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PARTIAL ORDERS ON *-REGULAR RINGS

K.K. KUDAYBERGENOV, B.O. NURJANOV

Abstract. In this work we consider some new partial orders on *-regular rings. Let 𝒜 be a
*-regular ring, 𝑃 (𝒜) be the lattice of all projectors in 𝒜 and 𝜇 be a sharp normal normalized
measure on 𝑃 (𝒜). Suppose that (𝒜, 𝜌) is a complete metric *-ring with respect to the rank
metric 𝜌 on 𝒜 defined as 𝜌(𝑥, 𝑦) = 𝜇(𝑙(𝑥− 𝑦)) = 𝜇(𝑟(𝑥− 𝑦)), 𝑥, 𝑦 ∈ 𝒜, where 𝑙(𝑎), 𝑟(𝑎) is
respectively the left and right support of an element 𝑎. On 𝒜 we define the following three
partial orders: 𝑎 ≺𝑠 𝑏 ⇐⇒ 𝑏 = 𝑎 + 𝑐, 𝑎 ⊥ 𝑐; 𝑎 ≺𝑙 𝑏 ⇐⇒ 𝑙(𝑎)𝑏 = 𝑎; 𝑎 ≺𝑟 𝑏 ⇐⇒ 𝑏𝑟(𝑎) = 𝑎,
𝑎 ⊥ 𝑐 means algebraic orthogonality, that is, 𝑎𝑐 = 𝑐𝑎 = 𝑎*𝑐 = 𝑎𝑐* = 0. We prove that
the order topologies associated with these partial orders are stronger than the topology
generated by the metric 𝜌. We consider the restrictions of these partial orders on the subsets
of projectors, unitary operators and partial isometries of *-regular algebra 𝒜. In particular,
we show that these three orders coincide with the usual order ⩽ on the lattice of the
projectors of *-regular algebra. We also show that the ring isomorphisms of *-regular rings
preserve partial orders ≺𝑙 and ≺𝑟.
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1. Introduction

In their famous work [1], G. Birkhoff and J. von Neumann showed that the set of statements of
quantum mechanics possesses algebraic properties different from boolean algebra, namely, they
have a structure of orthomodular lattice. The field of regular von Neumann rings is a part of
non-commutative ring theory, which was originally introduced by von Neumann for clarifying
some aspects of operator algebras [2], [3]. This mostly motivated the developing of regular
rings as well as a series of other connections with the functional analysis of two main types:
constructions of regular rings associated with operator algebras and complete complemented
modular lattices, as well as by structural analogies between regular rings and operator algebras.
The survey of modern state-of-art of orthomodular algebras can be found in works [4], [5]. There
is a series of works devoted to the star order and topologies of von Neumann algebras [6], [7].
In works [6] a topology generated by the star order on von Neumann algebras was studied
and it was proved that the order topology is finer that 𝜎-strong* topology. It was also shown
that the order topology coincides with the convergence topology in the norm if and only if the
von Neumann algebra is finite-dimensional. In work [8] the authors studied the order topology
on the Hermitian part of the von Neumann algebra and they provided the characterization of
many important properties of von Neumann algebras like finiteness, sigma-finiteness, finiteness
and atomicity, from the point of view how the order topology is compared with other known
topologies on the von Neumann algebras.
In the present work we introduce some new order relations on *-regular in von Neumann

sense rings. The work is organized as follows. In the second section we collect some basic
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facts on *-regular in the von Neumann sense rings, the measures on the lattice of projectors of
*-regular algebras and Murray-von Neumann algebras. In the third section we introduce some
new partial orders on *-regular rings. Let 𝒜 be a *-regular ring and 𝑎, 𝑏 ∈ 𝒜. On 𝒜 we define
the following three partial orders:

(1) 𝑎 ≺𝑠 𝑏 ⇐⇒ 𝑏 = 𝑎+ 𝑐, 𝑎 ⊥ 𝑐;
(2) 𝑎 ≺𝑙 𝑏 ⇐⇒ 𝑙(𝑎)𝑏 = 𝑎;
(3) 𝑎 ≺𝑟 𝑏 ⇐⇒ 𝑏𝑟(𝑎) = 𝑎.

We prove that if 𝒜 is a *-regular algebra with a rank-metrics 𝜌, then the order topologies
associated with these partial orders are stronger than the topology generated by the metrics 𝜌.
We also consider the restrictions of these partial orders on the subsets of projectors, unitary
operators and partial isometries of the *-regular algebra 𝒜.

