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NORMALIZATION OF WIENER–HOPF FACTORIZATION FOR

2× 2 MATRIX FUNCTIONS AND ITS APPLICATION

V.M. ADUKOV

Abstract. In this work we cover a gap existing in the general Wiener-Hopf factorization
theory of matrix functions. It is known that factors in such factorization are not determined
uniquely and in the general case, there are no known ways of normalizing the factorization
ensuring its uniqueness. In the work we introduce the notion of 𝑃 -normalized factorization.
Such normalization ensures the uniqueness of the Wiener-Hopf factorization and gives an
opportunity to find the Birkhoff factorization. For the second order matrix function we
show that the factorization of each matrix function can be reduced to the 𝑃 -normalized
factorization. We describe all possible types of such factorizations, obtain the conditions
ensuring the existence of such normalization and find the form of the factors for such type
of the normalization. We study the stability of 𝑃 -normalization under a small perturbation
of the initial matrix function. The results are applied for specifying the Shubin theorem on
the continuity of the factors and for obtaining the explicit estimates of the absolute errors
of the factors for an approximate factorization.

Keywords: Wiener-Hopf factorization, partial indices, continuity of factors, normalization
of factorization.
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1. Introduction

The foundations of the Wiener–Hopf factorization theory of matrix functions and a closely
related with it the Riemann boundary value problem for a vector were laid many years ago in the
works of such prominent mathematicians as I. Plemely, G. Birkhoff, F.D. Gakhov, M.G. Krein,
I.C. Gokhberg, B. Boyarski, N.P. Vekua and many other scientists. The initial stage in the
development of this theory was related with the existence of factorization, its stability, and the
study of its general properties. Then the research moved towards various applications of the
factorization problem and the development of effective methods for its construction.
Meanwhile, a gap in the general factorization theory remained unnoticed, which is related

with the lack of ways to normalize it, which would guarantee the uniqueness of the factorization.
Perhaps this is due to the fact that it was considered sufficient to use the theorem by M.G. Krein
and I.C. Gokhberg on the general form of these factors. However, the lack of normalization
causes certain inconveniences when applying the factorization: it is difficult to compare two
factorizations of a given matrix-function obtained by different constructive methods; well-known
theorem by M.A. Shubin on the continuity of factorization factors, due to the fact that the
factorization is not unique, is somewhat indefinite. In its turn, this does not allow us to apply
it in estimating the error of approximate factorization.
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In this paper, we partially cover this gap in the theory. Our main goal is to find conditions
for the factorization that ensure its uniqueness. Moreover, an additional requirement will be
imposed on the normalization so that the normalized Wiener–Hopf factorization generates the
so-called Birkhoff factorization. This will allow us to avoid some technical difficulties when
applying the normalized factorization. In the proposed work, we will mainly restrict ourselves
to considering second order matrix functions, since this results in a complete and transparent
normalization theory.
Let us recall the basic concepts of the factorization theory. The main sources of information

on this theory are monographs [1]–[3].
Let 𝐴(𝑡) a 𝑝× 𝑝 matrix function from the Wiener algebra 𝑊 𝑝×𝑝(T) that is invertible on the

unit circle T. A standard norm on this algebra is denoted by ‖ · ‖𝑊 .
A right Wiener-Hopf factorization of 𝐴(𝑡) is its representation in the form:

𝐴(𝑡) = 𝐴−(𝑡)𝐷(𝑡)𝐴+(𝑡), 𝑡 ∈ T, (1.1)

where 𝐴±(𝑡) ∈ 𝐺𝑊 𝑝×𝑝
± (T), 𝐷(𝑡) = diag [𝑡𝜌1 , . . . , 𝑡𝜌𝑝 ], 𝜌1 ⩽ . . . ⩽ 𝜌𝑝 are the right partial

indices of 𝐴(𝑡). Here 𝐺𝑊 𝑝×𝑝
± (T) is the group of invertible elements of the subalgebra 𝑊 𝑝×𝑝

± (T)
consisting of absolutely converging matrix Fourier series with the zero Fourier coefficients with
negative/positive indices. In a similar way, by swapping the factors 𝐴−(𝑡), 𝐴+(𝑡), one defines
left Wiener-Hopf factorization. The right (left) partial indices are determined uniquely, up to
the order, by the matrix function 𝐴(𝑡) in contrast to the factors 𝐴±(𝑡).
The Wiener–Hopf factorization problem has numerous applications in problems of mathe-

matical physics (wave diffraction, acoustics, elasticity theory, fracture mechanics, geophysics)
[4]–[6], in the theory of differential equations (analytical theory of differential equations, solving
of nonlinear equations of mathematical physics by the inverse scattering method, solitons the-
ory) [7] and in mathematical analysis (systems of integral and discrete Wiener–Hopf equations,
systems of singular integral equations) [8], [9]. We mention that in applications, the Wiener–
Hopf factorization problem most often arises in the study of the vector Riemann boundary
value problem with the coefficient 𝐴(𝑡). The construction of the factorization is equivalent to
finding the canonical matrix for the corresponding Riemann boundary value problem.
Since in the general case there are no explicit formulas for the factorization factors 𝐴±(𝑡)

and there are no methods for calculating partial indices, the problem of developing approxi-
mate factorization methods is topical. However, the solution to this problem faces significant
difficulties due to the instability of the problem in the general case.
Because of this reason, at least at the first stage of researches in this area, one should focus

on developing approximate factorization in the stable case, when the partial indices do not
change under a small perturbation of the original matrix function 𝐴(𝑡), and the factorization
factors 𝐴±(𝑡) depend continuously on 𝐴(𝑡). More precisely, the stability of the problem means
the following:

– The partial indices 𝜌1, . . . , 𝜌𝑝 of the matrix function 𝐴(𝑡) are stable, that is, for each suffi-

ciently small 𝜀 > 0 each matrix function ̃︀𝐴(𝑡) satisfying the inequality ‖𝐴(𝑡)− ̃︀𝐴(𝑡)‖𝑊 < 𝜀
possesses the same set of the right partial indices as 𝐴(𝑡).

– Factors depend continuously on 𝐴(𝑡) or are stable, that is, for each sufficiently small

𝜀 > 0 there exists 𝛿 > 0 such that for each matrix function ̃︀𝐴(𝑡) obeying the inequality

‖𝐴(𝑡) − ̃︀𝐴(𝑡)‖𝑊 < 𝛿, among all possible factorizations ̃︀𝐴(𝑡) there exists a factorizatioñ︀𝐴(𝑡) = ̃︀𝐴−(𝑡) ̃︀𝐷(𝑡) ̃︀𝐴+(𝑡), for which ‖𝐴±(𝑡)− ̃︀𝐴±(𝑡)‖𝑊 < 𝜀.

