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ASYMPTOTIC EXPANSION OF SOLUTION TO

DIRICHLET PROBLEM IN PERFORATED DOMAIN:

STRANGE TERM CASE

D.I. BORISOV

Abstract. We consider an elliptic operator in a multi-dimensional space periodically per-
forated by closely spaced small cavities. The coefficients of the differential expression are
varying and infinitely differentiable functions bounded uniformly with all their derivatives.
For the coefficients at higher derivatives a uniform ellipticity condition is supposed. On the
boundaries of the cavities we impose the Dirichlet condition. The sizes of the cavities and
the distances between them are characterized by two small parameters. They are chosen
to ensure the appearance of a strange term under the homogenization, which is an addi-
tional potential in the homogenized operator. The main result of the work is the scheme
for constructing two-parametric asymptotics for the resolvent of the considered operator
and its application for determining the leading terms in the asymptotics. The scheme is
based on a combination of the multi-scaled method and the method of matching asymptotic
expansions. The former is used to take into consideration the distribution of the cavities,
while the latter takes into account the geometry of the cavities and the Dirichlet condition
on its boundary.
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1. Introduction

Elliptic problems in perforated domains are one of the classical models in the modern ho-
mogenization theory. The issues on convergence of solutions to such problems are actively
studied, we only mention the classical monographs [4], [8]. Classical convergence results are
formulated in terms of strong and weak convergence of solutions of perturbed problems to the
homogenized ones for given right-hand sides of the considered equations. In recent years, an
interest in these problems increased again in connection with proving the operator estimates
for them, in which the 𝐿2- or 𝑊

1
2 -norm of the difference between solutions of the perturbed and

homogenized problems is estimated in terms of the 𝐿2-norm of the right-hand side multiplied by
a small function, the form of which is determined by the geometry and perforation parameters.
Estimates of this kind were established in a series of recent papers [2], [10]–[16], [22] for various
perforation geometries.
Apart of the convergence issues, a separate interesting line of research is the construction of

asymptotic expansions of solutions, including the case of complete asymptotic expansions. For
the case of perforation along a given manifold, complete asymptotic expansions were constructed
in very recent papers [2], [3]. In book [4, Ch. III, §6.5], as well as in the papers [17], [19]–[21],
the case of strictly periodic perforation over the entire space was considered, with dimensions
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holes and the distance between them were proportional to the same small parameter. The
construction of asymptotic expansions was based on the use of the multiscale method.
In this paper, we again consider the problem of constructing an asymptotic expansion for

the resolvent of a general second order elliptic operator in a periodically perforated domain.
However, we suppose that the sizes of the holes and the distances between them are described
by two small positive parameters 𝜀 and 𝜂. The distances between the holes are described by
the parameter 𝜀, and the holes have a size 𝜀𝜂. The parameter 𝜂 is considered to depend on
𝜀 and the condition 𝜀−2𝜂𝑛−2(𝜀) → 𝑎 with some constant 𝑎 is imposed on it. This condition
describes the critical hole size at which the occurrence of a strange term is guaranteed under
the homogenization: this is the name of the additional potential arising in the homogenized
operator. The condition on 𝜂 is not strict in the sense that it does not fix the form of this
function, but only its behavior as 𝜀 → +0. Therefore, in fact, we are dealing with a problem
described by two small parameters. The main result of the paper is a scheme for formal
construction of the asymptotic expansion of the action of the resolvent of the operator under
consideration on a function from the space𝑊∞

2 (R𝑛). The expansion is constructed with respect
to two small parameters, 𝜀 and 𝜂, and is two-parametric. This scheme is used to determine
the first few terms of the asymptotics. We also discuss issues related to the construction of a
complete asymptotic expansion and the difficulties that arise along the way.

2. Formulation of problem and main results

Let 𝑥 = (𝑥1, . . . , 𝑥𝑛) be Cartesian coordinates in R𝑛, 𝑛 ⩾ 3, 𝐴𝑖𝑗 = 𝐴𝑖𝑗(𝑥), 𝐴𝑗 = 𝐴𝑗(𝑥),
𝐴0 = 𝐴0(𝑥) be some functions defined on R𝑛 and satisfying the following conditions:

𝐴𝑖𝑗, 𝐴𝑗, 𝐴0 ∈ 𝐶∞(R𝑛),
𝜕𝛼𝐴𝑖𝑗

𝜕𝑥𝛼
,
𝜕𝛼𝐴𝑗

𝜕𝑥𝛼
,
𝜕𝛼𝐴0

𝜕𝑥𝛼
∈ 𝐿∞(R𝑛), 𝛼 ∈ Z𝑛

+,

𝐴𝑗𝑖 = 𝐴𝑖𝑗,
𝑛∑︁

𝑖,𝑗=1

𝐴𝑖𝑗(𝑥)𝜉𝑖𝜉𝑗 ⩾ 𝑐0

𝑛∑︁
𝑗=1

|𝜉𝑗|2, 𝑥 ∈ R𝑛, 𝜉𝑖 ∈ C,
(2.1)

where 𝑐0 is some positive constant independent of 𝑥 and 𝜉𝑖. The functions 𝐴𝑖𝑗 are real, while
the functions 𝐴𝑗, 𝐴0 are complex-valued.
Let 𝜔 ⊂ R𝑛 be some bounded domain with an infinitely differentiable boundary. In the space

R𝑛 we make a fine periodic perforation as follows:

Ω𝜀 := R𝑛 ∖ 𝜃𝜀, 𝜃𝜀 :=
⋃︁

𝑧∈Z𝑛

(𝜀𝑧 + 𝜀𝜂𝜔).

Here 𝜀 is a small positive parameter and 𝜂 = 𝜂(𝜀) is a positive function such that

lim
𝜀→+0

𝜀−2𝜂𝑛−2(𝜀) = 𝑎, (2.2)

where 𝑎 ⩾ 0 is some fixed constant.
In a perforated domain Ω𝜀 we define an operator ℋ𝜀 with the differential expression

ℋ̂ := −
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

𝐴𝑖𝑗(𝑥)
𝜕

𝜕𝑥𝑗

+
𝑛∑︁

𝑗=1

𝐴𝑗
𝜕

𝜕𝑥𝑗

+ 𝐴0

and the Dirichlet condition on 𝜕𝜃𝜀. Rigorously we define it as the 𝑚-sectorial operator in the
space 𝐿2(Ω

𝜀), which, by the first representation theorem [7, Ch. VI, Sect. 2.1], corresponds to
a closed sectorial sesquilinear form

h𝜀(𝑢, 𝑣) :=
𝑛∑︁

𝑖,𝑗=1

(︂
𝐴𝑖𝑗

𝜕𝑢

𝜕𝑥𝑗

,
𝜕𝑣

𝜕𝑥𝑗

)︂
𝐿2(Ω𝜀)

+
𝑛∑︁

𝑗=1

(︂
𝐴𝑗

𝜕𝑢

𝜕𝑥𝑗

, 𝑣

)︂
𝐿2(Ω𝜀)

+ (𝐴0𝑢, 𝑣)𝐿2(Ω𝜀)
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in the space 𝐿2(Ω
𝜀) on the domain D(h𝜀) := 𝑊̊ 1

2 (Ω
𝜀), where 𝑊̊ 1

2 (Ω
𝜀) is the subspace of the

Sobolev space 𝑊 1
2 (Ω

𝜀) consisting of the functions with the zero trace on the boundary. By
means of the standard smoothness improving theorems for elliptic boundary value problems, it
is easy to confirm that the domain of the operatorℋ𝜀 is of the formD(ℋ𝜀) := 𝑊 2

2 (Ω
𝜀)∩𝑊̊ 1

2 (Ω
𝜀).

The main aim of the present work is to construct asymptotic expansion for the resolvent of
the operator ℋ𝜀 for small 𝜀 in the case when it acts on sufficiently smooth functions.
The convergence of the resolvents of the operators of form ℋ𝜀 was studied in recent work [11]

and the application of main theorems from [11] to our case gives the following result. Let ℋ0

be one more 𝑚-sectorial operator but now in the space 𝐿2(R
𝑛) with the differential expression

ℋ̂. We again define this operator via the corresponding sectorial form by means of the first
representation theorem; its domain is the space 𝑊 2

2 (R
𝑛).

We introduce the matrix

A(𝑥) :=

⎛⎝𝐴11(𝑥) . . . 𝐴1𝑛(𝑥)
...

...
𝐴𝑛1(𝑥) . . . 𝐴𝑛𝑛(𝑥)

⎞⎠ .

