𝑦

*).
It remains to establish the validity of the third assertion. We restrict ourselves by proving

the fact that if (𝑥*, 𝑦*) is the equilibrium of each of systems (1.1) and (2.1) and, moreover, it
is Lyapunov stable for one of these systems, then it will be stable for the other system. We
can suppose that the equilibrium (𝑥*, 𝑦*) is zero, that is, 𝑥* = 0, 𝑦* = 0. We let 𝑢 = (𝑥, 𝑦) and
𝑢* = (𝑥*, 𝑦*) = (0, 0). By ‖𝑢‖ we denote the norm of the vector 𝑢.
First let 𝑢* be the zero equilibrium of each of system (1.1) and (2.1) and let it be Lyapunov

stable for hybrid system (1.1). We are going to show that it is also Lyapunov stable for discrete
system (2.1).
Indeed, since the solution 𝑢* of hybrid system (1.1) is stable, then for each 𝜀 > 0 there exists

𝛿 > 0 such that if ‖𝑢0‖ < 𝛿, then the solution 𝑢(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) of hybrid system (1.1) (see
formula (1.3)) starting from the point 𝑢0 = (𝑥0, 𝑦0) satisfies the inequality ‖𝑢(𝑡)‖ < 𝜀 for all
𝑡 ⩾ 0. Then by Lemma 2.1 the mentioned property of the solution 𝑢* to hybrid system (1.1)
also holds for the solution 𝑢* to discrete system (2.1), that is, it is also stable.
Let hybrid system (1.1) possesses a zero equilibrium 𝑢*; then discrete system (2.1) also

possesses the same equilibrium. Let the equilibrium 𝑢* of discrete system (2.1) is Lyapunov
stable. Let us show that the equilibrium 𝑢* of hybrid system (1.1) is also Lyapunov stable.
We argue by contradiction assuming that there exist a number 𝜀0 > 0 and a sequence

𝑢𝑛 → 0 such that the solution 𝑢𝑛(𝑡) of hybrid system (1.1) starting from the point 𝑢𝑛 satisfies
the inequality ‖𝑢𝑛(𝜏𝑛)‖ ⩾ 𝜀0 for some 𝑡 = 𝜏𝑛 > 0. We let 𝜌0 = 𝜀0/2. By Lemma 7.1 for given
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𝜌0 > 0 and ℎ > 0 there exist 𝑟, 0 < 𝑟 < 𝜌0 such that if ‖𝑢0‖ < 𝑟, 𝑢0 = (𝑥0, 𝑦0), then the solution
𝑥(𝑡) of the Cauchy problem 𝑥′ = 𝑓(𝑥, 𝑦0), 𝑥(0) = 𝑥0, satisfies the inequality ‖𝑥(𝑡)‖ ⩽ 𝜌0 for all
𝑡 ∈ [0, ℎ].
By Lemma 2.1, each solution 𝑢𝑛(𝑡) of hybrid system (1.1) generates a corresponding solution

𝑢𝑘,𝑛 = (𝑥𝑘,𝑛, 𝑦𝑘,𝑛) to discrete system (2.1) so that at the time moments 𝑡 = 0, 𝑡 = ℎ, 𝑡 = 2ℎ, etc.
these solutions coincide. Each point 𝜏𝑛 is located in some interval 𝑡𝑘(𝑛) < 𝑡 < 𝑡𝑘(𝑛)+1, see grid
(1.2). Hence, the first component 𝑥𝑛(𝑡) in the solution 𝑢𝑛(𝑡) = (𝑥𝑛(𝑡), 𝑦𝑛(𝑡)) of hybrid system
(1.1) as 𝑡𝑘(𝑛) ⩽ 𝑡 < 𝑡𝑘(𝑛)+1 solves the Cauchy problem{︃

𝑥′ = 𝑓(𝑥, 𝑦𝑘(𝑛),𝑛),

𝑥(𝑡𝑘(𝑛)) = 𝑥𝑘(𝑛),𝑛.
(7.5)

Since the zero solution 𝑢* of discrete system (2.1) is stable, for each 𝜀 > 0 there exists 𝛿 > 0
such that if ‖𝑢0‖ < 𝛿, then solution 𝑢𝑘 = (𝑥𝑘, 𝑦𝑘) of hybrid system (2.1) starting from the point
𝑢0 = (𝑥0, 𝑦0) satisfies the inequality ‖𝑢𝑘‖ < 𝜀 for all 𝑘 = 0, 1, 2, . . . In what follows as 𝜀 > 0 we
choose 𝜀 = 𝑟.
Since 𝑢𝑛 → 0, we can suppose that ‖𝑢𝑛‖ < 𝛿 for all 𝑛. Then the solution 𝑢𝑘,𝑛 = (𝑥𝑘,𝑛, 𝑦𝑘,𝑛)