2. *-regular rings

In this section we provide a preliminary information on *-regular rings and Murray-von
Neumann algebras from works [3], [9], [10].
A ring𝒜 is called a *-ring (or a ring with an involution) if there exists an operation * : 𝒜 → 𝒜

such that for all 𝑎, 𝑏 ∈ 𝒜 the following identities hold:

(𝑎*)* = 𝑎, (𝑎+ 𝑏)* = 𝑎* + 𝑏*, (𝑎𝑏)* = 𝑏*𝑎*.

We recall that an element 𝑒 of a *-ring 𝒜 is called a projector if 𝑒2 = 𝑒 = 𝑒*.
A ring 𝒜 is called regular if for each 𝑥 ∈ 𝒜 there exists an element 𝑦 ∈ 𝒜 such that 𝑥𝑦𝑥 = 𝑥.

An involution * in 𝒜 is called proper if the identity 𝑥*𝑥 = 0 implies 𝑥 = 0 for each 𝑥 ∈ 𝒜. A
*-ring 𝒜 is called *-regular if this is a regular ring with a proper involution.
Let 𝒜 be a *-regular ring. Then there exists a unique projector 𝑟(𝑥) such that

(1) 𝑥𝑟(𝑥) = 𝑥;
(2) 𝑥𝑦 = 0 if and only if 𝑟(𝑥)𝑦 = 0.

Similarly, there exists a unique projector 𝑙(𝑥) such that

(3) 𝑙(𝑥)𝑥 = 𝑥;
(4) 𝑦𝑥 = 0 if and only if 𝑦𝑙(𝑥) = 0.

The projectors 𝑟(𝑥) and 𝑙(𝑥) are respectively called a right and a left projector of 𝑥. A projector
𝑠(𝑥) = 𝑙(𝑥) ∨ 𝑟(𝑥) is called a support of an element 𝑥.
Let 𝒜 be a *-regular ring and let 𝑃 (𝒜) be a lattice of all projectors in 𝒜, that is, 𝑃 (𝒜) =

{𝑝 ∈ 𝒜 : 𝑝2 = 𝑝 = 𝑝*} . A real-valued function 𝜇 on 𝑃 (𝒜) is called a normal exact normalized
measure if

(1) 0 ⩽ 𝜇(𝑝) ⩽ 1;
(2) 𝜇(0) = 0, 𝜇(1) = 1;
(3) 𝜇(𝑝 ∨ 𝑞) + 𝜇(𝑝 ∧ 𝑞) = 𝜇(𝑝) + 𝜇(𝑞);
(4) 𝑝 ⩽ 𝑞 ⇒ 𝜇(𝑝) ⩽ 𝜇(𝑞);
(5) if 𝑝𝑖 ↑ 𝑝, then 𝜇(𝑝𝑖) ↑ 𝜇(𝑝).

We consider a so-called rank-metrics 𝜌 on 𝒜 defined as follows

𝜌(𝑥, 𝑦) = 𝜇(𝑙(𝑥− 𝑦)), 𝑥, 𝑦 ∈ 𝒜, (2.1)

see [3, Lm. 18.1].
One of the important classes of *-regular algebras are Murray-von Neumann algebras, for

more details see [11]–[15].
Let 𝐻 be a Hilbert space, 𝐵(𝐻) be a *-algera of all bounded linear operators in 𝐻 and ℳ

be a finite von Neumann algebra in 𝐵(𝐻).
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A closed linear operator 𝑥 : dom(𝑥) → 𝐻 with a dense domain (here the domain dom(𝑥) of
an operator 𝑥 is a dense linear subspace in 𝐻) is called adjoint to ℳ if 𝑦𝑥 ⊂ 𝑥𝑦 for each 𝑦 from
the commutant ℳ′ of the algebra ℳ. We denote by 𝑆(ℳ) the set of all operators adjoint to
ℳ. It is well known that 𝑆(ℳ) is a unital *-regular algebra over C, see [16], [17]. An algebra
𝑆(ℳ) is called Murray-von Neumann algebra associated with ℳ [12].
Let 𝜏 be the exact normal finite trace on ℳ and 𝜌 be the rank metrics on 𝑆(ℳ) defined

as in (2.1). According to [18, Prop. 2.1], the algebra 𝑆(ℳ) with the metrics 𝜌 is a complete
topological *-ring. Ring isomorphisms of the algebra 𝑆(ℳ) and of their *-subalgebras in the
case of algebras of type II1 were described in works [19], [20].
Letℳ be a finite von Neumann algebra. Let 𝑎 = 𝑣|𝑎| be a polar decomposition of an element