By 𝑋 = 𝑋(𝜁, 𝑥) we denote the solution to the boundary value problem

div𝜁 A(𝑥)∇𝜁𝑋 = 0 in R𝑛 ∖ 𝜔, 𝑋 = 0 on 𝜕𝜔,

𝑋(𝜁, 𝑥) = 1 +𝐾(𝑥)|A− 1
2 (𝑥)𝜁|−𝑛+2 +𝑂

(︀
|𝜁|−𝑛+1

)︀
, 𝜉 → ∞,

(2.3)

where 𝐾 = 𝐾(𝑥) is some function. It was shown in paper [11] that this function is uniformly
bounded and non-positive. We denote:

𝑉0(𝑥) := (2− 𝑛)mes𝑛−1 S𝑛−1
√︀

detA(𝑥)𝐾(𝑥),

where S𝑛−1 is the unit sphere in the space R𝑛, and mes𝑛−1 is the measure on the manifolds in R𝑛

of codimension one. Later in the work we show that the function 𝑉0 is infinitely differentiable
in 𝑥 ∈ R𝑑 and together with all its derivatives it belongs to the space 𝐿∞(R𝑑).
According to the main results of paper [11], there exists a fixed number 𝜆0 independent of

𝜀 > 0 such that the half-plane Re𝜆 < 𝜆0 is a part of the resolvent set of the operators ℋ𝜀 and
ℋ0 and for all 𝑓 ∈ 𝐿2(R

𝑑) the estimate

‖(ℋ𝜀 − 𝜆)−1𝑓 − (ℋ0 + 𝑎𝑉0 − 𝜆)−1𝑓‖𝐿2(Ω𝜀) ⩽ 𝐶𝜀‖𝑓‖𝐿2(Ω) (2.4)

holds true with a constant 𝐶 independent of 𝜀, 𝜂 and 𝑓 .
Our main result reads as follows.

Theorem 2.1. Let 𝑓 ∈ 𝑊∞
2 (R𝑑). Then the leading terms of the asymptotic expansions of

the action of the resolvent 𝑢𝜀 = (ℋ𝜀 − 𝜆)−1𝑓 are of the form

𝑢𝜀(𝑥) = 𝑈𝑒𝑥

(︁𝑥
𝜀
, 𝑥, 𝜀, 𝜂, 𝜇

)︁ (︀
1− 𝜒𝜀(𝑥)

)︀
+ 𝑈𝑖𝑛

(︂
𝑥

𝜀𝜂
, 𝑥, 𝜀, 𝜂, 𝜇

)︂
𝜒𝜀(𝑥) +𝑂(𝜀𝜂1+

2
𝑛 ) (2.5)

in the norm of 𝑊 1
2 (R

𝑛) and

𝑢𝜀(𝑥) = 𝑈𝑒𝑥

(︁𝑥
𝜀
, 𝑥, 𝜀, 𝜂, 𝜇

)︁ (︀
1− 𝜒𝜀(𝑥)

)︀
+ 𝑈𝑖𝑛

(︂
𝑥

𝜀𝜂
, 𝑥, 𝜀, 𝜂, 𝜇

)︂
𝜒𝜀(𝑥) +𝑂(𝜀2𝜂1+

2
𝑛 ) (2.6)
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in the norm of 𝐿2(R
𝑛). Here we denote

𝑈𝑒𝑥(𝑥, 𝜉, 𝜂, 𝜇) := 𝑢0(𝑥, 𝜇) + 𝜀
𝑛−1∑︁
𝑗=0

𝜂𝑗𝑢1,𝑗(𝑥, 𝜇) + 𝜀2𝑢2,0(𝜉, 𝑥, 𝜇) + 𝜀2𝜂𝑢2,1(𝜉, 𝑥, 𝜇),

𝑈𝑖𝑛(𝜁, 𝑥, 𝜀, 𝜂𝜇) := 𝑣0,0(𝜁
(𝑧), 𝑥, 𝜇) + 𝜀

𝑛−1∑︁
𝑗=0

𝜂𝑗𝑣1,𝑗(𝜁
(𝑧), 𝑥, 𝜇)

+ 𝜀2𝑣2,0(𝜁
(𝑧), 𝑥, 𝜇) + 𝜀2𝜂𝑣2,1(𝜁

(𝑧), 𝑥, 𝜇),

(2.7)

𝜒𝜀(𝑥) :=
∑︁
𝑧∈Z𝑛

𝜒(|𝑥𝜀−1 − 𝑧|𝜂−
2
𝑛 ), 𝜇 := 𝜀−2𝜂𝑛−2,

and 𝜒 = 𝜒(𝑡) is an infinitely differentiable cut-off function equalling to one as |𝑡| < 1 and
vanishing as |𝑡| > 2. The function 𝑢0(𝑥, 𝜇) := (ℋ0 + 𝜇𝑉0 − 𝜆)−1𝑓 is an element of the space
𝑊∞

2 (R𝑛) and is holomorphic in 𝜇 in the norm of this space. The function 𝑣0 reads as 𝑣0(𝜁, 𝜇) :=
𝑢0(𝑥, 𝜇)𝑋(𝜁, 𝑥). Other functions in (2.7) are determined in Section 3.2.

Let us briefly discuss the main results of the paper. The considered model is an elliptic
operator in a periodically perforated domain, and the cavities have a critical size. Namely, the
distance between the holes and their linear size are related by identity (2.2) and it leads to the
appearance of a strange term: this name is used for the potential 𝑎𝑉0 arising in the homoge-
nized operator, see (2.4). In this important case we construct an asymptotic expansion of the
resolvent, namely, the first terms in the expansion. To be able to construct the asymptotics,
we have to assume that the right side of 𝑓 , on which the resolvent acts, is sufficiently smooth,
namely, it is an element of the space 𝑊∞

2 (R𝑛). In fact, our main result is a formal scheme
for constructing an asymptotic expansion presented in Section 3.2. This scheme is based on a
combination of the multiscale method [1] and the method of matching asymptotic expansions
[6]. In this case, the multiscale method is used to take into account the periodic structure
of the distribution of holes and it is used to construct the external expansion of 𝑈𝑒𝑥, while
the matching method gives the internal expansion of 𝑈𝑖𝑛 and is used to take into account the
geometry of the cavities and the boundary condition on their boundaries.
In the paper, this scheme is used to determine the first terms of the asymptotics, which are

presented in Theorem 2.1. It can also be used to construct a complete asymptotic expansion
under the assumptions of Theorem 2.1. At the same time, the question of determining the
structure of this expansion turned out to be unexpectedly difficult. Namely, the first difficulty
is connected with the presence of two small parameters 𝜀 and 𝜂, albeit connected by condition
(2.2). It is clear that the asymptotics include power terms in 𝜀 and 𝜂 and, most likely, it consists
of terms of the form 𝜀𝑝𝜂𝑞 with 𝑞 = 0, . . . , 𝑛 − 1. Another point is related to the fact that in
matching the outer and inner expansions one has to use both the fundamental solution of the
Laplace operator in R𝑛, see (3.3), and the solutions of chain of equations (3.4). This chain
actually means that the fundamental solution is used as the right hand side in the Poisson
equation, then the solution of such equation is again substituted into the right hand side of the
new Poisson equation, and so on. As formulae (3.5) show, only power functions appear in odd
dimensions, but logarithms also appear in even ones. Exactly these logarithms in matching in
the formal construction of asymptotics give rise to the need to introduce additional terms of
the form 𝜀𝑝𝜂𝑞 ln𝑘 𝜂 into the formal asymptotics. And a clarification of the dependence of the
asymptotics on ln 𝜂 in even dimensions is a separate non-trivial problem. One of the possible
answers is a simple polynomial dependence on ln 𝜂, that is, when for given 𝑝 and 𝑞 the degree
of the logarithm changes from zero to some finite value depending on 𝑝 and 𝑞 . Another option,
by analogy with asymptotic constructions for dimension two, is asymptotics with terms of the
form 𝜀𝑝𝜂𝑞𝑢𝑝,𝑞, where the coefficients 𝑢𝑝,𝑞 meromorphically depend on ln−1 𝜂. The third aspect
is related to the presence of an additional parameter 𝜇. As it turned out, even the first term
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of the outer expansion of 𝑢0 nontrivially depends on 𝜇, namely, it is holomorphic with respect
to this parameter. Therefore, in the process of constructing a complete expansion, it is also
necessary to track the dependence of 𝜇 on this parameter, and, most likely, the holomorphic
dependence on the parameter 𝜇 will remain valid for other terms of the complete asymptotic
expansion. In view of this, the problem of constructing a complete asymptotic expansion should
be considered separately for even and odd dimensions, and it may well turn out that the case of
dimension 𝑛 = 2 is distinguished and requires a separate study. A separate difficulty, primarily
of a technical nature, is to track the structure of the asymptotics at zero for the outer expansion
functions and the asymptotics at infinity for the inner expansion functions. We postpone the
study of these questions about the complete asymptotic expansion for future work, and in this
article, as already mentioned above, we demonstrate the formal construction scheme itself.