of discrete system (2.1) satisfies the inequality ‖𝑢𝑘,𝑛‖ < 𝑟 for all 𝑘 = 0, 1, 2, . . . and all 𝑛. By
Lemma 7.1 this implies that the solution 𝑥𝑛(𝑡) of the Cauchy problem (7.5) satisfies the inequal-
ity ‖𝑥𝑛(𝑡)‖ ⩽ 𝜌0 for all 𝑡 ∈ [𝑡𝑘(𝑛), 𝑡𝑘(𝑛)+1]. This contradicts the above inequality ‖𝑢𝑛(𝜏𝑛)‖ ⩾ 𝜀0
since it implies the inequality ‖𝑥𝑛(𝜏𝑛)‖ > 𝜌0. The proof is complete.

7.2. Proof of Lemma 2.4. By the first identity in (2.5) the operator 𝑈(ℎ) maps the vector
(𝑥0, 𝑦0) into the vector 𝑥1 = 𝑥(ℎ), where 𝑥(𝑡) is the solution of Cauchy problem (2.9), or,
equivalently, the solution of the integral equation

𝑥(𝑡) = 𝑒𝑡𝐴1𝑥0 + 𝑒𝑡𝐴1

𝑡∫︁
0

𝑒−𝑠𝐴1 [𝐵1𝑦0 + 𝑎(𝑥(𝑠), 𝑦0)] 𝑑𝑠.

Since det𝐴1 ̸= 0, the inverse matrix 𝐴−1
1 is well-defined. This is why∫︁ 𝑡

0

𝑒−𝑠𝐴1 𝑑𝑠 = 𝐴−1
1 (𝐼 − 𝑒−𝐴1𝑡).

This implies identity (2.7).

7.3. Proof of Lemma 2.5. To simplify the presentation, we restrict ourselves by considering
the case 𝑛 = 𝑚 = 1. We also restrict ourselves by proving relation (2.13) only for the first
component of the vector 𝜉(𝑢, ℎ), that is, we are going to show that

𝜀(𝑥, 𝑦;ℎ) = 𝑜(‖𝑢‖), ‖𝑢‖ → 0 ; (7.6)

here 𝑢 = (𝑥, 𝑦) and ‖𝑢‖ = |𝑥| + |𝑦|. The proof for the second component of the vector 𝜉(𝑢, ℎ)
is similar.
So, we consider system (4.3). For this system function (2.8) reads as

𝜀(𝑥0, 𝑦0;ℎ) = 𝑒ℎ𝑎1
ℎ∫︁

0

𝑒−𝑠𝑎1𝑎(𝑥(𝑠), 𝑦0) 𝑑𝑠 ; (7.7)

here 𝑥 = 𝑥(𝑡) is the solution of the Cauchy problem

𝑥′ = 𝑎1𝑥+ 𝑏1𝑦0 + 𝑎(𝑥, 𝑦0), 𝑥(0) = 𝑥0. (7.8)

To prove relation (7.6), it is sufficient to show that for each 𝛿 > 0 there exists 𝑟 > 0 such that
if |𝑥0|+ |𝑦0| < 𝑟, then

|𝜀(𝑥0, 𝑦0;ℎ)| < 𝛿(|𝑥0|+ |𝑦0|). (7.9)
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We take an arbitrary 𝛿 > 0 and by this number we determine another number 𝛿1 by two
conditions, the first being the inequality 0 < 𝛿1 < 𝛿, while the second will be provided a bit
later.
By the first of relations (2.6), for 𝛿1 there exists 𝑟1 > 0 such that if |𝑥0|+ |𝑦0| < 𝑟1, then

|𝑎(𝑥0, 𝑦0)| < 𝛿1 · (|𝑥0|+ |𝑦0|). (7.10)

By the theorem on the continuous dependence of the solution of the Cauchy problem on initial
data and parameters there exists 𝜌1 > 0 such that

|𝑥0|+ |𝑦0| < 𝜌1, (7.11)

then the solution 𝑥 = 𝑥(𝑡) of the Cauchy problem (7.8) satisfies the inequality |𝑥(𝑡)| < 𝑟1
2
for all

𝑡 ∈ [0, ℎ]. We can suppose that 𝜌1 <
𝑟1
2
. Then if inequality (7.11) holds, then |𝑥(𝑡)|+ |𝑦0| < 𝑟1

and therefore, by (7.10) we obtain

|𝑎(𝑥(𝑡), 𝑦0)| < 𝛿1(|𝑥(𝑡)|+ |𝑦0|) (7.12)

for all 𝑡 ∈ [0, ℎ].
The solution 𝑥 = 𝑥(𝑡) of Cauchy problem (7.8) satisfies the integral equation

𝑥(𝑡) = 𝑒𝑡𝑎1𝑥0 + 𝑒𝑡𝑎1
𝑡∫︁

0

𝑒−𝑠𝑎1 [𝑏1𝑦0 + 𝑎(𝑥(𝑠), 𝑦0)] 𝑑𝑠.