We pay attention to the refinement «among all possible factorizations» of ̃︀𝐴(𝑡). This is
related with the fact that the factors, as it has been already mentioned, are not unique and this
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is why we can not speak about their closeness for close 𝐴(𝑡) and ̃︀𝐴(𝑡) with no special choice of
the factorization, that is, without some normalization.
We recall known facts about the stability of the problem. There is a classical Gohberg-Krein-

Bojarski criterion on the stability of the partial indices [8], [10], [11]: the system of the right
partial indices 𝜌1 ⩽ . . . ⩽ 𝜌𝑝 is stable under a small perturbation of the matrix function 𝐴(𝑡) if
and only if 𝜌𝑝− 𝜌1 ⩽ 1. Unfortunately, this criterion is not effective since there are no methods
for calculating the partial indices. At present, in the general case, it is not known even when a
matrix function admits a canonical factorization, that is, a factorization with the zero partial
indices. The effective stability criteria for the indices are known for triangular second order
matrix functions [12] and for Laurent matrix polynomials [13].
The following is known on the second condition of the stability of the factorization problem.

A necessary condition of the stability of the factors ̃︀𝐴±(𝑡) is the coincidence of partial indices

of the initial 𝐴(𝑡) and perturbed ̃︀𝐴(𝑡) matrix function [3, Thm. 6.14]. Thus, we can speak

about the stability of the factors if and only if 𝐴(𝑡) and ̃︀𝐴(𝑡) belong to the same Bojarski class
Ω(𝜌1, . . . , 𝜌𝑝) consisting of the matrix functions with the same set of partial indices 𝜌1, . . . , 𝜌𝑝
[11].
If this condition is obeyed, then the factors 𝐴±(𝑡) depend continuously on 𝐴(𝑡) (M.A. Shubin

theorem, see [3, Thm. 6.15], [14]). The Shubin theorem is however incomplete: it is not known

how one should choose the factorization ̃︀𝐴(𝑡) to guarantee the stability of the factors. Because

of this, it is impossible to obtain explicit estimates for the absolute error ‖𝐴±(𝑡)− ̃︀𝐴±(𝑡)‖𝑊 of
finding factors. These problems arise since it is unknown how to normalize the factorization to
ensure its uniqueness.
If all partial indices are equal, such problems do not arise. In this case we can normalize the

factorization by fixing a numerical matrix 𝐴−(∞). This condition determines the factorization

uniquely and once we normalize sufficiently close matrix functions 𝐴(𝑡) and ̃︀𝐴(𝑡), then their

factors are also close and it is possible to obtain explicity estimates for ‖𝐴±(𝑡) − ̃︀𝐴±(𝑡)‖𝑊 in
terms of the factorization of the original matrix function [15].
The aim of the work is to study the problem on normalization of the factorization restricting

ourselves by the case of the second order matrix functions appearing most often in applications.
We introduce the notion of 𝑃 -normalized factorization and show that each factorization of
a second order matrix function by the normalization at infinity can be reduced to the 𝑃 -
normalized factorization. Below we describe all possible type of such factorizations, find the
conditions under which such normalization exists and provide the form of the factors for the
normalization of this type.
It turns out that the 𝑃 -normalization of close matrix functions 𝐴(𝑡) and ̃︀𝐴(𝑡) allows one to

specify the Shubin theorem and to obtain explicit estimates for the absolute error ‖𝐴±(𝑡) −̃︀𝐴±(𝑡)‖𝑊 . Such estimates are necessary for obtaining, in some cases, an approximate solution
to the Wiener-Hopf factorization problem with a prescribed accuracy [16].

2. 𝑃 -normalization of Wiener-Hopf factorization

We recall the Gohberg-Krein theorem on the general form of the factors 𝐴±(𝑡) [1, Ch. VIII,
Thm. 1.2]. We formulate it in the form convenient for us.
Let 𝜌1, . . . , 𝜌𝑝 be an arbitrary set of integer numbers taken in the increasing order: 𝜌1 ⩽

. . . ⩽ 𝜌𝑝. We suppose that this set contains 𝑠 different numbers κ1 < . . . < κ𝑠 of multiplicities
𝑘1, . . . , 𝑘𝑠, respectively. We denote by 𝒬−(𝜌1, . . . , 𝜌𝑝) the set of all block-triangular matrix
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function of the form

𝑄−(𝑡) =

⎛⎜⎜⎝
𝑄11 𝑄12 . . . 𝑄1𝑠

0 𝑄22 . . . 𝑄2𝑠

. . . . . . . . . . . . . . . . . . .
0 0 . . . 𝑄𝑠𝑠

⎞⎟⎟⎠ . (2.1)

Here a block 𝑄𝑖𝑗 has the size 𝑘𝑖×𝑘𝑗, the diagonal blocks 𝑄𝑖𝑖 are constant invertible matrices of
order 𝑘𝑖, while the off-diagonal blocks 𝑄𝑖𝑗(𝑡) are matrix polynomials in the variable 𝑡−1 of the
degree at most κ𝑗 − κ𝑖. It is easy to confirm that the set 𝒬−(𝜌1, . . . , 𝜌𝑝) is a subgroup of the
group 𝐺𝑊 𝑝×𝑝

− (T).
Let 𝐷(𝑡) = diag [𝑡𝜌1 , . . . , 𝑡𝜌𝑝 ]. We define a matrix function

𝑄+(𝑡) = 𝐷−1(𝑡)𝑄−1
− (𝑡)𝐷(𝑡).

It is easy to confirm that it is the form (2.1), just in this case 𝑄𝑖𝑗(𝑡) are matrix polynomials in
the variable 𝑡 of degree at most κ𝑗 − κ𝑖 and thus, 𝑄+(𝑧) ∈ 𝐺𝑊 𝑝×𝑝

+ (T).
The Gohberg-Krein theorem on the general form the factors states that if (1.1) is the Wiener-

Hopf factorization of a matrix function 𝐴(𝑡), then the representation

𝐴(𝑡) = 𝐺−(𝑡)𝐷(𝑡)𝐺+(𝑡), (2.2)

where 𝐺−(𝑡) = 𝐴−(𝑡)𝑄−(𝑡), 𝐺+(𝑡) = 𝑄+(𝑡)𝐴+(𝑡), is also the Wiener-Hopf factorization of
𝐴(𝑡) for each 𝑄−(𝑡) ∈ 𝒬−(𝜌1, . . . , 𝜌𝑝). Moreover, each factorization of 𝐴(𝑡) can be obtained
from original factorization (1.1) in this way under an appropriate choice of 𝑄−(𝑡). From the
algebraic point of view, the set of all possible factors 𝐺−(𝑡) = 𝐴−(𝑡)𝑄−(𝑡) forms a left coset of
the element 𝐴−(𝑡) in the group 𝐺𝑊 𝑝×𝑝

− (T) in the subgroup 𝒬−(𝜌1, . . . , 𝜌𝑝).