3. Construction of asymptotics

For a given function 𝑓 ∈ 𝑊∞
2 (R𝑛), the action of the resolvent of the operator ℋ𝜀 on this

function gives a function 𝑢𝜀(𝑥) := (ℋ𝜀 − 𝜆)−1𝑓 , which solves the boundary value problem

(ℒ − 𝜆)𝑢𝜀 = 𝑓 in Ω𝜀, 𝑢𝜀 = 0 on 𝜕𝜃𝜀. (3.1)

In the present section we construct a formal asymptotic expansion for the solution to this
problem under the assumptions of Theorem 2.1. At the same time, the choice of the number 𝜆
ensures the unique solvability of this problem owing to the results in work [11].
The scheme of constructing the asymptotics is based on a combination of the method of

matching asymptotic expansions [6] and the multiscaled method [1]. First we prove two auxil-
iary lemmata, which will be used in the formal construction of the asymptotics.

3.1. Auxiliary lemmata. Here we provide auxiliary lemmata, which will be used for study-
ing the problems for the coefficients in the formal asymptotics expansions, which will be con-
structed in the next section. In fact, we consider two model auxiliary problems. The first is
posed in the periodicity cell □ := (−1

2
, 1
2
)𝑛:

− div𝜉 A(𝑥)∇𝜉𝑢 = ℎ in □ ∖ {0} (3.2)

with periodic boundary conditions on 𝜕□. At a point 𝜉 = 0 the function ℎ has a singularity,
which will be described later and this generates a singularity of the solution to this problem.
We denote:

𝐸0(𝑡) :=
1

(2− 𝑛)𝑡𝑛−2mes𝑛−1 S𝑛−1
. (3.3)

By 𝐸𝑗 = 𝐸𝑗(𝑡), 𝑡 ⩾ 1, we denote the sequence of solutions of a recurrent system of equations

1

𝑡𝑛−1

𝑑

𝑑𝑡
𝑡𝑛−1𝑑𝐸𝑗

𝑑𝑡
= 𝐸𝑗−1. (3.4)

This sequence can be found explicitly:

𝐸𝑗(𝑡) = 𝑐𝑗𝑡
−𝑛+2+2𝑗

for odd 𝑛 and

𝐸𝑗(𝑡) = 𝑐𝑗𝑡
−𝑛+2+2𝑗, 𝑗 <

𝑛

2
− 1, 𝐸𝑛

2
−1(𝑡) = 𝑐𝑛

2
−1 ln 𝑡,

𝐸𝑗(𝑡) = 𝑡−𝑛+2+2𝑗𝑐𝑗(ln 𝑡), 𝑗 ⩾
𝑛

2
,

(3.5)

for even 𝑛. Here 𝑐𝑗 are some non-zero constants for all 𝑗 as 𝑛 is odd and 𝑗 ⩽ 𝑛
2
− 1 as 𝑛 is even.

For 𝑗 ⩾ 𝑛
2
and even 𝑛 the symbols 𝑐𝑗 denote some polynomials of the first degree.
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Let us describe the smoothness of the function ℎ. We suppose that this is an infinitely
differentiable in □ ∖ {0} function satisfying periodic boundary conditions together with all its
derivatives and having the following asymptotic expansion at zero:

ℎ(𝜉, 𝑥) = 𝐹0(A
− 1

2 (𝑥)𝜉, 𝑥) + 𝐹1(A
− 1

2 (𝑥)𝜉, 𝑥) +𝑂
(︀
|A− 1

2 (𝑥)𝜉|−𝑛+𝑀+3
)︀
, 𝜉 → 0, (3.6)

𝐹0(𝜍, 𝑥) =
𝑚∑︁
𝑗=0

ℒ𝑝(𝑥)𝐸𝑗(|𝜍|), ℒ𝑝(𝑥) :=
∑︁
𝛾∈Z𝑛

+

|𝛾|⩽𝑀𝑗

𝛼𝑗,𝛾(𝑥)
𝜕𝛾

𝜕𝜍𝛾
,

𝑀 := min{2𝑗 −𝑀𝑗, 𝑗 = 0, . . . ,𝑚},

(3.7)

where 𝑀𝑗 are the order of the differential expressions ℒ𝑝(𝑥), the coefficients 𝛼𝑗,𝛾(𝑥) of which
belong to the space 𝑊∞

2 (R𝑛), while 𝑚 is some given natural number; we additionally assume
that 𝑀 ⩾ 𝑛− 2. The function 𝐹1 = 𝐹1(𝜍, 𝑥) is a polynomial in 𝜍 of degree at most 2𝑀 − 𝑛+2
with the coefficients depending on 𝑥 and belonging to the space 𝑊∞

2 (R𝑛). We suppose that
asymptotics (3.6) is infinitely differentiable in 𝜉 and 𝑥.

We treat the function ℎ(𝜉, 𝑥)−𝐹0(A
− 1

2 (𝑥)𝜉, 𝑥) as a mapping of the space R𝑛 into𝑊𝑀−𝑛+3
2 (□)

acting by the rule

𝑥 ↦→ ℎ(𝜉, 𝑥)− 𝐹0(A
− 1

2 (𝑥)𝜉, 𝑥) (3.8)

and suppose that it belongs to the space 𝑊∞
2 (R𝑛) consisting of 𝑊𝑀−𝑛+3

2 (□)-valued functions
defined on R𝑛.

Lemma 3.1. Problem (3.2) has a unique solution infinitely differentiable in 𝜉 ∈ (□ ∖ {0})×
R𝑛 with the asymptotics

𝑢(𝜉, 𝑥) =𝑈0(A
− 1

2 (𝑥)𝜉, 𝑥) + 𝑈1(A
− 1

2 (𝑥)𝜉, 𝑥)

+ 𝑏(𝑥)𝐺(|A− 1
2 (𝑥)𝜉|) +𝑂

(︀
|A− 1

2 (𝑥)𝜉|𝑀−𝑛+5
)︀
, 𝜉 → 0,

𝑈0(𝜍, 𝑥) :=
𝑚+1∑︁
𝑗=1

ℒ𝑝(𝑥)𝐸𝑗(|𝜍|), (3.9)

where 𝑈1 = 𝑈1(𝜍, 𝑥) is a polynomial in 𝜍 of degree at most 𝑀 − 𝑛 + 4 with the coefficients
depending on 𝑥 and belonging to the space 𝑊∞

2 (R𝑛) and satisfying the conditions

−∆𝜍𝑈1 = 𝐹1. (3.10)

The function 𝑏(𝑥) reads as

𝑏(𝑥) = lim
𝑟→0

⎛⎜⎜⎝ 1√︀
detA(𝑥)

∫︁
□∖{𝜉: |A− 1

2 (𝑥)𝜉|<𝑟}

𝑓(𝜉, 𝑥) 𝑑𝜉 +

∫︁
{𝜍: |𝜍|=𝑟}

𝜕𝑈0

𝜕|𝜍|
(𝜍, 𝑥) 𝑑𝑠

⎞⎟⎟⎠ , (3.11)

where the limit is well-defined and the belonging 𝑏 ∈ 𝑊∞
2 (R𝑛) holds. The function

𝑢(𝜉, 𝑥)− 𝑈0(A
− 1

2 (𝑥)𝜉, 𝑥)− 𝑏(𝑥)𝐸0(|A− 1
2 (𝑥)𝜉|)

considered as a mapping of the space R𝑛 into 𝑊𝑀−2
2 (□) acting by the rule

𝑥 ↦→ 𝑢(𝜉, 𝑥)− 𝑈0(A
− 1

2 (𝑥)𝜉, 𝑥)− 𝑏(𝑥)𝐸0(|A− 1
2 (𝑥)𝜉|) (3.12)

belongs to the space 𝑊∞
2 (R𝑛) consisting of 𝑊𝑀−𝑛+5

2 (□)-valued functions defined on R𝑛. The
general solution of problem (3.2) differs from the described one by an arbitrary function de-
pending only on 𝑥.
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Proof. Since 𝐹1 is a polynomial in the variable 𝜍, then the polynomial 𝑈1 satisfying conditions
(3.10) is constructed elementary. Let 𝜒1 = 𝜒1(𝜉) be an infinitely differentiable cut-off function
equalling to one as |𝜉| < 1