𝑎 ∈ 𝑆(ℳ). Then 𝑙(𝑎) = 𝑣𝑣* and 𝑟(𝑎) = 𝑣*𝑣 are the left and right support of the element 𝑎,
respectively. The projector 𝑠(𝑎) = 𝑙(𝑎) ∨ 𝑟(𝑎) is the support of the element 𝑎. There exists a
unique element 𝑖(𝑎) in 𝑆(ℳ) such that 𝑎𝑖(𝑎) = 𝑙(𝑎), 𝑖(𝑎)𝑎 = 𝑟(𝑎), 𝑎𝑖(𝑎)𝑎 = 𝑎, 𝑖(𝑎)𝑙(𝑎) = 𝑖(𝑎)
and 𝑟(𝑎)𝑖(𝑎) = 𝑖(𝑎). An element 𝑖(𝑎) is called partially inverse to the element 𝑎, see [9], [15].

3. Partial orders on *-regular rings

3.1. Partial orders. In this subsection𝒜 is a *-regular ring with a rank-metrics 𝜌.Moreover,
we assume that (𝒜, 𝜌) is a complete metric *-ring.
Let 𝑎, 𝑏 ∈ 𝒜. We say that 𝑎 is algebraically orthogonal to 𝑏 if

𝑎𝑏 = 𝑏𝑎 = 𝑎*𝑏 = 𝑎𝑏* = 0;

this is denoted as 𝑎 ⊥ 𝑏. In particular, if 𝑎, 𝑏 ∈ 𝒜ℎ = {𝑥 ∈ 𝒜 : 𝑥 = 𝑥*} , then 𝑎 is algebraically
orthogonal to 𝑏 if and only if 𝑎𝑏 = 0.
We observe that 𝑎 is algebraically orthogonal to 𝑏 if and only if 𝑠(𝑎)𝑠(𝑏) = 0. Indeed, assume

that 𝑠(𝑎)𝑠(𝑏) = 0. Then

𝑟(𝑎)𝑙(𝑏) = 𝑟(𝑏)𝑙(𝑎) = 𝑙(𝑎)𝑙(𝑏) = 𝑟(𝑎)𝑟(𝑏) = 0

and therefore, 𝑎𝑏 = 𝑏𝑎 = 𝑎*𝑏 = 𝑎𝑏* = 0.
If 𝑎 and 𝑏 are algebraically orthogonal, this implies that

𝑟(𝑎)𝑙(𝑏) = 𝑟(𝑏)𝑙(𝑎) = 𝑙(𝑎)𝑙(𝑏) = 𝑟(𝑎)𝑟(𝑏) = 0.

Thus, 𝑙(𝑎) ⩽ 1 − 𝑙(𝑏) and 𝑟(𝑎) ⩽ 1 − 𝑙(𝑏) and therefore, 𝑠(𝑎) ⩽ 1 − 𝑙(𝑏). Hence, 𝑠(𝑎)𝑙(𝑏) = 0.
Similarly, 𝑠(𝑎)𝑟(𝑏) = 0. Thus, 𝑙(𝑏) ⩽ 1− 𝑠(𝑎) and 𝑟(𝑏) ⩽ 1− 𝑠(𝑎) and therefore 𝑠(𝑏) ⩽ 1− 𝑠(𝑎).
Hence, 𝑠(𝑎)𝑠(𝑏) = 0.
For elements 𝑎, 𝑏 ∈ 𝒜 we let

𝑎 ≺𝑠 𝑏 ⇐⇒ 𝑏 = 𝑎+ 𝑐, 𝑎 ⊥ 𝑐,

𝑎 ≺𝑙 𝑏 ⇐⇒ 𝑙(𝑎)𝑏 = 𝑎,

𝑎 ≺𝑟 𝑏 ⇐⇒ 𝑏𝑟(𝑎) = 𝑎.

Lemma 3.1. Let 𝑎, 𝑏 ∈ 𝒜. Then

𝑎 ≺𝑠 𝑏 if and only if 𝑠(𝑎)𝑏 = 𝑏𝑠(𝑎) = 𝑎. (3.1)

Proof. Suppose that 𝑎 ≺𝑠 𝑏. In this case 𝑏 = 𝑎 + 𝑐, where 𝑎, 𝑐 ∈ 𝒜 are such that 𝑠(𝑎)𝑠(𝑐) = 0.
Then

𝑠(𝑎)𝑏 = 𝑠(𝑎)(𝑎+ 𝑐) = 𝑠(𝑎)𝑎+ 𝑠(𝑎)𝑐 = 𝑎

and

𝑏𝑠(𝑎) = (𝑎+ 𝑐)𝑠(𝑎) = 𝑎𝑠(𝑎) + 𝑐𝑠(𝑎) = 𝑎.
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Now we assume that 𝑠(𝑎)𝑏 = 𝑏𝑠(𝑎) = 𝑎. Then

𝑙(𝑎) = 𝑙(𝑏𝑠(𝑎)) ⩽ 𝑙(𝑏) ⩽ 𝑠(𝑏) and 𝑟(𝑎) ⩽ 𝑟(𝑠(𝑎)𝑏) ⩽ 𝑟(𝑏) ⩽ 𝑠(𝑏).