Definition 2.1. The passage from original factorization (1.1) to factorization (2.2) by
means of the matrix function 𝑄−(𝑡) ∈ 𝒬−(𝜌1, . . . , 𝜌𝑝) is called a normalization of factoriza-
tion (1.1) at infinity.

Thus, the normalization of the factorization at infinity is determined by the choice of 𝑄−(𝑡) ∈
𝒬−(𝜌1, . . . , 𝜌𝑝), that is, by the choice of a representative in the left coset 𝐴−(𝑡)𝒬−(𝜌1, . . . , 𝜌𝑝).
Our problem is to choose a canonical in some sense representative of this coset.
Generally speaking, there are various ways of normalizing the Wiener-Hopf factorization. For

instance, the normalization can be done by choosing 𝑄+(𝑡). In this case we should speak about
the normalization of the factorization at the point 𝑧 = 0. The form of the normalization is also
influenced by the chosen order on the set of partial indices. In work [17] there was introduced
a normalization of the factorization at two points 𝑧 = 0 and 𝑧 = ∞ for some matrix functions
with zero partial indices. Such normalization is a necessary step in solving a discrete analogue
of the nonlinear Schrödinger equations by the inverse scattering problem [18].
A main condition determining the choice of the canonical representative is related with the

Birkhoff factorization of matrix functions. This factorization was introduced by G. Birkhoff
[19] in relation with some problems for ordinary differential equations. We expose main facts
on the factorizaiton of such type following monograph [2].
A right Birkhoff factorization 𝐴(𝑡) is its representation in the following form:

𝐴(𝑡) = 𝐷𝑏(𝑡)𝐵−(𝑡)𝐵+(𝑡), 𝑡 ∈ T, (2.3)

where 𝐵±(𝑡) ∈ 𝐺𝑊 𝑝×𝑝
± (T) and 𝐷𝑏(𝑡) = diag

[︀
𝑡𝛽1 , . . . , 𝑡𝛽𝑝

]︀
, 𝛽1, . . . , 𝛽𝑝 are the right Birkhoff

indices 𝐴(𝑡). In contrast to partial indices, the Birkhoff indices are not determined uniquely
by the matrix function 𝐴(𝑡). However, among all possible sets of Birkhoff indices there always
exists a set obtained by some permutation of the right partial indices. This important fact
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was first found by I.S. Chebotaru [20]. Thus, one of the Birkhoff factorization can be always
written as

𝐴(𝑡) = 𝑃𝐷(𝑡)𝑃−1𝐵−(𝑡)𝐵+(𝑡), 𝑡 ∈ T, (2.4)

where 𝑃 is permutation matrix.
Now we can defined the canonical normalization of the factorization.

Definition 2.2. Let 𝑃 be a permutation matrix of order 𝑝. A Wiener-Hopf factorization of
a matrix 𝐴(𝑡)

𝐴(𝑡) = 𝐶−(𝑡)𝐷(𝑡)𝐶+(𝑡) (2.5)

is called 𝑃 -normalized if the following conditions hold:

1. The matrix function 𝐵−(𝑡) = 𝑃𝐷−1(𝑡)𝑃−1𝐶−(𝑡)𝐷(𝑡) belongs to the algebra 𝑊 𝑝×𝑝
− (T);

2. 𝐵−(∞) = 𝑃 .

We shall also call the factorization with the 𝑃 -normalization normalized factorization of

𝑃 -type.

Example 2.1. We consider the normalization of the Wiener-Hopf factorization of the matrix
function 𝐴(𝑡) with equal partial indices 𝜌1 = . . . = 𝜌𝑝 ≡ 𝜌:

𝐴(𝑡) = 𝐴−(𝑡)𝐷(𝑡)𝐴+(𝑡), 𝐷(𝑡) = 𝑡𝜌𝐼𝑝.

In this case the subgroup 𝒬−(𝜌1, . . . , 𝜌𝑝) consists of constant invertible matrices of order 𝑝
and each normalization at infinite is reduced to the right multiplication of 𝐴−(𝑡) by an ar-
bitrary invertible matrix. Then 𝐴(𝑡) = 𝐶−(𝑡)𝐷(𝑡)𝐶+(𝑡), where 𝐶−(𝑡) = 𝐴−(𝑡)𝐴

−1
− (∞),

𝐶+(𝑡) = 𝐴−(∞)𝐴+(𝑡), is a normalized factorization of 𝐼𝑝-type since in this case 𝐵−(𝑡) = 𝐶−(𝑡)
and 𝐵−(∞) = 𝐶−(∞) = 𝐼𝑝. This, in this case there exists only one type of 𝑃 -normalization.

The next theorem clarifies the meaning on the conditions in Definition 2.2.

Theorem 2.1. Let for a matrix function 𝐴(𝑡) there exists a 𝑃 -normalized Wiener-Hopf
factorization:

𝐴(𝑡) = 𝐶−(𝑡)𝐷(𝑡)𝐶+(𝑡).

Then

1. 𝑃 -normalized Wiener-Hopf factorization generates a Birkhoff factorization by the formula

𝐴(𝑡) = 𝑃𝐷(𝑡)𝑃−1𝐵−(𝑡)𝐵+(𝑡),

where 𝐵−(𝑡) = 𝑃𝐷−1(𝑡)𝑃−1𝐶−(𝑡)𝐷(𝑡), 𝐵+(𝑡) = 𝐶+(𝑡).
2. This 𝑃 -normalized Wiener-Hopf factorization is unique.