We let 𝑀1 = max
0⩽𝑡⩽ℎ

𝑒𝑡𝑎1 . Then

|𝑥(𝑡)| ⩽ 𝑀1

⎡⎣|𝑥0|+ |𝑏1𝑦0|ℎ+

𝑡∫︁
0

|𝑎(𝑥(𝑠), 𝑦0)|𝑑𝑠

⎤⎦ .

Under inequality (7.11) and therefore, under inequality (7.12) we have

|𝑥(𝑡)| ⩽ 𝑀1

[︂
|𝑥0|+ |𝑏1𝑦0|ℎ+ 𝛿1|𝑦0|ℎ+ 𝛿1

∫︁ 𝑡

0

|𝑥(𝑠)|𝑑𝑠
]︂
.

By Grönwall inequality, see, for instance, [25], we get

|𝑥(𝑡)| ⩽ 𝑘 exp

(︂∫︁ 𝑡

0

|𝑀1𝛿1|𝑑𝑠
)︂

⩽ 𝑘𝑒𝑀1𝛿1ℎ,

where 𝑘 = 𝑀1 [|𝑥0|+ |𝑏1𝑦0|ℎ+ 𝛿1|𝑦0|ℎ]. We let 𝑀0 = max{𝑀1, 𝑀1ℎ(|𝑏1| + 𝛿1)}. Then 𝑘 ⩽
𝑀0(|𝑥0|+ |𝑦0|). This is why under inequality (7.11)

|𝑥(𝑡)| ⩽ 𝑀0𝑒
𝑀1𝛿1ℎ(|𝑥0|+ |𝑦0|) (7.13)

for all 𝑡 ∈ [0, ℎ].
We return back to function (7.7). Under inequalities (7.11) by (7.12) and (7.13) we obtain

|𝜀(𝑥0, 𝑦0;ℎ)| ⩽ 𝑀1

ℎ∫︁
0

|𝑎(𝑥(𝑠), 𝑦0)|𝑑𝑠 ⩽ 𝑀1ℎ(𝑀0𝑒
𝑀1𝛿1ℎ + 1)(|𝑥0|+ |𝑦0|)𝛿1.

We recall that for the number 𝛿1 we should provide the second condition; the first is the
inequality 0 < 𝛿1 < 𝛿. This second condition is the inequality

𝛿1𝑀1ℎ(𝑀0𝑒
𝑀1𝛿1ℎ + 1) < 𝛿.

Then under inequality (7.11) we arrive at desired estimate (7.9). The proof of Lemma 2.5 is
complete.
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We proceed to proving Theorems 3.1–4.2. By Theorem 2.1, these theorems for hybrid systems
(1.1) and (4.3) are implied by their analogues for corresponding discrete system (2.11).

7.4. Proof of Theorem 3.1. Let 𝐴1 < 0 and |𝐵2| < 1 and let ℎ > 0 be fixed. It is sufficient
to show that if the quantities ‖𝐴2‖ and ‖𝐵1‖ are small enough, the zero equilibrium of system
(2.11) is asymptotically stable. In order to do this, by Lemma 2.5 it is sufficient to show that
if ‖𝐴2‖ and ‖𝐵1‖ are small, matrix (2.12) satisfies the condition |𝐴(ℎ)| < 1.
For small ‖𝐴2‖ and ‖𝐵1‖ the matrix 𝐴(ℎ) can be treated as a perturbation of the matrix

𝐴0(ℎ) =

[︂
𝑒𝐴1ℎ 0
0 𝐵2

]︂
.

Since 𝐴1 < 0, |𝐵2| < 1 and ℎ > 0, then |𝐴0(ℎ)| < 1. By the perturbation theory for linear
operators, see, for instance, [26], this yields that for sufficiently small ‖𝐴2‖ and ‖𝐵1‖ we have
|𝐴(ℎ)| < 1.

7.5. Proof of Theorem 3.2. It is sufficient to observe that by Lemma 2.5 an analogue of
Theorem 3.2 holds for the zero equilibrium of system (2.11).

7.6. Proof of Theorem 3.3. It is sufficient to show that if the zero solution of system (2.11)
is stable for small ℎ > 0, then |𝐵2| ⩽ 1.
We argue by contradiction assuming that the zero solution of system (2.11) is stable for small

ℎ > 0, but the matrix 𝐵2 possesses at least one eigenvalue 𝜇0 such that |𝜇0| > 1. Then matrix
(3.4) possesses an eigenvalue 𝜇0. As ℎ = 0, matrix (2.12) coincides with matrix (3.4). This is
why for small ℎ > 0 matrix (3.4) possesses an eigenvalue 𝜇(ℎ) such that |𝜇(ℎ)| > 1. Then the
zero solution of system (2.11) is unstable for small ℎ > 0. We have obtained a contradiction.

