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ON BOUNDARY PROPERTIES OF ASYMPTOTICALLY

HOLOMORPHIC FUNCTIONS

A. SUKHOV

Abstract. It is well known that for a generic almost complex structure on an almost
complex manifold (𝑀,𝐽) all holomorphic (even locally) functions are constants. For this
reason the analysis on almost complex manifolds concerns the classes of functions which
satisfy the Cauchy-Riemann equations only approximately. The choice of such a condition
depends on a considered problem. For example, in the study of zero sets of functions the
quasiconformal type conditions are very natural. This was confirmed by the famous work
of S. Donaldson. In order to study the boundary properties of classes of functions (on
a manifold with boundary) other type of conditions are suitable. In the present paper we
prove a Fatou type theorem for bounded functions with 𝜕𝐽 differential of a controled growth
on smoothly bounded domains in an almost complex manifold. The obtained result is new
even in the case of C𝑛 with the standard complex structure. Furthermore, in the case of
C𝑛 we obtain results with optimal regularity assumptions. This generalizes several known
results.
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1. Introduction

This paper is a continuation of work [17]. We improve the main results of [17] establishing
a general version of the Chirka-Lindelöf principle and the Fatou type theorem for bounded
asymptotically holomorphic functions on almost complex manifolds. These functions admit
the antiholomorphic part of the differential satisfying some asymptotic growth conditions near
the boundary. Such classes of functions naturally appear in Several Complex Variables, PDE
and related topics. Our results extend the known results [2], [5], [8], [14], [15] obtained for the
case of C𝑛 with the standard complex structure. Note that in this case our results also are
knew. Moreover, we obtain the results in C𝑛 with optimal regularity assumptions.

2. Almost complex manifolds and almost holomorphic functions

This is a preliminary section. We recall basic notions of the almost complex geometry making
the presentation of our results more convenient. Throughout the paper we assume that mani-
folds and almost complex structures are of class 𝐶∞ (the word «smooth» means the regularity
of this class). However, our main results are also valid under considerably weaker regularity
assumptions.

2.1. Almost complex manifolds. Let 𝑀 be a smooth manifold of real dimension 2𝑛. An

almost complex structure 𝐽 on 𝑀 is a smooth map which associates to every point 𝑝 ∈ 𝑀 a
linear isomorphism 𝐽(𝑝) : 𝑇𝑝𝑀 → 𝑇𝑝𝑀 of the tangent space 𝑇𝑝𝑀 such that 𝐽(𝑝)2 = −𝐼𝑝; here
𝐼𝑝 denotes the identity map of 𝑇𝑝𝑀 . Thus, every linear operator 𝐽(𝑝) is a complex structure

A. Sukhov, On boundary properties of asymptotically holomorphic functions.

© A. Sukhov 2022.

Submitted April 28, 2022.

127

https://doi.org/10.13108/2022-14-3-127


128 A. SUKHOV

on a vector space 𝑇𝑝𝑀 in the usual sense of Linear Algebra. When 𝐽 is fixed, a couple (𝑀,𝐽)
is called an almost complex manifold of complex dimension n.
A fundamental example of an almost complex structure is given by the standard complex

structure 𝐽𝑠𝑡 = 𝐽
(2)
𝑠𝑡 on𝑀 = R2. This linear operator is represented in the canonical coordinates

of R2 by the matrix

𝐽𝑠𝑡 =

(︂
0 −1

1 0

)︂
(2.1)