5
and vanishing as |𝜉| > 2

5
. We seek a solution to problem (3.2) as

𝑢(𝜉, 𝑥) =
(︀
𝑈̃(A− 1

2 (𝑥)𝜉, 𝑥) + 𝑏(𝑥)𝐸0(|𝜍|)
)︀
𝜒1(A

− 1
2 (𝑥)𝜉) + 𝑢̃(𝜉, 𝑥),

𝑈̃(𝜍, 𝑥) := 𝑈0(𝜍, 𝑥) + 𝑈1(𝜍, 𝑥), (3.13)

where 𝑏(𝑥) is some function. Since by construction the function 𝑈(𝑥, 𝜍) is infinitely differentiable
in (𝜉, 𝑥) ∈ (□ ∖ {0})×R𝑛, for the function 𝑢̃ we get the boundary value problem

− div𝜉 A∇𝜉𝑢̃ = ℎ̃ in □, ℎ̃ := ℎ− 𝜒1𝐹 + 2∇𝜉𝜒1 · A∇𝜉𝑈̃ + 𝑈̃ div𝜉 A∇𝜉𝜒1, (3.14)

with periodic boundary conditions and a right hand side belonging at least to the space
𝑊𝑀−𝑛+3

2 (□) by asymptotics (3.6). The solvability condition of such problem is standard:

0 =

∫︁
□

ℎ̃ 𝑑𝜉 = lim
𝑟→0

∫︁
□∖{𝜉: |A− 1

2 (𝑥)𝜉|<𝑟}

(︀
ℎ+ div𝜉 A∇𝜉𝜒1𝑈̃ + 𝑏(𝑥) div𝜉 A∇𝜉𝐸0𝜒1

)︀
𝑑𝜉

= lim
𝑟→0

(︃ ∫︁
□∖{𝜉: |A− 1

2 (𝑥)𝜉|<𝑟}

ℎ 𝑑𝜉 +
√
detA

∫︁
{︀
𝜍: 𝑟<|𝜍|< 2

5

}︀ ∆𝜍

(︀
𝑈̃(𝑥, 𝜍) + 𝑏(𝑥)𝐸0(|𝜍|)

)︀
𝑑𝜍

)︃

= lim
𝑟→0

(︃ ∫︁
□∖{𝜉: |A− 1

2 (𝑥)𝜉|<𝑟}

ℎ 𝑑𝜉 −
√
detA

∫︁
{𝜍: |𝜍|=𝑟}

𝜕𝑈0

𝜕|𝜍|
(𝑥, 𝜍) 𝑑𝑠

)︃

− 𝑏(𝑥)
√︀
detA(𝑥) lim

𝑟→0

∫︁
{𝜍: |𝜍|=𝑟}

𝜕𝐺

𝜕|𝜍|
(𝜍) 𝑑𝑠

= lim
𝑟→0

(︃ ∫︁
□∖{𝜉: |A− 1

2 (𝑥)𝜉|<𝑟}

ℎ 𝑑𝜉 +
√
detA

∫︁
{𝜍: |𝜍|=𝑟}

𝜕𝑈0

𝜕|𝜍|
(𝑥, 𝜍) 𝑑𝑠

)︃
− 𝑏(𝑥)

√︀
detA(𝑥),

which implies formula (3.11). In the same way we obtain one more formula 𝑏:

0 =

∫︁
□

ℎ̃ 𝑑𝜉

=

∫︁
□

(︀
ℎ− 𝜒1𝐹 + 2∇𝜉𝜒1 · A∇𝜉𝑈̃ + 𝑈̃ div𝜉 A∇𝜉𝜒1

)︀
𝑑𝜉 + 𝑏(𝑥)

√
detA

∫︁
{︀
𝜍: 𝑟<|𝜍|< 2

5

}︀ ∆𝜍𝐸0(|𝜍|) 𝑑𝜍

=

∫︁
□

(︀
ℎ− 𝜒1𝐹 + 2∇𝜉𝜒1 · A∇𝜉𝑈̃ + 𝑈̃ div𝜉 A∇𝜉𝜒1

)︀
𝑑𝜉 − 𝑏(𝑥)

√︀
detA(𝑥),

and this yields

𝑏(𝑥) =
1√︀

detA(𝑥)

∫︁
□

(︀
ℎ− 𝜒1𝐹 + 2∇𝜉𝜒1 · A∇𝜉𝑈̃ + 𝑈̃ div𝜉 A∇𝜉𝜒1

)︀
𝑑𝜉.

By this formula, an explicit form of the function 𝐹1 and an assumed smoothness of the function
ℎ as mapping (3.8) we immediately obtain that the function 𝑏 belongs to the space 𝑊∞

2 (R𝑛).
For the functions 𝑢 ∈ 𝑊 1

2 (□) with the zero mean over □ an obvious estimate

(A(𝑥)∇𝜉𝑢,∇𝜉𝑢)𝐿2(□)

‖𝑢‖2𝐿2(□)

⩾ 𝑐0
‖∇𝜉𝑢‖2𝐿2(□)

‖𝑢‖2𝐿2(□)

⩾ 𝑐1
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holds, where 𝑐1 is some constant independent of 𝑥 and 𝑢. This estimate ensures the unique
solvability of problem (3.14) for all 𝑓 ∈ 𝐿2(□) with the zero means in the subspace of the
functions in 𝑊 2

2 (□) satisfying periodic boundary conditions and having a zero mean. At the

same time, the operator mapping 𝑓 into the mentioned solution is bounded uniformly in 𝑥 ∈ R𝑛.
Standard smoothness improving theorems for solutions to elliptic boundary value problems then
immediately ensure that this operator is bounded uniformly in 𝑥 ∈ R𝑛 as acting into the space
𝑊𝑀−𝑛+5

2 (□). This fact allows us to differentiate problem (3.14) in 𝑥 obtaining in this way
similar problems for the derivatives of the solution in 𝑥 and estimating then them in the norms
of the space 𝑊𝑀−𝑛+5

2 (□). Returning then back to the function 𝑢, we immediately obtain its
required smoothness as of mapping (3.12). Since the general solution to homogeneous problem
(3.2) (with 𝑓 = 0) is constant in the variable 𝜉, the statement on the general solution of the
inhomogeneous problem is obvious. The proof is complete.

The second model problem is outer in the domain R𝑛 ∖ 𝜔:
− div𝜁 A(𝑥)∇𝜁𝑢 = 𝑔 in R𝑛 ∖ 𝜔, 𝑢 = 0 on 𝜕𝜔. (3.15)

Here 𝑔 = 𝑔(𝜁, 𝑥) is an infinitely differentiable in (𝜁, 𝑥) ∈ (R𝑛 ∖ 𝜔) × R𝑛 function with the
following asymptotics at infinity:

𝑔(𝜁, 𝑥) = 𝐹0(A
− 1

2 (𝑥)𝜁, 𝑥) + 𝐹1(A
− 1

2 (𝑥)𝜁, 𝑥) +𝑂(|A− 1
2 (𝑥)𝜁|𝑀−𝑛+1),

where the functions 𝐹0, 𝐹1 and the number 𝑀 are same as in (3.7), while the number 𝑀
is assumed to satisfy the inequality 𝑀 ⩽ −2. This asymptotics is supposed to be infinitely
differentiable in (𝜁, 𝑥) ∈ (R𝑛 ∖ 𝜔)×R𝑛.
For given numbers 𝑘 ∈ Z and 𝑝 ∈ Z+ by C𝑝,𝑘 we denote the subspaces of the functions in

𝐶∞(R𝑛∖), for which the following norms are finite:

‖𝑢‖C𝑝,𝑘 :=
∑︁
𝛼∈Z𝑛

+

|𝛼|⩽𝑝

sup
R𝑛∖𝜔

(|𝜁|+ 1)𝑘+𝑝

⃒⃒⃒⃒
𝜕𝛼𝑢

𝜕𝜁𝛼
(𝜁)

⃒⃒⃒⃒
.

Let 𝜒2 = 𝜒2(𝜁) be an infinitely differentiable cut-off function vanishing on some fixed ball
containing the domain 𝜔 and the origin and equalling to one outside some bigger ball. For the
function 𝑔 we additionally suppose that the mapping of the space R𝑛 into C𝑝,𝑛−𝑀−1+𝑝 acting
by rule

𝑥 ↦→ 𝑔(𝜁, 𝑥)−
(︁
𝐹0(A

− 1
2 (𝑥)𝜁, 𝑥) + 𝐹1(A

− 1
2 𝜁, 𝑥)

)︁
𝜒2(𝜁)

belongs to the space 𝑊∞
2 (R𝑛) consisting of C𝑝,𝑛−𝑀−1+𝑝-valued functions defined on R𝑛 for all

𝑝 ∈ Z+.