Therefore, 𝑠(𝑎) = 𝑙(𝑎) ∨ 𝑟(𝑎) ⩽ 𝑠(𝑏) ∨ 𝑠(𝑏) = 𝑠(𝑏).
We consider a Pierce decomposition 𝑏 = 𝑒𝑏𝑒+𝑒𝑏𝑓+𝑓𝑏𝑒+𝑓𝑏𝑓, where 𝑒 = 𝑠(𝑎) and 𝑓 = 1−𝑠(𝑎).

Since 𝑠(𝑎)𝑏 = 𝑏𝑠(𝑎) = 𝑎, this implies that 𝑒𝑏𝑒 = 𝑎, 𝑒𝑏𝑓 = 𝑓𝑏𝑒 = 0. Thus, 𝑏 = 𝑎 + 𝑐, where
𝑐 = 𝑓𝑏𝑓. Since 𝑠(𝑎)𝑠(𝑐) = 𝑒𝑠(𝑐) = 𝑒(𝑓𝑠(𝑐)) = 𝑒𝑓𝑠(𝑐) = 0, we have 𝑎 ≺𝑠 𝑏. The proof is
complete.

Lemma 3.2. Let 𝑎, 𝑏 ∈ 𝒜. Then

𝑎 ≺𝑠 𝑏 ⇒ 𝑎 ≺𝑙 𝑏 ⇔ 𝑎* ≺𝑟 𝑏
*. (3.2)

Proof. Let 𝑎 ≺𝑠 𝑏, that is, 𝑠(𝑎)𝑏 = 𝑏𝑠(𝑎) = 𝑎. Hence, we have

𝑎 = 𝑙(𝑎)𝑎 = 𝑙(𝑎)𝑠(𝑎)𝑏 = 𝑙(𝑎)𝑏,

that is, 𝑎 ≺𝑙 𝑏.
Since 𝑟(𝑎*) = 𝑙(𝑎), it follows that 𝑎 ≺𝑙 𝑏 ⇔ 𝑎* ≺𝑟 𝑏

*. The proof is complete.

Lemma 3.3. A relation ≺, where ≺∈ {≺𝑠,≺𝑙,≺𝑟}, is a partial order on 𝒜, that is,

(1) 𝑥 ≺ 𝑥;
(2) 𝑥 ≺ 𝑦, 𝑦 ≺ 𝑥 ⇒ 𝑥 = 𝑦;
(3) 𝑥 ≺ 𝑦, 𝑦 ≺ 𝑧 ⇒ 𝑥 ≺ 𝑧.

Proof. We check the statement of the lemma for the case ≺𝑙 . The cases ≺𝑠 and ≺𝑟 are similar.
Property (1) is obvious. We note that it follows from 𝑎 ≺𝑙 𝑏 that

𝑙(𝑎) ⩽ 𝑙(𝑏). (3.3)

Indeed, 𝑙(𝑎) = 𝑙(𝑏𝑟(𝑎*)) ⩽ 𝑙(𝑏).
We take elements 𝑥, 𝑦 ∈ 𝒜 such that 𝑥 ≺𝑙 𝑦, 𝑦 ≺𝑙 𝑥. Then 𝑙(𝑥) ⩽ 𝑙(𝑦) and 𝑙(𝑦) ⩽ 𝑙(𝑥), that

is, 𝑙(𝑥) = 𝑙(𝑦). We then have

𝑥 = 𝑙(𝑥)𝑦 = 𝑙(𝑦)𝑦 = 𝑦.

Let 𝑥 ≺𝑙 𝑦 and 𝑦 ≺𝑙 𝑧. Then

𝑙(𝑥) ⩽ 𝑙(𝑦), 𝑙(𝑦) ⩽ 𝑙(𝑧).

Thus,

𝑥 = 𝑙(𝑥)𝑦 = 𝑙(𝑥)(𝑙(𝑦)𝑧) = 𝑙(𝑥)𝑙(𝑦)𝑧 = 𝑙(𝑥)𝑧.

Hence, 𝑥 ≺𝑙 𝑧. The proof is complete.