More generally, the standard complex structure 𝐽𝑠𝑡 on R
2𝑛 is represented by the block diagonal

matrix 𝑑𝑖𝑎𝑔(𝐽
(2)
𝑠𝑡 , . . . , 𝐽

(2)
𝑠𝑡 ) (usually we drop the notation of dimension because its value will be

clear from the context). Setting 𝑖𝑣 := 𝐽𝑠𝑡𝑣 for a vector 𝑣 ∈ R2𝑛, we identify the real space
(R2𝑛, 𝐽𝑠𝑡) with the complex linear space C𝑛; we use the notation 𝑧 = 𝑥+ 𝑖𝑦 = 𝑥+ 𝐽𝑠𝑡𝑦 for the
standard complex coordinates 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛.
Let (𝑀,𝐽) and (𝑀 ′, 𝐽 ′) be smooth almost complex manifolds. A 𝐶1-map 𝑓 : 𝑀 ′ → 𝑀 is

called (𝐽 ′, 𝐽)-complex or (𝐽 ′, 𝐽)-holomorphic if it satisfies the Cauchy-Riemann equations

𝑑𝑓 ∘ 𝐽 ′ = 𝐽 ∘ 𝑑𝑓. (2.2)

In particular a map 𝑓 : C𝑛 → C𝑚 is (𝐽𝑠𝑡, 𝐽𝑠𝑡)-holomorphic if and only if each component of
𝑓 is a usual holomorphic function.
Every almost complex manifold (𝑀,𝐽) can be viewed locally as the unit ball B in C𝑛 equipped

with a small (in any 𝐶𝑚-norm) almost complex deformation of 𝐽𝑠𝑡. The following well-known
statement is often useful.

Lemma 2.1. Let (𝑀,𝐽) be an almost complex manifold. Then for every point 𝑝 ∈𝑀 , every
𝑚 ⩾ 0 and 𝜆0 > 0 there exist a neighborhood 𝑈 of 𝑝 and a coordinate diffeomorphism 𝑧 : 𝑈 → B
such that 𝑧(𝑝) = 0, 𝑑𝑧(𝑝) ∘ 𝐽(𝑝) ∘ 𝑑𝑧−1(0) = 𝐽𝑠𝑡, and the direct image 𝑧*(𝐽) := 𝑑𝑧 ∘ 𝐽 ∘ 𝑑𝑧−1

satisfies ||𝑧*(𝐽)− 𝐽𝑠𝑡||𝐶𝑚(B) ⩽ 𝜆0.

Proof. There exists a diffeomorphism 𝑧 from a neighborhood 𝑈 ′ of 𝑝 ∈ 𝑀 onto B satisfying
𝑧(𝑝) = 0; after an additional linear change of coordinates one can achieve 𝑑𝑧(𝑝)∘𝐽(𝑝)∘𝑑𝑧−1(0) =
𝐽𝑠𝑡 (this is a classical fact from the Linear Algebra). For 𝜆 > 0 we consider the isotropic dilation
ℎ𝜆 : 𝑡 ↦→ 𝜆−1𝑡 in R2𝑛 and the composition 𝑧𝜆 = ℎ𝜆∘𝑧. Then lim𝜆→0 ||(𝑧𝜆)*(𝐽)−𝐽𝑠𝑡||𝐶𝑚(B) = 0 for

every 𝑚 ⩾ 0. Setting 𝑈 = 𝑧−1
𝜆 (B) for 𝜆 > 0 small enough, we obtain the desired statement. In

what follows we often denote the structure 𝑧*(𝐽) again by 𝐽 viewing it as a local representation
of 𝐽 in the coordinate system (𝑧).

Recall that an almost complex structure 𝐽 is called integrable if (𝑀,𝐽) is locally biholomor-
phic in a neighborhood of each point to an open subset of (C𝑛, 𝐽𝑠𝑡). In the case of complex
dimension 1 every almost complex structure is integrable. In the case of complex dimension
> 1 integrable almost complex structures form a highly special subclass in the space of all al-
most complex structures on 𝑀 ; an efficient criterion of integrablity is provided by the classical
theorem of Newlander-Nirenberg [9].