Lemma 3.2. Problem (3.15) has a unique solution infinitely differentiable in (𝜁, 𝑥) ∈ (R𝑛 ∖
𝜔)×R𝑛 with the asymptotics

𝑢(𝜁, 𝑥) =𝑈0(A
− 1

2 (𝑥)𝜁, 𝑥) + 𝑈1(A
− 1

2 (𝑥)𝜁, 𝑥)

+ 𝑈2(|A− 1
2 (𝑥)𝜁|) +𝑂

(︀
|A− 1

2 (𝑥)𝜁|𝑀−𝑛+3
)︀
, 𝜉 → 0,

where 𝑈0, 𝑈1 are same as in (3.9), while the function 𝑈2(𝜍, 𝑥) reads as

𝑈2(𝜍, 𝑥) =
∑︁
𝛼∈Z𝑛

+

|𝛼|⩽|𝑀 |−1

𝑏𝛼(𝑥)
𝜕𝛼

𝜕𝜍𝛼
𝐸0(|𝜍|), (3.16)

where 𝑏𝛼 are some functions in 𝑊∞
2 (R𝑛). The function

𝑢(𝜁, 𝑥)−
(︁
𝑈0(A

− 1
2 (𝑥)𝜁, 𝑥) + 𝑈1(A

− 1
2 (𝑥)𝜁, 𝑥) + 𝑈2(A

− 1
2 (𝑥)𝜁, 𝑥)

)︁
𝜒1(𝜁)
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considered as a mapping of the space R𝑛 into C𝑝,𝑛−𝑀−3+𝑝(R𝑛 ∖ 𝜔) acting by the rule

𝑥 ↦→ 𝑢(𝜁, 𝑥)−
(︁
𝑈0(A

− 1
2 (𝑥)𝜁, 𝑥) + 𝑈1(A

− 1
2 (𝑥)𝜁, 𝑥) + 𝑈2(A

− 1
2 (𝑥)𝜁, 𝑥)

)︁
𝜒1(𝜁)

belongs to the space 𝑊∞
2 (R𝑛) consisting of C𝑝,𝑛−𝑀−3+𝑝(R𝑛 ∖ 𝜔)-valued functions defined on R𝑛

for all 𝑝 ∈ Z+.

Proof. We seek a solution to problem (3.15) as

𝑢(𝜁, 𝑥) = 𝑢̃(𝜁, 𝑥) + 𝑈̃(A− 1
2 (𝑥)𝜁, 𝑥)𝜒2(𝜁),

where 𝑈̃ is from (3.13). Then for the function 𝑢̃ we obtain the problem

− div𝜁 A(𝑥)∇𝜁 𝑢̃ = 𝑔 in R𝑛 ∖ 𝜔̃, 𝑢̂ = 0 on 𝜕𝜔, (3.17)

where we have denoted

𝑔(𝜁, 𝑥) :=𝑔 −
(︁
𝐹0(A

− 1
2 (𝑥)𝜁, 𝑥) + 𝐹1(A

− 1
2 𝜁, 𝑥)

)︁
𝜒2(𝜁)

+ 2∇𝜁𝜒2(𝜁) · A(𝑥)∇𝜁𝑈̃(A− 1
2 (𝑥)𝜁) + 𝑈̃(A− 1

2 𝜁, 𝑥) div𝜉 A∇𝜉𝜒1(𝜁).

The base of the following proof is the usage of the Kelvin transform. Namely, let 𝜁0 be some
internal point of the set 𝜔. We introduce the Kelvin transform as follows:

𝑢̂(𝜁) := |𝜁|−𝑛+2𝑢̃
(︀
𝜁0 + 𝜁|𝜁|−2

)︀
, 𝜁 := |A− 1

2 (𝑥)(𝜁 − 𝜁0)|−2A− 1
2 (𝑥)(𝜁 − 𝜁0).

Under such change, the domain 𝜔 is mapped into some unbounded domain 𝜔̂ depending on 𝑥
and containing the vicinity of the infinity, while problem (3.15) is transformed into a boundary
value problem in a bounded domain R𝑛 ∖ 𝜔̂:

−∆𝜁 𝑢̂ = 𝑔 in R𝑛 ∖ 𝜔̂, 𝑢̂ = 0 on 𝜕𝜔, 𝑔(𝜁) := |𝜁|−𝑛−2𝑔
(︀
𝜁0 + 𝜁|𝜁|−2

)︀
. (3.18)

The above conditions for the function 𝑔 imply immediately that the function 𝑔 is infinitely
differentiable everywhere in R𝑛∖ 𝜔̃ except for the origin, and at the origin it has the smoothness
at least 𝐶 |𝑀 |−2+𝜗 with an arbitrary 𝜗 ∈ (0, 1)0.
Although the domain 𝜔̃ depends on the variable 𝑥, this dependence is smooth and regular.

Namely, this domain is obtained under the change of the variable 𝜁 ↦→ |𝜁|−2𝜁 from the domain

generated from 𝜔 under the linear change 𝜁 → A− 1
2 (𝑥)(𝜁 − 𝜁0). Conditions (2.1) ensure the

smoothness, the uniform positivity and the boundedness of the matrix A. This is why the
curvatures of the domain 𝜔̃ are uniformly bounded and the dependence of this boundary on 𝑥
is also smooth. As a result this gives an opportunity to reproduce the proof of the standard
Schauder estimates for problem (3.18) tracking the dependence on the parameter 𝑥. As a result
we obtain uniform estimates of the following form:

‖𝑢̂‖𝐶|𝑀|(R𝑛∖𝜔̂) ⩽ 𝐶‖𝑔‖𝐶|𝑀|−2+𝜗(R𝑛∖𝜔̂) ⩽ 𝐶‖𝑔‖C|𝑀|−1,𝑛+|𝑀|+1 ,

‖𝑢̂‖𝐶𝑘(Ω) ⩽ 𝐶
(︀
‖𝑔‖𝐶𝑘+2+𝜗(Ω̂) + ‖𝑔‖𝐶𝜗(R𝑛∖𝜔̂)

)︀
⩽ 𝐶

(︁
‖𝑔‖

𝐶𝑘+3(Ω̃)
+ ‖𝑔‖C1,𝑛+3

)︁
,

where 𝐶 are some constants independent of 𝑥, 𝑔 and 𝑔, while Ω ⊂ Ω̂ ⊂ R𝑛 ∖ 𝜔̂ are some
subdomains in R𝑛 ∖ 𝜔̂, the closures of which can contain the boundary of the set 𝜔̂ but at the
same time they are separated from the origin by a positive distance. The symbol Ω̃ denotes
the image of the domain Ω̂ under the above Kelvin transform; the domain Ω̃ is bounded.
Since 𝑢̂ belongs at least to the space 𝐶 |𝑀 |(R𝑛 ∖ 𝜔̂), its asymptotics at the zero is given by

the Taylor series with the remained of order 𝑂(|𝜁||𝑀 |). While returning back to the function
𝑢̃, this asymptotics is transformed into the function 𝑈2 defined by formula (3.16). Taking this
fact into consideration and returning back to the function 𝑢̃, we see immediately that it is
infinitely differentiable in 𝜉 on each compact set in R𝑛 ∖ 𝜔, which can contain entire boundary
𝜕𝜔 or a part of it and 𝐶𝑘-norms of the function 𝑢̃ on this compact set are estimated by
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the norm ‖𝑔‖C1,𝑛+3 and 𝐶𝑘+3-norms of the function 𝑔 on a bigger compact set. This allows
us to differentiate problem (3.17) in 𝜉 infinitely many times obtaining similar problems for the
derivatives of the function 𝑢̃ with inhomogeneous Dirichlet conditions. Applying then the Kelvin
transform and the aborementioned Schauder estimates for these problems, we can successively
estimate C𝑝,𝑛−𝑀−1+𝑝(R𝑛 ∖ 𝜔)-norms for the function 𝑢̃ − 𝑈2(A

− 1
2 (𝑥)𝜁, 𝑥)𝜒1(𝜁). These apriori

estimates then allow us to differentiate problem (3.17) in 𝑥 and to obtain similar estimates for
the derivatives of the function 𝑢̃ in 𝑥. This completes the proof.

Remark 3.1. We note that the only condition for the choice of the polynomial 𝑈2 in the
proven lemma is equation (3.10). It fixes the choice of this polynomial up to an arbitrary
harmonic polynomial. Lemma 3.2 holds for each possible choice of the polynomial 𝑈2.