Proof. Condition 1 in Definition 2.2 is equivalent to the statement 𝐵−(𝑡) ∈ 𝐺𝑊 𝑝×𝑝
− (T). The

existence of the aforementioned Birkhoff factorization can be confirmed straightforwardly.
Let us prove the uniqueness of a 𝑃 -normalized Wiener-Hopf factorization. Suppose

that 𝐴(𝑡) = ̃︀𝐶−(𝑡)𝐷(𝑡) ̃︀𝐶+(𝑡) is another 𝑃 -normalized factorization of 𝐴(𝑡) and 𝐴(𝑡) =

𝑃𝐷(𝑡)𝑃−1 ̃︀𝐵−(𝑡) ̃︀𝐵+(𝑡) is the associated Birkhoff factorization. Then ̃︀𝐵−1
− (𝑡)𝐵−(𝑡) =̃︀𝐵+(𝑡)𝐵

−1
+ (𝑡) and hence, by the Liouville theorem, this matrix function is a constant invert-

ible matrix. Hence, ̃︀𝐵−1
− (𝑡)𝐵−(𝑡) = ̃︀𝐵−1

− (∞)𝐵−(∞) = 𝐼𝑝 by Condition 2 of Definition 2.2.

Thus, ̃︀𝐵−(𝑡) = 𝐵−(𝑡) and ̃︀𝐶−(𝑡) = 𝐶−(𝑡), ̃︀𝐶+(𝑡) = 𝐶+(𝑡).

Remark 2.1. We have shown that a 𝑃 -normalized Wiener-Hopf factorization produces a
Birkhoff normalization. Generally speaking, an arbitrary Birkhoff factorization does not gener-
ates in this way the Wiener-Hopf factorization. However, the following is true. Let a Birkhoff
factorization (2.3) and an arbitrary permutation matrix 𝑃 be given such that in the diagonal
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matrix function 𝐷(𝑡) = 𝑃𝐷𝑏(𝑡)𝑃
−1 the Birkhoff indices 𝛽1, . . . , 𝛽𝑝 are reordered in decreasing

order. If the factor 𝐵−(𝑡) satisfies the condition

𝐷𝑏(𝑡)𝐵−(𝑡)𝑃𝐷−1
𝑏 (𝑡)𝑃−1 ∈ 𝑊 𝑝×𝑝

− (T),

then the Birkhoff indices, after the reordering, coincide with the right partial indices 𝐴(𝑡) and
the Birkhoff factorization generates a 𝑃 -normalized Wiener-Hopf factorization

𝐴(𝑡) = 𝐶−(𝑡)𝐷(𝑡)𝐶+(𝑡),

where 𝐶−(𝑡) = 𝐷𝑏(𝑡)𝐵−(𝑡)𝑃𝐷−1
𝑏 (𝑡)𝑃−1, 𝐶+(𝑡) = 𝐵+(𝑡). Thus, a 𝑃 -normalized Wiener-Hopf

factorization and the associated constructed Birkhoff factorization are equivalent. This fact
allows us to reduce the studying of the continuity of the factors and obtaining the explicit
estimates for their absolute errors to the already solved similar problem for matrix functions
admitting the canonical factorization [15].
The condition 𝐵−(∞) = 𝑃 guaranteeing the uniqueness of the 𝑃 -normalized factorization

can be replaced by 𝐵−(∞) = 𝐴0, where 𝐴0 is an arbitrary invertible matrix. The initial con-
dition allows us to obtain a simpler form of the factors 𝐶−(𝑡), 𝐵−(𝑡) in the 𝑃 -normalized
factorizations.

In view of Definition 2.2, the following natural questions arise.

1. First of all, it should be clarified whether for each matrix function 𝐴(𝑡) ∈ 𝐺𝑊 𝑝×𝑝(T) there
exists a normalized factorization of some 𝑃 -type?

2. For the matrix functions from the Bojarski class Ω(𝜌1, . . . , 𝜌𝑝), that is, having the same
set of the right partial indices, list all possible 𝑃 -types of normalizations.

3. Find all necessary and sufficient conditions determining the normalization of 𝑃 -type.
4. Provide the form of factors 𝐶±(𝑡), 𝐵±(𝑡) for each 𝑃 -type.
5. Check the stability of a given 𝑃 -type of the normalization with respect to a small pertur-

bation of an original matrix function 𝐴(𝑡).
6. Using the canonical normalization, establish a complete version of the Shubin theorem on

continuity of factors including an explicit estimate for errors ‖𝐶±(𝑡)− ̃︀𝐶±(𝑡)‖𝑊
While listing possible 𝑃 -types of factorization normalization for a matrix function in the

class Ω(𝜌1, . . . , 𝜌𝑝) we would prefer to provide a complete set of non-intersecting types of nor-
malizations. However, in this case some types of normalizations are not stable under a small
perturbation of the original matrix function. Since such stability is important for constructing
an approximate factorization, in what follows we do not require a disjoint partition of the set
of all possible normalizations.
For many of these problems, it is possible to give reasonable solutions for matrix function of

an arbitrary order 𝑝. However, a complete and clear picture arises as 𝑝 = 2. In what follows
we restrict ourselves by this case.

3. 𝑃 -normalization of Wiener-Hopf factorization of

second order matrix functions

The case 𝜌1 = 𝜌2 has been considered in Example 2.1. In this case there always exists a
normalization of 𝐼2-type and only such type of 𝑃 -normalization is possible. The stability of
such type of normalization was studied in work [15].
In what follows we assume that 𝜌1 < 𝜌2. We denote 𝜌 = 𝜌2 − 𝜌1. The matrix function 𝑄−(𝑡)

from the theorem on the general form of the factors reads as

𝑄−(𝑡) =

(︂
𝑞11 𝑞12(𝑡)
0 𝑞22

)︂
. (3.1)
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Here 𝑞11, 𝑞22 are non-zero numbers and 𝑞12(𝑡) =
∑︀𝜌

𝑘=0 𝑞
(𝑘)
12 𝑡

−𝑘 is a scalar polynomial in 𝑡−1 of

degree at most 𝜌 = 𝜌2 − 𝜌1. We need to choose the parameters 𝑞11, 𝑞22, 𝑞
(𝑘)
12 so that to reduce

factorization (1.1) to canonically normalized factorization (2.5):

𝐶−(𝑡) = 𝐴−(𝑡)𝑄−(𝑡).

It turns out that Condition 1 from Definition 2.2 of 𝑃 -normalization is equivalent to the
existence of a so-called 𝑃𝐿𝑈 -factorizaiton of an invertible numerical matrix 𝐴0 = 𝐴−(∞). We
recall, see, for instance [21], that if an invertible matrix 𝐴0 can be represented as a product
𝐴0 = 𝐿𝑈 of a lower triangular matrix 𝐿 by an upper triangular matrix 𝑈 , then one says that
𝐴0 admits 𝐿𝑈 -factorization. A necessary and sufficient condition for the existence of the 𝐿𝑈 -
factorization of a matrix 𝐴0 is a non-vanishing of all principal minors of this matrix. Once we
fix the diagonal elements of the matrix 𝐿, the 𝐿𝑈 -factorization becomes unique.
In the general case there always exists, generally speaking, non-unique, a permutation matrix

𝑃−1 such that 𝑃−1𝐴0 admits the 𝐿𝑈 -factorization, that is, 𝐴0 is represented in the form
𝐴0 = 𝑃𝐿𝑈 . This is exactly the 𝑃𝐿𝑈 -factorization of 𝐴0.
For 𝑝 = 2 there exist only two permutation matrices:

𝑃1 = 𝐼 =

(︂
1 0
0 1

)︂
, 𝑃2 = 𝐽 =

(︂
0 1
1 0

)︂
.