2.2. Pseudoholomorphic discs. Let (𝑀,𝐽) be an almost complex manifold of dimension
𝑛 > 1. For a “generic” choice of an almost complex structure, any holomorphic (even locally)
function on𝑀 is constant because the Cauchy-Riemann equations are overdetermined. For the
same reason 𝑀 does not admit non-trivial 𝐽-complex submanifolds of complex dimension > 1.
The unique exceptional case arises when 𝐽-complex submanifolds are of complex dimension 1.
They always exist at least locally.

Pseudoholomorphic curves are parametrized by the solutions 𝑓 of (2.2) in the special case
where 𝑀 ′ has the complex dimension 1. These holomorphic maps are called 𝐽-complex (or
𝐽-holomorphic or pseudoholomorphic ) curves. Note that we consider here the curves as maps
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i.e. we consider parametrized curves. We use the notation D = {𝜁 ∈ C : |𝜁| < 1} for the unit
disc in C always assuming that it is equipped with the standard complex structure 𝐽st. If in the
equations (2.2) we have𝑀 ′ = D, we call such a map 𝑓 a 𝐽-complex disc or a pseudoholomorphic

disc or just a holomorphic disc when the structure 𝐽 is fixed.
A fundamental fact is that pseudoholomorphic discs always exist in a suitable neighborhood

of any point of𝑀 ; this is the classical Nijenhuis-Woolf theorem (see [10]). Here it is convenient
to rewrite the equations (2.2) in local coordinates similarly to the complex version of the usual
Cauchy-Riemann equations.
Everything will be local, so (as above) we are in a neighborhood Ω of 0 in C𝑛 with the standard

complex coordinates 𝑧 = (𝑧1, . . . , 𝑧𝑛). We assume that 𝐽 is an almost complex structure defined
on Ω and 𝐽(0) = 𝐽𝑠𝑡. Let

𝑧 : D → Ω, 𝑧 : 𝜁 ↦→ 𝑧(𝜁)

be a 𝐽-complex disc. Setting 𝜁 = 𝜉 + 𝑖𝜂 we write (2.2) in the form 𝑧𝜂 = 𝐽(𝑧)𝑧𝜉. This equation
can be written as

𝑧𝜁 − 𝐴(𝑧)𝑧𝜁 = 0, 𝜁 ∈ D. (2.3)

Here a smooth map 𝐴 : Ω → Mat(𝑛,C) is defined by the identity 𝐿(𝑧)𝑣 = 𝐴𝑣 for any vector
𝑣 ∈ C𝑛 and 𝐿 is an R-linear map defined by 𝐿 = (𝐽𝑠𝑡 + 𝐽)−1(𝐽𝑠𝑡 − 𝐽). It is easy to check that
the condition 𝐽2 = −𝐼𝑑 is equivalent to the fact that 𝐿 is C-linear. The matrix 𝐴(𝑧) is called
the complex matrix of 𝐽 in the local coordinates 𝑧. Locally the correspondence between 𝐴 and
𝐽 is one-to-one. Note that the condition 𝐽(0) = 𝐽𝑠𝑡 means that 𝐴(0) = 0.
If 𝑡 are other local coordinates and 𝐴′ is the corresponding complex matrix of 𝐽 in the

coordinates 𝑡, then, as it is easy to check, we have the following transformation rule (see [16]):

𝐴′ = (𝑡𝑧𝐴+ 𝑡𝑧)(𝑡𝑧 + 𝑡𝑧𝐴)
−1 (2.4)

Note that one can view the equations (2.3) as a quasilinear analog of the Beltrami equation
for vector-functions. From this point of view, the theory of pseudoholomorphic curves is an
analog of the theory of quasi-conformal mappings.
Recall that for a complex function 𝑓 the Cauchy-Green transform is defined by

𝑇𝑓(𝜁) =
1

2𝜋𝑖

∫︁
D

𝑓(𝜔)𝑑𝜔 ∧ 𝑑𝜔
𝜔 − 𝜁

(2.5)

This classical linear integral operator has the following properties (see [19]):

(i) 𝑇 : 𝐶𝑟(D) → 𝐶𝑟+1(D) is a bounded linear operator for every non-integer 𝑟 > 0 (a similar
property holds in the Sobolev scales, see below). Here we use the usual Hölder norm on
the space 𝐶𝑟(D).