3.2. Formal construction. We construct a formal asymptotic expansion for the solution of
problem (3.1) as a combination of the internal and external expansions. The external expansion
is used for approximating the solution outside small neighbourhoods of the cavities from the
set 𝜃𝜀, the internal expansion is employed in small neighbourhoods of these cavities. In the
intermediate zone near each cavity these expansions are matched on the base of the method of
matching asymptotic expansions.
Applying the multiscale method, we construct the external expansion as

𝑢𝜀
𝑒𝑥(𝑥) = 𝑢0(𝑥, 𝜇) + 𝜀

𝑛−1∑︁
𝑗=0

𝜂𝑗𝑢1,𝑗(𝑥, 𝜇) + 𝜀2𝑢2,0(𝜉, 𝑥, 𝜇) + 𝜀2𝜂𝑢2,1(𝜉, 𝑥, 𝜇) + . . . . (3.19)

The variable 𝜉 = 𝑥
𝜀
is used to take into consideration the microstructure of the cavities, the

variable 𝑥 is regarded as a slow variable. This is why we seek the functions 𝑢𝑘,𝑝 as 1-periodic in
each of the variables 𝜉𝑗. The dependence on the slow variable 𝑥 should be so that to ensure the
belonging of these functions to the space 𝑊 2

2 and in fact, this is a condition on the behavior at
infinity. At the same time, the coefficients of the external expansion have increasing singularities
at the points 𝑧 ∈ Z𝑛 and this is why we seek them in the space 𝑊 2

2 on R𝑛 except for small
neighbourhoods of the points including the cavities in 𝜃𝜀.
We substitute expansion(3.19) into problem (3.1), take into consideration the presence of the

fast variable 𝜉 = 𝑥
𝜀
in the functions 𝑢𝑗, collect the coefficients at the like powers of 𝜀 and 𝜂 and

replace the cavities 𝜃𝜀 by the points they shrink to. Then we obtain the equations

− div𝜉 A(𝑥)∇𝜉𝑢2,0 = 𝑓2,0, − div𝜉 A(𝑥)∇𝜉𝑢2,1 = 0 in R𝑛 ∖ Z𝑛, (3.20)

where the function 𝑓2,0 = 𝑓2,0(𝑥) reads as

𝑓2,0(𝑥) := div𝑥 A(𝑥)∇𝑥𝑢0(𝑥)−
𝑛∑︁

𝑗=1

𝐴𝑗(𝑥)
𝜕𝑢0

𝜕𝑥𝑗

(𝑥) + (𝜆− 𝐴0(𝑥))𝑢0(𝑥) + 𝑓(𝑥). (3.21)

By convergence (2.4) we can state that the identity

𝑢0( · , 𝑎) := (ℋ0 + 𝑎𝑉0 − 𝜆)−1𝑓

should hold. In view of the assumed smoothness of the function 𝑓 and the coefficients 𝐴𝑖𝑗, 𝐴𝑗,
𝐴0 and 𝑉0, according to smoothness improving theorems for elliptic boundary value problems
we easily obtain that 𝑢0( · , 0) ∈ 𝑊∞

2 (R𝑛). Therefore, by the standard embedding theorems,
the function 𝑢0( · , 𝑎) is infinitely differentiable and uniformly bounded with all its derivatives
on R𝑛. In what follows, once we obtain an equation for the function 𝑢0, we shall show that the
mentioned smoothness holds true also for 𝜇 from a small neighbourhood of the point 𝑎.
To determine the functions 𝑢2,0 and 𝑢2,1 we should complement equations (3.20) by conditions

describing their behavior at integer points in Z𝑛. This will be done during the matching with
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the internal expansion. This internal expansion in the vicinity of each integer point 𝑧 ∈ Z𝑛 is
constructed in the form

𝑢𝜀
𝑖𝑛(𝑥) =𝑣0,0(𝜁

(𝑧), 𝑥, 𝜇) + 𝜀

𝑛−1∑︁
𝑗=0

𝜂𝑗𝑣1,𝑗(𝜁
(𝑧), 𝑥, 𝜇)

+ 𝜀2𝑣2,0(𝜁
(𝑧), 𝑥, 𝜇) + 𝜀2𝜂𝑣2,1(𝜁

(𝑧), 𝑥, 𝜇) + . . . ,

(3.22)

where 𝑣𝑘,𝑗 are some functions, while 𝜁(𝑧) := (𝜉 − 𝜁)𝜂−1 is one more rescaled variable. In the
vicinity of each point 𝑧 ∈ Z𝑛 we pass to the variables 𝜁 = 𝜁(𝑧) in the derivatives and we
substitute the internal expansion into boundary value problem (3.1). In the coefficients of the
equation and in the right hand side we do not pass to the variable 𝜁. Then we obtain outer
boundary value problems for 𝑣𝑘,𝑗:

− div𝜁 A(𝑥)∇𝜁𝑣𝑘,𝑗 = 𝐹𝑘,𝑗 in R𝑛 ∖ 𝜔, 𝑣𝑘 = 0 on 𝜕𝜔, (3.23)

where the right hand sides 𝐹𝑘 = 𝐹𝑘(𝑥, 𝜁, 𝜇) are given by the formulae:

𝐹0,0(𝜁, 𝑥, 𝜇) :=0, 𝐹1,𝑗(𝜁, 𝑥, 𝜇) := 0, 𝑗 ̸= 1,

𝐹2,0(𝜁, 𝑥, 𝜇) :=0, 𝐹2,1(𝜁, 𝑥, 𝜇) := 0,

𝐹1,1(𝜁, 𝑥, 𝜇) :=ℒ1𝑣0,0, ℒ1 :=
(︀
div𝑥A(𝑥)∇𝜁 + div𝜁 A(𝑥)∇𝑥

)︀
−

𝑛∑︁
𝑗=1

𝐴𝑗(𝑥)
𝜕

𝜕𝜁𝑗
.

(3.24)

We should complement the obtained equation by conditions describing the behavior of the
functions 𝑣𝑘 at infinity and this will be done as a result of the matching the external and
internal expansions.
While matching, we need to determine the behavior of the coefficients of the external ex-

pansion in the vicinity of the points, to which the cavities shrink, and of the coefficients in
the internal expansion at infinity. This behaviour will be studied as 𝜉 → 𝑧, 𝑧 ∈ Z𝑛 for the
functions in the external expansion and as 𝜁 → ∞ for the functions in the internal expansion.
The variable 𝑥 in these functions plays the role of a parameter and there will be no asymptotic
formulae with respect to this variable.
In view of the said above and by the method of matching asymptotic expansions, we imme-

diately obtain a condition determining the behavior of the function 𝑣0 at infinity:

𝑣0,0(𝜁, 𝑥, 𝜇) = 𝑢0(𝑥, 𝜇) + . . . , 𝜁 → ∞.

In view of homogeneous equation (3.23), (3.24) for this function, we immediately conclude that
it reads as

𝑣0(𝜁, 𝑥, 𝜇) = 𝑢0(𝑥, 𝜇)𝑋(𝜁, 𝑥), (3.25)

where 𝑋 is a solution of problem (2.3). The properties of the function 𝑋 we shall need in what
follows are described in the following lemma.

Lemma 3.3. The function 𝑋 is infinitely differentiable in (𝜁, 𝑥) ∈ (R𝑛 ∖ 𝜔) × R𝑛. Its
asymptotic expansion as 𝜁 → ∞ reads as

𝑋(𝜁, 𝑥) = 1 +
∞∑︁
𝑘=0

∑︁
𝛼∈Z𝑛

+

|𝛼|=𝑘

𝐾𝛼(𝑥)
𝜕𝛼

𝜕𝜁𝛼
𝐸0(|A− 1

2 (𝑥)𝜁|), 𝑛 ⩾ 3, (3.26)



ASYMPTOTIC EXPANSION OF SOLUTION. . . 37

where 𝐾𝛼 = 𝐾𝛼(𝑥) are some functions belonging to the space 𝑊∞
2 (R𝑛). The mapping of the

space R𝑛 into C𝑝,𝑛+𝑚−2+𝑝(R𝑛 ∖ 𝜔) acting by the rule

𝑥 ↦→ 𝑋(𝜁, 𝑥)−

⎛⎜⎜⎝1 +
𝑚∑︁
𝑘=0

∑︁
𝛼∈Z𝑛

+

|𝛼|=𝑘

𝐾𝛼(𝑥)
𝜕𝛼

𝜕𝜁𝛼
𝐸0(|A− 1

2 (𝑥)𝜁|)

⎞⎟⎟⎠𝜒1(𝜁),

belongs to the space 𝑊∞
2 (R𝑛) consisting of C𝑝,𝑛+𝑚−2+𝑝(R𝑛 ∖ 𝜔)-valued funcitons defined on R𝑛

for all 𝑝,𝑚 ∈ Z+.