7.7. Proof of Theorem 3.4. It is sufficient to show that the zero solution of system (2.11)
is asymptotically stable for small ℎ > 0.
Since |𝐵2| < 1, by Lemma 3.1 matrix (3.4) possesses a semi-simple eigenvalue 𝜆0 = 1 of

multiplicity 𝑛. This is why the stability nature of the zero solution of discrete system (2.11)
for small ℎ > 0 is determined by the behavior of the part of the spectrum of the matrix (2.12),
which is obtained as a perturbation of the eigenvalue 𝜆0 = 1 of the matrix (3.4).
In accordance with the perturbation theory for linear operators, see, for instance, [26, Ch. II,

Sect. 5, Thm. 5.4], for small |ℎ| matrix (2.12) possesses 𝑛 eigenvalues 𝜆(𝑗)(ℎ), 𝑗 = 1, 2, . . . , 𝑛,
such that the functions 𝜆(𝑗)(ℎ) are differentiable at the point ℎ = 0 and 𝜆(𝑗)(0) = 1. These func-

tions are represented as 𝜆(𝑗)(ℎ) = 1 + ℎ𝜆
(𝑗)
1 + 𝑜(ℎ), where the coefficients 𝜆

(𝑗)
1 are the eigenvalues

of the matrix 𝐷, see [17, Thm. 3.5].
Then for 𝐷 < 0 we obtain that |𝜆(𝑗)(ℎ)| < 1 for all small ℎ > 0. Therefore, for small ℎ > 0

matrix (2.12) satisfies the condition |𝐴(ℎ)| < 1, that is, the zero solution of system (2.11) is
asymptotically stable for small ℎ > 0.

7.8. Proof of Theorem 4.1. It is sufficient to prove the statement of Theorem 4.1 for the
zero equilibrium of discrete system (2.11) as 𝑛 = 𝑚 = 1.
Matrix (2.12) here reads as

𝐴(ℎ) =

[︂
𝑒𝑎1ℎ 𝑏1

𝑎1
(𝑒𝑎1ℎ − 1)

𝑎2𝑒
𝑎1ℎ 𝑎2𝑏1

𝑎1
(𝑒𝑎1ℎ − 1) + 𝑏2

]︂
. (7.14)

The corresponding characteristic equation is

𝜆2 + 𝑎𝜆+ 𝑏 = 0, (7.15)

where

𝑎 =
𝑎2𝑏1
𝑎1

(1− 𝑒𝑎1ℎ)− 𝑏2 − 𝑒𝑎1ℎ, 𝑏 = 𝑏2𝑒
𝑎1ℎ.
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It is known, see, for instance, [21, Sect. 10.1], that both roots 𝜆1 and 𝜆2 of square equation
(7.15) satisfies the inequalities |𝜆1| < 1 and |𝜆2| < 1 if and only if |𝑏| < 1 and |𝑎| < 𝑏+ 1. This
statement and Theorem 3.2 yield the validity of Theorem 4.1.

7.9. Proof of Theorem 4.2. Under the assumptions of this theorem matrix (3.7) is the
number 𝜆1 = (𝐴′(0)𝑒, 𝑔); here 𝐴′(0) is the derivative defined by identity (7.14) of the matrix
𝐴(ℎ) at ℎ = 0 and 𝑒, 𝑔 are non-zero vectors such that the identities 𝐴(0)𝑒 = 𝑒, (𝐴(0))*𝑔 = 𝑔,

(𝑒, 𝑔) = 1 hold. Simple calculations show that the identity 𝜆1 =
𝛾

1− 𝑏2
holds. By Theorem 3.4

this implies the validity of Theorem 4.2.

7.10. Proof of Theorem 5.1. By Theorem 2.1 and Lemmas 2.2 and 2.3 it is sufficient
to show analogues of Theorems 5.1 for discrete system (2.11). In their turn, the validity of
these analogues follows from the obtained in [23, Sect. 2.2] and [24, Sects. 3.2, 3.3] sufficient
conditions for multiple equilibrium bifurcation (case of eigenvalue 1) and the doubling period
bifurcation (case of eigenvalue −1) for discrete systems of form (2.11).
In view of this we note that the results of works [23], [24] can be also employed for a detailed

study of main bifurcation scenarios of hybrid system (1.1) including the analysis of the stability
of arising solutions, determining the bifurcation form (soft or hard), calculation of Lyapunov
quantities, etc.
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