In the general case, the opposite to the first implication in (3.2) is wrong. Let 𝒜 be a *-
regular ring containing the ring of the matrices of order 2.We take nonzero mutually orthogonal
equivalent projectors 𝑝, 𝑞 ∈ 𝒜 and an element 𝑢 ∈ 𝒜 such that 𝑢*𝑢 = 𝑝, 𝑢𝑢* = 𝑞. We let 𝑎 = 𝑢*

and 𝑏 = 𝑢* + 𝑢. Then

𝑙(𝑎) = 𝑝, 𝑟(𝑎) = 𝑞, 𝑠(𝑎) = 𝑝+ 𝑞.

This implies

𝑙(𝑎)𝑏 = 𝑙(𝑎)(𝑢* + 𝑢) = 𝑝(𝑢* + 𝑢) = 𝑝𝑢* = 𝑎.

Thus, 𝑎 ≺𝑙 𝑏. But

𝑠(𝑎)𝑏 = (𝑝+ 𝑞)𝑏 = 𝑏 ̸= 𝑎,

and hence, 𝑎 ≺𝑠 𝑏 is wrong.
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We observe that
𝑎 ≺𝑠 𝑏 ⇒ 𝑎𝑏 = 𝑏𝑎 = 𝑎2. (3.4)

Indeed, for elements 𝑎 and 𝑏 obeying the condition 𝑎 ≺𝑠 𝑏 by employing (3.1) we have

𝑎𝑏 = (𝑎𝑠(𝑎))𝑏 = 𝑎(𝑠(𝑎)𝑏) = 𝑎2 = (𝑏𝑠(𝑎))𝑎 = 𝑏𝑎.

We mention that the binary relation ⩽ on 𝒜 is a partial order [4, Exm. 1.6.7]:

𝑎 ⩽ 𝑏 if and only if 𝑎𝑏 = 𝑏𝑎 = 𝑎2.

In the general case, the opposite for the implication in (3.4) is wrong. Let 𝒜 be a *-regular
ring containing a factor of type I3. We take nonzero mutually orthogonal equivalent projectors
𝑝, 𝑞, 𝑟 ∈ 𝒜 and elements 𝑎, 𝑏 ∈ 𝒜 such that 𝑎*𝑎 = 𝑝, 𝑎𝑎* = 𝑞, 𝑏 = 𝑟. Then

𝑎𝑏 = 𝑏𝑎 = 0 = 𝑎2,

but the inequality 𝑎 ≺𝑠 𝑏 is wrong.
It should be noted that

(𝑎 ≺𝑙 𝑏) ∧ (𝑎 ≺𝑟 𝑏) ⇒ 𝑎𝑎* = 𝑏𝑎*, 𝑎*𝑎 = 𝑎*𝑏.

Indeed, for elements 𝑎 and 𝑏 obeying the condition 𝑎 ≺𝑙 𝑏 we have

𝑏𝑎* = 𝑏𝑙(𝑎*)𝑎* = 𝑏𝑟(𝑎)𝑎* = 𝑎𝑎*,

and it follows from inequality 𝑎 ≺𝑟 𝑏 that

𝑎*𝑏 = 𝑎*𝑟(𝑎*)𝑏 = 𝑎*𝑙(𝑎)𝑏 = 𝑎*𝑎.

We note that the binary relation ⪯ on 𝒜 defined as

𝑎 ⪯ 𝑏 ⇔ 𝑎𝑎* = 𝑏𝑎*, 𝑎*𝑎 = 𝑎*𝑏

is a partial order [6], [7], [21], [22]. This order is called a star order, which comes from the
matrix analysis and it was introduced for *-semigroups by M.P. Drazin in work [21].

3.2. Order topology. In this subsection we consider order topology on a *-regular ring 𝒜
generated by partial orders ≺𝑠, ≺𝑙 and ≺𝑟 .
The notion of order convergence of a net was introduced by G. Birkhoff, see [1]. We recall the

notion of the order topology or (𝑜)-topology, for more details see [1], [23]. Let ≺∈ {≺𝑠,≺𝑙,≺𝑟}.
Fro the net {𝑥𝛼}𝛼∈𝐴 ⊂ 𝒜 the notion 𝑥𝛼 ↑ 𝑥 (respectively, 𝑥𝛼 ↓ 𝑥), where 𝑥 ∈ 𝒜, means that
𝑥𝛼 ≺ 𝑥𝛽 (respectively, 𝑥𝛽 ≺ 𝑥𝛼) for 𝛼 ⩽ 𝛽 and 𝑥 = sup