The statement of this lemma is a striaghtforward corollary of Lemma 3.2 and Remark 3.1:
it is sufficient to choose the polynomial 𝑈2 as 𝑈2 = 1.
We rewrite asymptotics (3.26) of the function 𝑋 in the variable 𝜉 = 𝜁𝜂+ 𝑧 and we substitute

it into formula (3.25). Then we compare external and internal expansions (3.19), (3.22) and by
the method of matching asymptotic expansion we immediately conclude that the functions of
the external expansion should have the following behavior at the points 𝑧 ∈ Z𝑛:

𝑢2,0(𝜉, 𝑥, 𝜇) = 𝜇𝑢0(𝑥, 𝜇)𝐾0(𝑥)𝐸0

(︀
|A− 1

2 (𝑥)(𝜉 − 𝑧)|
)︀
+ 𝑜(|𝜉 − 𝑧|−𝑛+2), 𝜉 → 𝑧, (3.27)

𝑢2,1(𝜉, 𝑥, 𝜇) = 𝜇𝑢0(𝑥, 𝜇)
∑︁
𝛼∈Z𝑛

+

|𝛼|=1

𝐾𝛼(𝑥)
𝜕𝛼

𝜕𝜉𝛼
𝐸0(A

− 1
2 (𝑥)(𝜉 − 𝑧)) + 𝑜(|𝜉 − 𝑧|−𝑛+1), 𝜉 → 𝑧. (3.28)

The existence of solution to problem (3.20) with asymptotics (3.27) is ensured by Lemma 3.1.
Here as the function 𝑏(𝑥) the function 𝜇𝐾0(𝑥) serves and identity (3.11) should be treated as
the solvability condition. Namely, in this case the function 𝑈0 in (3.9) is absent, that is, 𝑈0 = 0,
while the function 𝑓2,0 is independent of 𝜉. This is why identity (3.11) is rewritten to the form

𝜇
√
detA𝐾0𝑢0 = 𝑓2,0,

and in view of definition (3.21) this gives the equation for 𝑢0:

(ℋ0 + 𝜇𝑉0 − 𝜆)𝑢0 = 𝑓.

For 𝜇 in a small neighbourhood of 𝑎, the potential 𝜇𝑉0 is an analytic perturbation of the
potential 𝑎𝑉0, and this is why the resolvent (ℋ0 + 𝜇𝑉0 − 𝜆)−1 is holomorphic in 𝜇 in a small
neighbourhood of the point 𝑎 and an obvious formula

𝑢0 =
(︀
ℐ + (𝜇− 𝑎)(ℋ0 + 𝑎𝑉0 − 𝜆)−1𝑉0

)︀−1
(ℋ0 + 𝑎𝑉0 − 𝜆)−1𝑓

holds true. By this formula and standard smoothness improving theorems for elliptic boundary
value problems we easily find that the function 𝑢0 is holomorphic in 𝜇 in the vicinity of the
point 𝑎 in the sense of the norm of the space 𝑊 𝑝

2 (R
𝑛) for all 𝑝 > 0.

The mentioned choice of the function 𝑢0 ensures the solvability of problem (3.20), (3.27).
According to Lemma 3.1, the solution 𝑢2,0 is represented as

𝑢2,0(𝜉, 𝑥, 𝜇) = 𝜇𝑢0(𝑥, 𝜇)𝐾0(𝑥)𝑢̃2,0(𝜉, 𝑥),

where 𝑢̃2,0 is a periodic solution to problem

− div𝜉 A(𝑥)∇𝜉𝑢̃2,0 =
√
detA in R𝑛 ∖ Z𝑛,

𝑢̃2,0(𝜉, 𝑥, 𝜇) = 𝐸0

(︀
|A− 1

2 (𝑥)(𝜉 − 𝑧)|
)︀
+ . . . , 𝜉 → 𝑧.

Applying Lemma 3.1 with an arbitrarily large𝑀 , we can specify the asymptotics of the function
𝑢̃2,0 at zero:

𝑢̃2,0(𝜉, 𝑥) = 𝐸0

(︀
|A− 1

2 (𝑥)𝜉|
)︀
+

√︀
detA(𝑥)

2𝑛
|A− 1

2 (𝑥)𝜉|2+
∞∑︁
𝑝=0

𝑈2,0,𝑝(A
− 1

2 (𝑥)𝜉, 𝑥), 𝜉 → 0, (3.29)
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where 𝑈2,0,𝑝(𝜍, 𝑥) are homogeneous harmonic polynomials of degree 𝑝 with infinitely differen-
tiable in 𝑥 ∈ R𝑑 coefficients belonging to the space 𝑊∞

2 (R𝑑). At the same time, the function
𝑈2,0,0(𝜍, 𝑥) = 𝑈2,0,0(𝑥) can be chosen arbitrarily, we apriori assume that it belongs to the space
𝑊∞

2 (R𝑛). The mapping

𝑥 ↦→ 𝑢̃2,0(𝜉, 𝑥)− 𝐸0

(︀
|A− 1

2 (𝑥)𝜉|
)︀

of the space R𝑛 into 𝑊 𝑞
2 (□) is an element of the space 𝑊∞

2 (R𝑛) for each 𝑞 > 0.
In the same way we study the solvability of problem (3.20), (3.28) for the function 𝑢2,1.

Namely, there exists a solution of this problem of form

𝑢2,1(𝜉, 𝑥, 𝜇) = 𝜇𝑢0(𝑥, 𝜇)𝑢̃2,1(𝜉, 𝑥, 𝜇),

where 𝑢̃2,1 is a periodic solution to equation (3.20) with the asymptotics at zero

𝑢̃2,1(𝜉, 𝑥, 𝜇) =
∑︁
𝛼∈Z𝑛

+

|𝛼|=1

𝐾𝛼(𝑥)
𝜕𝛼

𝜕𝜉𝛼
𝐸0(A

− 1
2 (𝑥)𝜉) +

∞∑︁
𝑝=0

𝑈2,1,𝑝(A
− 1

2 (𝑥)𝜉, 𝑥), 𝜉 → 0, (3.30)

where 𝑈2,1,𝑝(𝜍, 𝑥) are homogeneous harmonic polynomials of degree 𝑝 with infinitely differen-
tiable in 𝑥 ∈ R𝑑 coefficients belonging to the space 𝑊∞

2 (R𝑑). The function 𝑈2,1,0(𝜍, 𝑥) =
𝑈2,1,0(𝑥)can be chosen arbitrarily, we apriori assume that it belongs to the space 𝑊∞

2 (R𝑛). The
mapping

𝑥 ↦→ 𝑢̃2,1(𝜉, 𝑥)−
∑︁
𝛼∈Z𝑛

+

|𝛼|=1

𝐾𝛼(𝑥)
𝜕𝛼

𝜕𝜉𝛼
𝐸0(A

− 1
2 (𝑥)𝜉)

of the space R𝑛 into 𝑊 𝑞
2 (□) is an element of the space 𝑊∞

2 (R𝑛) for each 𝑞 > 0.
Now we rewrite asymptotics (3.29), (3.30) in the variables 𝜁 and we match with the internal

expansion (3.22). Then we obtain that the coefficients of the internal expansion should behave
as follows at infinity:

𝑣1,𝑗(𝜁, 𝑥, 𝜇) =𝑢1,𝑗(𝑥, 𝜇) + . . . ,

𝑣2,0(𝜁, 𝑥, 𝜇) =𝜇𝐾0(𝑥)𝑢0(𝑥, 𝜇)𝑈2,0,0(𝑥) + . . . ,

𝑣2,1(𝜁, 𝑥, 𝜇) =𝜇𝑢0(𝑥, 𝜇)
(︀
𝑈2,0,1(A

− 1
2 (𝑥)𝜁, 𝑥) + 𝑈2,1,0(A

− 1
2 (𝑥)𝜁, 𝑥)

)︀
+ . . . ,

as 𝜁 → ∞. The existence of solutions to problem (3.23) with the aforementioned asymptotics
is ensured by Lemma 3.2. Namely, the functions 𝑣1,𝑗 and 𝑣2,0 can be found explicitly:

𝑣1,𝑗(𝜁, 𝑥, 𝜇) = 𝑢1,𝑗(𝑥, 𝜇)𝑋(𝜉, 𝑥), 𝑗 ̸= 1, 𝑣2,0 = 𝜇𝐾0(𝑥)𝑢0(𝑥, 𝜇)𝑈2,0,0(𝑥)𝑋(𝜉, 𝑥).