Since the matrix 𝐴0 = 𝐴−(∞) is invertible, for each Wiener-Hopf factorization 𝐴(𝑡) =
𝐴−(𝑡)𝐷(𝑡)𝐴+(𝑡), at least one of the following two types of the triangular factorization of 𝐴0 is
realized: the 𝐿𝑈 -factorization as (𝐴0)11 ̸= 0 and the 𝐽𝐿𝑈 -factorization as (𝐴0)21 ̸= 0. It is easy
to confirm that if the condition (𝐴0)11 ̸= 0 (or (𝐴0)21 ̸= 0) holds for at least one Wiener-Hopf
factorization of the matrix function 𝐴(𝑡), then it holds for each factorization of this matrix
function.

Theorem 3.1. The matrix function 𝐴(𝑡) ∈ 𝐺𝑊 2×2(T) admits a normalized factorization
of 𝑃 -type if and only if for some factorization 𝐴(𝑡) = 𝐴−(𝑡)𝐷(𝑡)𝐴+(𝑡) the numerical matrix
𝐴0 = 𝐴−(∞) admits the 𝑃𝐿𝑈-factorization, that is, as (𝐴0)11 ̸= 0 for 𝑃 = 𝐼 or (𝐴0)21 ̸= 0 for
𝑃 = 𝐽 .
If this condition is satisfied, then the 𝑃 -normalized Wiener-Hopf factorization and the cor-

responding Birkhoff factorization read as:

𝐴(𝑡) = 𝐶−(𝑡)𝐷(𝑡)𝐶+(𝑡), 𝐴(𝑡) = 𝑃𝐷(𝑡)𝑃−1𝐵−(𝑡)𝐵+(𝑡),

where

𝐶−(𝑡) =𝑃

(︂
1 + 𝑡−1𝑐−11(𝑡) 𝑡−𝜌−1𝑐−12(𝑡)

𝑐−21(𝑡) 1 + 𝑡−1𝑐−22(𝑡)

)︂
, (3.2)

𝐵−(𝑡) =𝑃

(︂
1 + 𝑡−1𝑐−11(𝑡) 𝑡−1𝑐−12(𝑡)
𝑡−𝜌𝑐−21(𝑡) 1 + 𝑡−1𝑐−22(𝑡)

)︂
.

Here 𝑐−𝑖𝑗(𝑡) ∈ 𝑊−(T).

Proof. Suppose that the matrix function 𝐴(𝑡) admits the normalized factorization 𝐴(𝑡) =
𝐶−(𝑡)𝐷(𝑡)𝐶+(𝑡) with the permutation matrix 𝑃 = 𝐼. Then by Condition 1 in Definition 2.2,
we necessarily have 𝐷−1𝐶−(𝑡)𝐷(𝑡) ∈ 𝑊 2×2

− (T). This condition is equivalent to the fact that
the entry

(︀
𝐶−(𝑡)

)︀
12

has a zero at infinity of order at least 𝜌 = 𝜌2 − 𝜌1. In particular, the
matrix 𝐶−(∞) is lower triangular. For each initial factorization 𝐴(𝑡) = 𝐴−(𝑡)𝐷(𝑡)𝐴+(𝑡), by
the theorem on the general form of factors, 𝐶−(𝑡) = 𝐴−(𝑡)𝑄−(𝑡) for some 𝑄−(𝑡) of form (3.1).
In particular, 𝐶−(∞) = 𝐴−(∞)𝑄−(∞), where 𝑄−(∞) is an upper triangular matrix. Thus,
𝐴−(∞) admits the 𝐿𝑈 -factorization. The case 𝑃 = 𝐽 is easily reduced to the above considered
one.
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Now let the matrix 𝐴−(∞) for some factorization 𝐴(𝑡) = 𝐴−(𝑡)𝐷(𝑡)𝐴+(𝑡) admit the 𝑃𝐿𝑈 -
factorization. Let us show that then for 𝐴(𝑡) there exists the 𝑃 -normalized factorization and
let us find the form of the factors 𝐶−(𝑡), 𝐵−(𝑡) in this case.
We first suppose that 𝑃 = 𝐼, that is,

(︀
𝐴−(∞)

)︀
11

̸= 0. We normalized the 𝐿𝑈 -factorization
of the matrix 𝐴0 = 𝐴−(∞) by the condition that the diagonal entries of the lower triangular
matrix 𝐿 are chosen to be unit. By the theorem on the general form of the factorization, each
two factors 𝐴−(𝑡), 𝐶−(𝑡) are related by the identity

𝐶−(𝑡) = 𝐴−(𝑡)𝑄−(𝑡), (3.3)

where 𝑄−(𝑡) is of the form

𝑄−(𝑡) =

(︂
𝑞11

∑︀𝜌
𝑘=0 𝑞

(𝑘)
12 𝑡

−𝑘

0 𝑞22

)︂
.

We choose the parameters 𝑞11, 𝑞22, 𝑞
(𝑘)
12 so that the factor 𝐶−(𝑡) is of form (3.2). In order to

do this, we expand analytic in the domain 𝐷− matrix functions 𝐴−(𝑡), 𝐶−(𝑡) into the Laurent
series in the vicinity of the infinity:

𝐴−(𝑡) =
∞∑︁
𝑘=0

𝐴𝑘𝑡
−𝑘, 𝐶−(𝑡) =

∞∑︁
𝑘=0

𝐶𝑘𝑡
−𝑘.

Let 𝑄−(𝑡) =
∑︀𝜌

𝑘=0 𝑄𝑘𝑡
−𝑘, where

𝑄0 =

(︂
𝑞11 𝑞

(0)
12

0 𝑞22

)︂
, 𝑄𝑘 =

(︂
0 𝑞

(𝑘)
12

0 0

)︂
, 1 ⩽ 𝑘 ⩽ 𝜌.