𝛼∈𝐴
𝑥𝛼 (respectively, 𝑥 = inf

𝛼∈𝐴
𝑥𝛼). A net

{𝑥𝛼}𝛼∈𝐴 ⊂ 𝒜 is called (𝑜)-converging to an element 𝑥 in 𝒜, which is denoted as 𝑥𝛼
(𝑜)→ 𝑥, if

there exist nets {𝑦𝛼}𝛼∈𝐴 and {𝑧𝛼}𝛼∈𝐴 from 𝒜 such that 𝑦𝛼 ≺ 𝑥𝛼 ≺ 𝑧𝛼 for each 𝛼 ∈ 𝐴 and
𝑦𝛼 ↑ 𝑥, 𝑧𝛼 ↓ 𝑥. A strongest topology on 𝒜, for which (𝑜)-convergence of the nets implies their
convergence in the topology is called an order topology or (𝑜)-topology and is denoted 𝑡𝑜(≺).
Let 𝑡𝜌 be a topology on 𝒜 generated by the rank metrics 𝜌.

Theorem 3.1. Let 𝒜 be a *-regular ring with a rank metrics 𝜌 such that (𝒜, 𝜌) is a complete
metric *-ring. Then the order topology 𝑡𝑜(≺) is stronger than 𝑡𝜌.

In order to prove the theorem, it is sufficient to show that each net {𝑥𝛼} ⊂ 𝒜, which (𝑜)-
converges to zero, also converges to zero in the topology 𝑡𝜌. We are going to show this in the
following two lemmata.

Lemma 3.4. Let {𝑥𝛼}𝛼∈𝐴 ⊂ (𝒜,≺) be an increasing (respectively, decreasing) net, where
≺∈ {≺𝑠,≺𝑙,≺𝑟}. Then there exists 𝑥 ∈ 𝒜 such that

(1) 𝑥 = sup
𝛼∈𝐴

𝑥𝛼 ∈ 𝒜 (respectively, 𝑥 = inf
𝛼∈𝐴

𝑥𝛼 ∈ 𝒜);
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(2) 𝑠(𝑥) = sup
𝛼∈𝐴

𝑠(𝑥𝛼) (respectively, 𝑠(𝑥) = inf
𝛼∈𝐴

𝑠(𝑥𝛼));

(3) 𝑥𝛼
𝜌→ 𝑥.

Proof. Let us prove the three required statements in the case ≺𝑙 . The cases ≺𝑠 and ≺𝑟 can be
studied in a similar way.
Let {𝑥𝛼}𝛼∈𝐴 ⊂ (𝒜,≺) be an increasing net. Since 𝑥𝛼 ≺ 𝑥𝛽 for all 𝛼 ⩽ 𝛽, this implies that

𝑙(𝑥𝛼) ⩽ 𝑙(𝑥𝛽), see (3.3). Therefore, there exists a projector 𝑙 = sup
𝛼∈𝐴

𝑙(𝑥𝛼). Then

𝜏(𝑙(𝑥𝛽 − 𝑥𝛼)) = 𝜏(𝑙(𝑥𝛽 − 𝑙(𝑥𝛼)𝑥𝛽)) = 𝜏(𝑙((𝑙(𝑥𝛽)− 𝑙(𝑥𝛼))𝑥𝛽))

⩽ 𝜏(𝑙(𝑥𝛽)− 𝑙(𝑥𝛼)) ⩽ 𝜏(𝑙 − 𝑙(𝑥𝛼)) → 0.

We then have

𝜌(𝑥𝛽, 𝑥𝛼) = 𝜏(𝑙(𝑥𝛽 − 𝑥𝛼)) → 0.

This means that {𝑥𝛼}𝛼∈𝐴 is a Cauchy net. Since (𝒜, 𝜌) is complete, there exists an element

𝑥 ∈ 𝒜 such that 𝜌(𝑥𝛼, 𝑥) → 0, that is, 𝑥𝛼
𝜌→ 𝑥.

First we are going to show that 𝑥𝛼 ≺ 𝑥 for all 𝛼 ∈ 𝐴.
Let 𝛾 ∈ 𝐴 be a fixed index. For all 𝛼 ⩾ 𝛾 we have 𝑙(𝑥𝛾)𝑥𝛼 = 𝑥𝛾 since 𝑥𝛾 ≺ 𝑥𝛼. Since the

multiplication in 𝒜 is 𝜌-continuous, this implies that 𝑙(𝑥𝛾)𝑥𝛼
𝜌→ 𝑙(𝑥𝛾)𝑥. Thus, 𝑙(𝑥𝛾)𝑥 = 𝑥𝛾 and

therefore 𝑥𝛾 ≺ 𝑥, in particular, 𝑙(𝑥𝛼) ⩽ 𝑙(𝑥) for all 𝛼 ∈ 𝐴.