The presence of the right hand side in the equation for the function 𝑣1,1 prevents finding this
function explicitly. However, the application of Lemma 3.2 ensures the existence of a partial
solution of form 𝑢0(𝑥, 𝜇)𝑣1,1(𝜉, 𝑥, 𝜇), where the function 𝑣1,1 solves problem for 𝑣1,1 but with
𝐹1,1 replaced by ℒ1𝑋. The function 𝑣1,1 is infinitely differentiable in (𝜉, 𝑥) ∈ (R𝑛 ∖𝜔)×R𝑛 and
has the following behavior at infinity:

𝑣1,1(𝜁, 𝑥, 𝜇) =
∞∑︁
𝑘=0

∑︁
𝛼∈Z𝑛

+

|𝛼|=𝑘

𝐾𝛼(𝑥)ℒ1
𝜕𝛼

𝜕𝜁𝛼
𝐸1(|A− 1

2 (𝑥)𝜁|) +
∞∑︁
𝑘=1

∑︁
𝛼∈Z𝑛

+

|𝛼|=𝑘

𝐾1,1,𝛼(𝑥)
𝜕𝛼

𝜕𝜁𝛼
𝐸0(|A− 1

2 (𝑥)𝜁|),
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where𝐾1,1,𝛼 are some functions in𝑊∞
2 (R𝑛). The mapping of the space R𝑛 into C𝑝,𝑛+𝑚−2+𝑝(R𝑛∖

𝜔) acting by the rule

𝑥 ↦→ 𝑣1,1(𝜁, 𝑥)− 𝜒1(𝜁)
𝑚+1∑︁
𝑘=0

∑︁
𝛼∈Z𝑛

+

|𝛼|=𝑘

𝐾𝛼(𝑥)ℒ1
𝜕𝛼

𝜕𝜁𝛼
𝐸1(|A− 1

2 (𝑥)𝜁|)

− 𝜒1(𝜁)
𝑚∑︁
𝑘=1

∑︁
𝛼∈Z𝑛

+

|𝛼|=𝑘

𝐾1,1,𝛼(𝑥)
𝜕𝛼

𝜕𝜁𝛼
𝐸0(|A− 1

2 (𝑥)𝜁|),

belongs to the space 𝑊∞
2 (R𝑛) consisting of C𝑝,𝑛+𝑚−2+𝑝(R𝑛 ∖ 𝜔)-valued function defined on R𝑛

for all 𝑝,𝑚 ∈ Z+. A solution of problem (3.23), (3.24) is as follows:

𝑣1,1(𝜁, 𝑥, 𝜇) = 𝑢0(𝑥, 𝜇)𝑣1,1(𝜁, 𝑥) + 𝑢1,1(𝑥, 𝜇)𝑋(𝜁, 𝑥).

The problem for the function 𝑣2,1 is also solvable and its solution reads as 𝜇𝑢0(𝑥, 𝜇)𝑣2,1(𝜁, 𝑥),
where the function 𝑣2,1 solves the same problem but has the following asymptotic behavior at
infinity:

𝑣2,1(𝜁, 𝑥) = 𝑈2,0,1(A
− 1

2 (𝑥)𝜁, 𝑥) + 𝑈2,1,0(A
− 1

2 (𝑥)𝜁, 𝑥) +
∞∑︁
𝑘=1

∑︁
𝛼∈Z𝑛

+

|𝛼|=𝑘

𝐾2,1,𝛼(𝑥)
𝜕𝛼

𝜕𝜁𝛼
𝐸0(|A− 1

2 (𝑥)𝜁|),

where𝐾2,1,𝛼 are some functions in𝑊∞
2 (R𝑛). The mapping of the space R𝑛 into C𝑝,𝑛+𝑚−2+𝑝(R𝑛∖

𝜔) acting by the rule

𝑥 ↦→ 𝑣1,1(𝜁, 𝑥)− 𝜒1(𝜁)

(︃
𝑈2,0,1(A

− 1
2 (𝑥)𝜁, 𝑥) + 𝑈2,1,0(A

− 1
2 (𝑥)𝜁, 𝑥)

+
𝑚∑︁
𝑘=1

∑︁
𝛼∈Z𝑛

+

|𝛼|=𝑘

𝐾2,1,𝛼(𝑥)
𝜕𝛼

𝜕𝜁𝛼
𝐸0(|A− 1

2 (𝑥)𝜁|)

)︃

belongs to the space 𝑊∞
2 (R𝑛) consisting of C𝑝,𝑛+𝑚−2+𝑝(R𝑛 ∖𝜔)-valued functions defined on R𝑛

for all 𝑝,𝑚 ∈ Z+.
The above described formal scheme allows one to construct further terms in the internal

and external expansions. To determine still arbitrary functions 𝑢1,𝑗, one should construct the
terms of order 𝑂(𝜀3) in the external expansion. By applying then Lemma 3.1 to this functions,
namely, identity (3.11), one can determine the function 𝑢1,𝑗. A similar situation holds also
further: to determine completely a coefficient at 𝜀𝑝𝜂𝑞, one has to construct the terms up to
𝜀𝑝+2𝜂𝑞 and to write then identity (3.11). The coefficients of the external and internal expansions
turn out to be infinitely differentiable in (𝜉, 𝑥) and (𝜁, 𝑥) functions; in addition, the analyticity
in 𝜇 is expected to hold. In odd dimensions the internal and external expansions are power
in 𝜀 and 𝜂. In even dimensions there arises an additional dependence on ln 𝜂. This is related
with the emergence of ln 𝑡 in the functions 𝐸𝑗, see (3.5). The study of the dependence of the
coefficients in the external and internal expansion on ln 𝜂 is an independent problem.

3.3. Justification of asymptotics. A rigorous justification of the asymptotics and estab-
lishing of the error terms here is made in a standard way. One should construct sufficiently
many terms in the external and internal expansions so that they give a sufficiently small error
being substituted into the equation for the resolvent. At that the issue on the estimates for the
error terms is elementary solved on the base of the known apriori estimates for the resolvent.
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Namely, let 𝑄𝑒𝑥(𝜉, 𝑥, 𝜀, 𝜇) and 𝑄𝑖𝑛(𝜉, 𝑥, 𝜀, 𝜇) be additional terms in the external and internal
expansions. Then we can construct sufficiently many additional terms so that the functions

𝑈𝜀(𝑥) := 𝑈𝑒𝑥

(︁𝑥
𝜀
, 𝑥, 𝜀, 𝜂, 𝜇

)︁
𝜒𝜀(𝑥) + 𝑈𝑖𝑛

(︂
𝑥

𝜀𝜂
, 𝑥, 𝜀, 𝜂, 𝜇

)︂(︀
1− 𝜒𝜀(𝑥)

)︀
,

𝑄𝜀(𝑥) := 𝑄𝑒𝑥

(︁𝑥
𝜀
, 𝑥, 𝜀, 𝜂, 𝜇

)︁
𝜒𝜀(𝑥) +𝑄𝑖𝑛

(︂
𝑥

𝜀𝜂
, 𝑥, 𝜀, 𝜂, 𝜇

)︂(︀
1− 𝜒𝜀(𝑥)

)︀
will satisfy the equation and estimates

(ℋ𝜀 − 𝜆)(𝑈𝜀 +𝑄𝜀) = 𝑓 + ℎ𝜀, ‖ℎ𝜀‖𝐿2(Ω𝜀) = 𝑂(𝜀2),

‖𝑄𝜀‖𝑊 1
2 (Ω

𝜀) = 𝑂(𝜀𝜂1+
2
𝑛 ), ‖𝑄𝜀‖𝐿2(Ω𝜀) = 𝑂(𝜀2𝜂1+

2
𝑛 ).

This implies immediately that

‖(ℋ𝜀 − 𝜆)−1𝑓 − 𝑈𝜀 −𝑄𝜀‖𝑊 1
2 (Ω

𝜀) ⩽ 𝐶‖ℎ𝜀‖𝐿2(Ω𝜀),

where a constant 𝐶 is independent of 𝜀. This is why

‖(ℋ𝜀 − 𝜆)−1𝑓 − 𝑈𝜀‖𝑊 1
2 (Ω

𝜀) = 𝑂(𝜀𝜂1+
2
𝑛 ), ‖(ℋ𝜀 − 𝜆)−1𝑓 − 𝑈𝜀‖𝐿2(Ω𝜀) = 𝑂(𝜀2𝜂1+

2
𝑛 ),

and this gives required estimates for the errors in (2.5), (2.6).
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