We denote the entries of the matrix 𝐴𝑘 by 𝑎
(𝑘)
𝑖𝑗 ; by the assumptions, 𝑎

(0)
11 ̸= 0.

It follows from identity (3.3) that 𝐶𝑘 =
∑︀𝑘

𝑗=0𝐴𝑘−𝑗𝑄𝑗, in particular, 𝐶0 = 𝐴0𝑄0. We con-
struct the normalized 𝐿𝑈 -factorization of the matrix 𝐴0:

𝐴0 := 𝐿0 · 𝑈0 =

(︃
1 0

𝑎
(0)
21

𝑎
(0)
11

1

)︃
·

(︃
𝑎
(0)
11 𝑎

(0)
12

0 det𝐴0

𝑎
(0)
11

)︃
.

We let 𝑄0 = 𝑈−1
0 , then 𝐶0 = 𝐿0. The parameters 𝑞11, 𝑞22, 𝑞

(0)
12 have been defined. We find the

remaining parameters 𝑞
(𝑘)
12 , 1 ⩽ 𝑘 ⩽ 𝜌, recurrently. Since

𝐶𝑘 = 𝐴𝑘𝑈
−1
0 +

𝑘∑︁
𝑗=1

𝐴𝑘−𝑗𝑄𝑗 = 𝐴𝑘𝑈
−1
0 +

(︃
0
∑︀𝑘

𝑗=1 𝑎
(𝑘−𝑗)
11 𝑞

(𝑗)
12

0
∑︀𝑘

𝑗=1 𝑎
(𝑘−𝑗)
21 𝑞

(𝑗)
12

)︃
,

this implies the following relation for the entries of the matrix 𝐶𝑘:

(𝐶𝑘)12 = (𝐴𝑘𝑈
−1
0 )12 +

𝑘−1∑︁
𝑗=1

𝑎
(𝑘−𝑗)
11 𝑞

(𝑗)
12 + 𝑎

(0)
11 𝑞

(𝑘)
12 , 1 ⩽ 𝑘 ⩽ 𝜌.

Here, for the sake of convenience, we adopt a usual convention that an «empty» sum is zero.

Determining 𝑞
(𝑘)
12 successively for 1 ⩽ 𝑘 ⩽ 𝜌 by the formulae

𝑞
(𝑘)
12 = − 1

𝑎
(0)
11

(︂
(𝐴𝑘𝑈

−1
0 )12 +

𝑘−1∑︁
𝑗=1

𝑎
(𝑘−𝑗)
11 𝑞

(𝑗)
12

)︂
, (3.4)

we obtain that (𝐶𝑘)12 = 0 for these values of 𝑘. Together with the already found value of
𝐶0 = 𝐿0 this give form (3.2) for 𝐶−(𝑡).
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We are going to check Conditions 1, 2 of Definition 2.2. We introduce the matrix function
𝐵−(𝑡) = 𝐷−1(𝑡)𝐶−(𝑡)𝐷(𝑡). Straightforward calculations show that

𝐵−(𝑡) =

(︂
1 + 𝑡−1𝑐−11(𝑡) 𝑡−1𝑐−12(𝑡)
𝑡−𝜌𝑐−21(𝑡) 1 + 𝑡−1𝑐−1

22 (𝑡)

)︂
.

This means that the matrix function 𝐵−(𝑡) together with its inverse belongs to the algebra
𝑊 2×2

− (T). It is obvious that 𝐵−(∞) = 𝐼 = 𝑃 . The normalized Wiener-Hopf factorization of
𝐼-type and the correspondiong Birkhoff factorization have been constructed.
We proceed to the second possible case of the canonical normalization. Let for the matrix

function 𝐴(𝑡) there exists a right Wiener-Hopf factorization, for which the matrix 𝐴0 = 𝐴−(∞)
admits the 𝐽𝐿𝑈 -factorization, that is, for which

(︀
𝐴−(∞)

)︀
21

̸= 0. In this 𝐽𝐿𝑈 -factorization of
𝐴0 we assume that the entries of the lower triangular matrix 𝐿 on side diagonal are chosen to
be unit.
Let us reduce this case to the previous one. In order to do this, we introduce an auxiliary

matrix function

𝐹 (𝑡) = 𝐽𝐴(𝑡) =

(︂
𝑎21(𝑡) 𝑎22(𝑡)
𝑎11(𝑡) 𝑎12(𝑡)

)︂
.

It admits the Wiener-Hopf factorization 𝐹 (𝑡) = 𝐹−(𝑡)𝐷(𝑡)𝐹+(𝑡), where 𝐹−(𝑡) = 𝐽𝐴−(𝑡),
𝐹+(𝑡) = 𝐴+(𝑡). This is why 𝐹0 = 𝐹−(∞) = 𝐽𝐴0, and for 𝐹 (𝑡) the first case of the nor-
malization holds, that is, it admits the 𝐼-normalized factorization 𝐹 (𝑡) = 𝐾−(𝑡)𝐷(𝑡)𝐾+(𝑡),
where

𝐾−(𝑡) =

(︂
1 + 𝑡−1𝑐−11(𝑡) 𝑡−𝜌−1𝑐−12(𝑡)

𝑐−21(𝑡) 1 + 𝑡−1𝑐−1
22 (𝑡)

)︂
,

and 𝑐−𝑖𝑗(𝑡) ∈ 𝑊−(T).
Then 𝐴(𝑡) = 𝐽𝐹 (𝑡) has the 𝐽-normalized factorization with the factor

𝐶−(𝑡) = 𝐽𝐾−(𝑡) =

(︂
𝑐−21(𝑡) 1 + 𝑡−1𝑐−1

22 (𝑡)
1 + 𝑡−1𝑐−11(𝑡) 𝑡−𝜌−1𝑐−12(𝑡)

)︂
.

The statement of the theorem on the Birkhoff factorization can be checked easily. The proof is
complete.

Remark 3.1. If for 𝐴(𝑡) an arbitrary Wiener–Hopf factorization is known 𝐴(𝑡) =
𝐴−(𝑡)𝐷(𝑡)𝐴+(𝑡), then all the constructions in this theorem can be done effectively since the
matrix function 𝑄−(𝑡) generating the given 𝑃 -normalization is found by recursive relations
(3.4).
For triangular second-order matrix functions [12] and for Laurent matrix polynomials [13],

when the factorization is constructed explicitly, the normalization can be done explicitly.