Since 𝑥𝛼
𝜌→ 𝑥, 𝑙(𝑥𝛼) ⩽ 𝑙(𝑥) for all 𝛼 ∈ 𝐴, this implies that 𝑙(𝑥) = sup

𝛼∈𝐴
𝑙(𝑥𝛼).

We take an element 𝑦 ∈ 𝒜 such that 𝑥𝛼 ≺ 𝑦 and let us show that 𝑥 ≺ 𝑦. We have

𝑙(𝑥𝛼)𝑦 = 𝑥𝛼

for all 𝛼 ∈ 𝐴. Thus,

𝑙(𝑥𝛼)𝑦 = 𝑙(𝑥𝛼)𝑥

for all 𝛼 ∈ 𝐴. Since 𝑙(𝑥) = sup
𝛼∈𝐴

𝑙(𝑥𝛼), then

𝑙(𝑥)𝑦 = 𝑥.

This means that 𝑥 ≺ 𝑦 and therefore, 𝑥 = sup
𝛼∈𝐴

𝑥𝛼. The proof is complete.

Let 𝑦 ≺ 𝑥 ≺ 𝑧. Then

𝜌(𝑥, 𝑧) ⩽ 𝜌(𝑦, 𝑧) and 𝜌(𝑦, 𝑥) ⩽ 𝜌(𝑦, 𝑧). (3.5)

Let us prove the first inequality. Using the identity

𝑙(𝑥)𝑦 = 𝑥,

we obtain that

𝜌(𝑥, 𝑧) = 𝜏(𝑙(𝑧 − 𝑥)) = 𝜏(𝑙(𝑧 − 𝑙(𝑥)𝑧)) = 𝜏(𝑙((𝑙(𝑧)− 𝑙(𝑥))𝑧))

⩽ 𝜏(𝑙((𝑙(𝑧)− 𝑙(𝑦))𝑧)) ⩽ 𝜏(𝑙(𝑧 − 𝑦)) = 𝜌(𝑦, 𝑧).

Lemma 3.5. If 𝑥𝛼
(𝑜)→ 𝑥, then 𝑥𝛼

𝜌→ 𝑥.

Proof. Let 𝑥𝛼
(𝑜)→ 𝑥. Then there exist nets {𝑦𝛼}𝛼∈𝐴 and {𝑧𝛼}𝛼∈𝐴 such that 𝑦𝛼 ≺ 𝑥𝛼 ≺ 𝑧𝛼 for

each 𝛼 ∈ 𝐴 and 𝑦𝛼 ↑ 𝑥, 𝑧𝛼 ↓ 𝑥. By Statement (3) in Lemma 3.4 we have 𝑦𝛼
𝜌→ 𝑥 and 𝑧𝛼

𝜌→ 𝑥.
Employing these relations, we obtain

𝜌(𝑥𝛼, 𝑥) ⩽ 𝜌(𝑥𝛼, 𝑦𝛼) + 𝜌(𝑦𝛼, 𝑥)
(3.5)

⩽ 𝜌(𝑧𝛼, 𝑦𝛼) + 𝜌(𝑦𝛼, 𝑥)
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⩽ 𝜌(𝑧𝛼, 𝑥) + 𝜌(𝑥, 𝑦𝛼) + 𝜌(𝑦𝛼, 𝑥) → 0,

that is, 𝑥𝛼
𝜌→ 𝑥. The proof is complete.

Remark 3.1. We observe that if 𝒜 is a finite-dimensional *-regular algebra with a rank-
metrics 𝜌, then both topologies 𝑡𝑜 and 𝑡𝜌 are discrete. Indeed, since 𝒜 is finite-dimensional, then
the set of all values of the function 𝜌 is finite. Therefore, the topology 𝑡𝜌 is discrete. Moreover,
since 𝑡𝑜 should be stronger than 𝑡𝜌, this implies that the order topology is also discrete.