We note one important fact on the disjointness of the normalization classes. Some ma-
trix functions 𝐴(𝑡) in the class Ω(𝜌1, 𝜌2) can simultaneously admit the normalization of 𝐼-
type and 𝐽-type since it is possible to satisfy simultaneously the conditions

(︀
𝐴−(∞)

)︀
11

̸= 0,(︀
𝐴−(∞)

)︀
21

̸= 0. This is why, to ensure that a matrix function 𝐴(𝑡) admits the only type of the

canonical normalization, we should require that
(︀
𝐴−(∞)

)︀
11

̸= 0 (𝐼-type) or
(︀
𝐴−(∞)

)︀
11

= 0.

In the latter case the condition
(︀
𝐴−(∞)

)︀
21

̸= 0 holds and we have a particular case of the
𝐽-normalization. We call this type 𝑂𝐽-type. Thus, for this type, there exists a factorization
𝐴(𝑡) = 𝐴−(𝑡)𝐷(𝑡)𝐴+(𝑡), for which

𝐴−(∞) =

(︂
0 𝛼12

𝛼21 𝛼22

)︂
, 𝛼21 ̸= 0.

In this case each factorization 𝐴(𝑡) satisfies these conditions.
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It is clear that the factorization in the third case of the normalization is constructed by the
same formulae as for the 𝐽-type but with an additional condition

(︀
𝐶−(∞)

)︀
11

= 0, that is, in
this case the factor 𝐶−(𝑡) reads as

𝐶−(𝑡) =

(︂
𝑡−1𝑘−

11(𝑡) 1 + 𝑡−1𝑘−
12(𝑡)

1 + 𝑡−1𝑘−
21(𝑡) 𝑡−𝜌−1𝑘−1

22 (𝑡)

)︂
. (3.5)

We call these three types of the canonical normalizations at infinity.
In order to arrive initially to disjoint types of normalizations, we should use a so-called

Bruhat decomposition instead the 𝑃𝐿𝑈 -decomposition of the matrix 𝐴−(∞): 𝐴−(∞) = 𝐿𝑃𝑈 ,
in which the permutation 𝑃 is determined uniquely. However, as we shall see below, such type
of normalization is not convenient from the point of view of applications since the 𝑂𝐽-type of
normalization is not stable under a small perturbation of the original matrix function 𝐴(𝑡).

4. Stable types of canonical normalization

In this and the following sections while defining the norm ‖ · ‖𝑊 of a matrix function in
the Wiener matrix algebra, we employ the maximal column norm ‖ · ‖1 for its matrix Fourier
coefficients.

Definition 4.1. A canonical factorization normalization of the matrix function 𝐴(𝑡) is called
stable under a small perturbation 𝐴(𝑡) in the Bojarski class Ω(𝜌1, 𝜌2) if for each sufficiently

small 𝛿 > 0 each matrix function ̃︀𝐴(𝑡) possessing the same set of the right partial indices 𝜌1,

𝜌2 as 𝐴(𝑡) and satisfying the inequality ‖𝐴(𝑡)− ̃︀𝐴(𝑡)‖𝑊 < 𝛿 has the same type of the canonical
normalization as 𝐴(𝑡).

It is obvious that as 𝜌1 = 𝜌2 the canonical normalization is stable. Let us consider the case
𝜌1 < 𝜌2.

Theorem 4.1. A canonical factorization normalization of type 𝑃 = 𝐼 or 𝑃 = 𝐽 is stable
under a small perturbation 𝐴(𝑡) in the Bojarski class Ω(𝜌1, 𝜌2). The canonical normalization
of type 𝑂𝐽 is unstable.

Proof. Suppose that the matrix function 𝐴(𝑡) admits the canonically normalized factorization
of 𝐼-type: 𝐴(𝑡) = 𝐶−(𝑡)𝐷(𝑡)𝐶+(𝑡), where

𝐶−(𝑡) =

(︂
1 + 𝑡−1𝑐−11(𝑡) 𝑡−𝜌−1𝑐−12(𝑡)

𝑐−21(𝑡) 1 + 𝑡−1𝑐−1
22 (𝑡)

)︂
.

Hence,

𝐶−(∞) =

(︂
1 0

𝑐−21(∞) 1

)︂
.

By the Shubin theorem, for each 𝜀 > 0 we can choose 𝛿 > 0 such that if ‖𝐴(𝑡)− ̃︀𝐴(𝑡)‖𝑊 < 𝛿

and the matrix functions 𝐴(𝑡), ̃︀𝐴(𝑡) have the same set of partial indices, then there exists a

factorization ̃︀𝐴(𝑡) = ̃︀𝐴−(𝑡)𝐷(𝑡) ̃︀𝐴+(𝑡), for which ‖𝐶−(𝑡) − ̃︀𝐴−(𝑡)‖𝑊 < 𝜀. This implies that

‖𝐶−(∞) − ̃︀𝐴−(∞)‖1 < 𝜀, and therefore |1 −
(︀ ̃︀𝐴−(∞)

)︀
11
| < 𝜀. Thus,

(︀ ̃︀𝐴−(∞)
)︀
11

̸= 0 and the

matrix function ̃︀𝐴(𝑡) admits the canonically normalized factorization of 𝐼-type. In the same
way we consider the case of 𝐽-normalization.
Let us prove that the normalization of type 𝑂𝐽 is not stable. Indeed, let for the ma-

trix function 𝐴(𝑡) there exists the canonically normalized factorization of type 𝑂𝐽 : 𝐴(𝑡) =
𝐶−(𝑡)𝐷(𝑡)𝐶+(𝑡), where 𝐶−(𝑡) is found by formula (3.5).
We introduce a matrix functioñ︀𝐶−(𝑡) =

(︂
𝜀+ 𝑡−1𝑘−

11(𝑡) 1 + 𝑡−1𝑘−
12(𝑡)

1 + 𝑡−1𝑘−
21(𝑡) 𝑡−𝜌−1𝑘−1

22 (𝑡)

)︂
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for all sufficiently small 𝜀 > 0. Then ‖𝐶−(𝑡)− ̃︀𝐶−(𝑡)‖𝑊 = 𝜀 and this is why ̃︀𝐶−(𝑡) is an invertible
on T matrix function belonging with its inverse to the subalgebra 𝑊 2×2

− (T).
We define a matrix function ̃︀𝐴(𝑡) = ̃︀𝐶−(𝑡)𝐷(𝑡)𝐶+(𝑡). It has the same right partial indices as

𝐴(𝑡), has a normalization of 𝐼-type and satisfies the inequality ‖𝐴(𝑡)− ̃︀𝐴(𝑡)‖𝑊 < 2𝜀 ‖𝐶+(𝑡)‖𝑊 .
Here we have taken into account that ‖𝐷(𝑡)‖𝑊 = 2. Thus, in each sufficiently small neighbour-

hood of 𝐴(𝑡) there exists a matrix function ̃︀𝐴(𝑡) with another type of normalization, that is,
the normalization of the type 𝑂𝐽 is unstable. The proof is complete.