3.3. Restriction of order on lattice of projectors and set of partial isometries. Let
𝒜ℎ be the subset of all Hermitian elements in 𝒜 and 𝒜+ be the cone of all positive elements
in 𝒜ℎ, that is, 𝒜+ = {𝑥 ∈ 𝒜ℎ : 𝑥 = 𝑦2, 𝑦 ∈ 𝒜ℎ} . Let ⩽ be the usual order on 𝒜ℎ, that is, for
𝑥, 𝑦 ∈ 𝒜ℎ the inequality 𝑥 ⩽ 𝑦 means that 𝑦 − 𝑥 ∈ 𝒜+.
Partial orders ≺𝑠, ≺𝑙 and ≺𝑟 on the set 𝑃 (𝒜) of all projectors from 𝒜 coincide with the usual

order ⩽ .
Indeed, let 𝑝, 𝑞 ∈ 𝑃 (𝒜) be such that 𝑝 ≺𝑖 𝑞, where 𝑖 ∈ {𝑠, 𝑙, 𝑟}. Since 𝑠(𝑝) = 𝑙(𝑝) = 𝑟(𝑝) = 𝑝,

it follows from identities 𝑙(𝑝)𝑞 = 𝑞𝑟(𝑝) = 𝑝 that 𝑝𝑞 = 𝑞𝑝 = 𝑝 and this means that 𝑝 ⩽ 𝑞.
And vice versa, if 𝑝 ⩽ 𝑞 for 𝑝, 𝑞 ∈ 𝑃 (𝒜), this implies that 𝑝𝑞 = 𝑞𝑝 = 𝑝. Hence, 𝑝 ≺𝑖 𝑞,

𝑖 ∈ {𝑠, 𝑙, 𝑟}.
We denote by 𝒢𝒰(𝒜) the set of all partial isometries in 𝒜, that is,

𝒢𝒰(𝒜) = {𝑤 ∈ 𝒜 : 𝑤 = 𝑤𝑤*𝑤} .
We observe that 𝑙(𝑤) = 𝑤𝑤* and 𝑟(𝑤) = 𝑤*𝑤 are left and right supports for 𝑤 ∈ 𝒢𝒰(𝒜).
On the set 𝒢𝒰(𝒜) we can define a partial order as follows:

𝑢 ⩽𝑙 𝑣 ⇔ 𝑢𝑢* ⩽ 𝑣𝑣*, 𝑢 = 𝑢𝑢*𝑣.

It is clear that

𝑢 ⩽𝑟 𝑣 ⇔ 𝑢*𝑢 ⩽ 𝑣*𝑣, 𝑢 = 𝑣𝑢*𝑢

also defines a partial order on the set 𝒢𝒰(𝒜) and

𝑢 ⩽𝑙 𝑣 ⇔ 𝑢* ⩽𝑟 𝑣
*.

This means that the restrictions of partial orders ≺𝑙 and ≺𝑟 on 𝒢𝒰(𝒜) coincide with partial
orders ⩽𝑙 and ⩽𝑟, respectively.

3.4. Ring isomorphisms: order preserving mappings. Now we are going to show that
the ring isomorphisms preserve the partial orders ≺𝑙 and ≺𝑟 .

Proposition 3.1. Let 𝒜, ℬ be *-regular rings and Φ : 𝒜 → ℬ be a ring isomorphism. Then

1. 𝑥 ≺𝑙 𝑦 if and only if Φ(𝑥) ≺𝑙 Φ(𝑦).
2. 𝑥 ≺𝑟 𝑦if and only if Φ(𝑥) ≺𝑟 Φ(𝑦).

Proof. It is sufficient to consider the case ≺𝑙 . The case ≺𝑟 is similar.
Let 𝑥 ≺𝑙 𝑦, that is,

𝑙(𝑥)𝑦 = 𝑥. (3.6)

We have

Φ(𝑙(𝑥)) = Φ(𝑥𝑖(𝑥)) = Φ(𝑥)Φ(𝑖(𝑥))

and this is why

𝑙 (Φ(𝑙(𝑥))) ⩽ 𝑙 (Φ(𝑥)) .

Then

Φ(𝑥) = Φ(𝑙(𝑥)𝑥) = Φ(𝑙(𝑥))Φ(𝑥).
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Therefore,

𝑙 (Φ(𝑥)) ⩽ 𝑙 (Φ(𝑙(𝑥)))

and

𝑙 (Φ(𝑥)) = 𝑙 (Φ(𝑙(𝑥))) . (3.7)

Finally, we have

𝑙 (Φ(𝑥)) Φ(𝑦)
(3.7)
= 𝑙 (Φ(𝑙(𝑥))) Φ(𝑦) = 𝑙 (Φ(𝑙(𝑥))) Φ (𝑙(𝑥)) Φ(𝑦)

= 𝑙 (Φ(𝑙(𝑥))) Φ (𝑙(𝑥)𝑦)
(3.6)
= 𝑙 (Φ(𝑙(𝑥))) Φ (𝑥)

(3.7)
= 𝑙 (Φ(𝑥)) Φ (𝑥) = Φ (𝑥) .

This means that Φ(𝑥) ≺𝑙 Φ(𝑦).
Since Φ is a ring isomorphism, this yields that the inverse implication also holds. The proof

is complete.
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