5. Continuity of canonically normalized factors

Now we can study the issue on the continuity of the factors for the matrix function 𝐴(𝑡) and

to specify the Shubin theorem. It turns out that if 𝐴(𝑡) and ̃︀𝐴(𝑡) belong to the same Bojarski
class Ω(𝜌1, 𝜌2) and are sufficiently close, then normalizing their factorization in the same way,

we obtain sufficiently close factors 𝐶±(𝑡) and ̃︀𝐶±(𝑡).

Theorem 5.1. Let a matrix function 𝐴(𝑡) admit a canonically normalized factorization

𝐴(𝑡) = 𝐶−(𝑡)𝐷(𝑡)𝐶+(𝑡) of type 𝐼 or 𝐽 , a matrix function ̃︀𝐴(𝑡) have the same right partial
indices as 𝐴(𝑡) and satisfy the inequality

‖𝐴(𝑡)− ̃︀𝐴(𝑡)‖ < 𝜀.

Let 𝜀 > 0 be small enough so that ̃︀𝐴(𝑡) admits the canonically normalized factorizatioñ︀𝐴(𝑡) = ̃︀𝐶−(𝑡)𝐷(𝑡) ̃︀𝐶+(𝑡) of the same type as 𝐴(𝑡) and

𝜀 < min

{︂
1

4
‖𝐴‖𝑊 ,

1

16‖𝐶−1
+ ‖𝑊‖𝐶−1

− ‖𝑊
,

1

128‖𝐶+‖𝑊‖𝐶−1
− ‖2𝑊‖𝐶−1

+ ‖2𝑊

}︂
. (5.1)

Then

‖𝐶− − ̃︀𝐶−‖𝑊 < 8
(︀
‖𝐶−1

+ ‖𝑊 + 128 ‖𝐴‖𝑊 ‖𝐶−1
− ‖2𝑊 ‖𝐶−1

+ ‖2𝑊
)︀
· 𝜀

‖𝐶+ − ̃︀𝐶+‖𝑊 < 32
(︀
‖𝐶+‖2𝑊 ‖𝐶−1

− ‖2𝑊 ‖𝐶−1
+ ‖2𝑊

)︀
· 𝜀.

Proof. Suppose that 𝐴(𝑡) admits the canonically normalized factorization of type 𝐼. Then for

sufficiently small 𝜀 > 0 the matrix function ̃︀𝐴(𝑡) admits the factorization with the canonical
normalization of the same type 𝐼.
We pass from the 𝐼-normalized Wiener-Hopf factorization to the Birkhoff factorization in

order to reduce the problem to that on the stability of the factors for the matrix function with
zero partial indices studied in work [15].
By Theorem 3.1 we have

𝐴(𝑡) = 𝐷(𝑡)𝐵−(𝑡)𝐵+(𝑡), ̃︀𝐴(𝑡) = 𝐷(𝑡) ̃︀𝐵−(𝑡) ̃︀𝐵+(𝑡),

where 𝐵−(𝑡) = 𝐷−1(𝑡)𝐶−(𝑡)𝐷(𝑡), 𝐵+(𝑡) = 𝐶+(𝑡). Similar formulae hold for the factors ̃︀𝐵−(𝑡),̃︀𝐵+(𝑡).

We denote 𝐵(𝑡) = 𝐷−1(𝑡)𝐴(𝑡), ̃︀𝐵(𝑡) = 𝐷−1(𝑡) ̃︀𝐴(𝑡). The matrix functions 𝐵(𝑡), ̃︀𝐵(𝑡) admits
the factorization with zero partial indices:

𝐵(𝑡) = 𝐵−(𝑡)𝐵+(𝑡), ̃︀𝐵(𝑡) = ̃︀𝐵−(𝑡) ̃︀𝐵+(𝑡).

Moreover, it follows from the formulae for 𝐵−(𝑡), ̃︀𝐵−(𝑡) that these factors are normalized in

the same way: 𝐵−(∞) = ̃︀𝐵−(∞) = 𝐼.
Let us check the assumptions of Theorem 2 from work [15]. Since ‖𝐷−1‖𝑊 = 2, then

1
2
‖𝐴‖𝑊 ⩽ ‖𝐵‖𝑊 . Formula

𝐵−1
− (𝑡) = 𝐷−1(𝑡)𝐶−1

− (𝑡)𝐷(𝑡)
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implies the estimate
1

4‖𝐶−1
− ‖𝑊

⩽
1

‖𝐵−1
− ‖𝑊

,

while inequality (5.1) yields

‖𝐵 − ̃︀𝐵‖𝑊 < min

{︂
‖𝐵‖𝑊 ,

1

2‖𝐵−1
+ ‖𝑊‖𝐵−1

− ‖𝑊

}︂
.

This is why for ‖𝐵− − ̃︀𝐵−‖𝑊 we can apply the estimate from Theorem 2 in work [15]. Then

‖𝐶− − ̃︀𝐶−‖𝑊 = ‖𝐷
(︂
𝐵− − ̃︀𝐵−

)︂
𝐷−1‖𝑊 ⩽ 4‖𝐵− − ̃︀𝐵−‖𝑊

<4
(︀
‖𝐵−1

+ ‖𝑊 + 4‖𝐵‖𝑊‖𝐵−1
− ‖2𝑊‖𝐵−1

+ ‖2𝑊
)︀
‖𝐵 − ̃︀𝐵‖𝑊

⩽8
(︀
‖𝐶−1

+ ‖𝑊 + 128 ‖𝐴‖𝑊 ‖𝐶−1
− ‖2𝑊 ‖𝐶−1

+ ‖2𝑊
)︀
· 𝜀.

Similarly, by Theorem 3 in [15] we obtain:

‖𝐶+ − ̃︀𝐶+‖𝑊 = ‖𝐵+ − ̃︀𝐵+‖𝑊 < 32
(︀
‖𝐶+‖2𝑊 ‖𝐶−1

− ‖2𝑊 ‖𝐶−1
+ ‖2𝑊

)︀
· 𝜀.

Since ‖𝐽‖1 = 1, all estimates of the norms are preserved if the matrix function 𝐴(𝑡) admits
the canonical normalization of 𝐽-type. The proof is complete.

Thus, for all questions formulated in the end of Section 2, we can give complete answers for
the second order matrix functions.
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