(ii) (𝑇𝑓)𝜁 = 𝑓 i.e. 𝑇 solves the 𝜕-equation in the unit disc.

(iii) the function 𝑇𝑓 is holomorphic on C ∖ D.
Fix a real non-integer 𝑟 > 1. Let 𝑧 : D → C𝑛, 𝑧 : D ∋ 𝜁 ↦→ 𝑧(𝜁) be a 𝐽-complex disc. Since the
operator

Ψ𝐽 : 𝑧 −→ 𝑤 = 𝑧 − 𝑇𝐴(𝑧)𝑧𝜁

maps the space 𝐶𝑟(D) into itself, we can write equation (2.2) in the form (Ψ𝐽(𝑧))𝜁 = 0. Thus,
the disc 𝑧 is 𝐽-holomorphic if and only if the map Ψ𝐽(𝑧) : D −→ C𝑛 is 𝐽𝑠𝑡-holomorphic.
When the norm of 𝐴 is small enough (which is assured by Lemma 2.1), then by the implicit
function theorem the operator Ψ𝐽 is invertible in the space 𝐶𝑟(D) and we obtain a bijective
correspondence between 𝐽-holomorphic discs and usual holomorphic discs. This implies easily
the existence of a 𝐽-holomorphic disc in a given tangent direction through a given point of 𝑀 ,
as well as a smooth dependence of such a disc on a deformation of a point or a tangent vector,
or on an almost complex structure; this also establishes the interior elliptic regularity of discs.
This is the classical Nijenhuis-Woolf theorem, see [10].
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Let (𝑀,𝐽) be an almost complex manifold and 𝐸 ⊂𝑀 be a real submanifold of𝑀 . Suppose
that a 𝐽-complex disc 𝑓 : D →𝑀 is continuous on D. With some abuse of terminology, we also
call the image 𝑓(D) simply by a disc and we call the image 𝑓(𝑏D) the boundary of a disc. If
𝑓(𝑏D) ⊂ 𝐸, then we say that (the boundary of) the disc 𝑓 is glued or attached to 𝐸 or simply
that 𝑓 is attached to 𝐸. If 𝛾 ⊂ 𝑏D is an arc and 𝑓(𝛾) ⊂ 𝐸, we say that 𝑓 is glued or attached

to 𝐸 along 𝛾.

2.3. The 𝜕𝐽-operator on an almost complex manifold (𝑀,𝐽). Now we consider the
second special class (together with pseudoholomorphic curves) of holomorphic maps. Consider
first the situation when 𝐽 be an almost complex structure defined in a domain Ω ⊂ C𝑛; one
can treat this as a local coordinate representation of 𝐽 in a chart on 𝑀 .
A 𝐶1 function 𝐹 : Ω → C is (𝐽, 𝐽𝑠𝑡)-holomorphic if and only if it satisfies the Cauchy-Riemann

equations

𝐹𝑧 + 𝐹𝑧𝐴(𝑧) = 0, (2.6)

where 𝐹𝑧 = (𝜕𝐹/𝜕𝑧1, . . . , 𝜕𝐹/𝜕𝑧𝑛) and 𝐹𝑧 = (𝜕𝐹/𝜕𝑧1, . . . , 𝜕𝐹/𝜕𝑧𝑛) are regarded as row-vectors.
Indeed, 𝐹 is (𝐽, 𝐽𝑠𝑡) holomorphic if and only if for every 𝐽-holomorphic disc 𝑧 : D → Ω the
composition 𝐹 ∘ 𝑧 is a usual holomorphic function that is 𝜕(𝐹 ∘ 𝑧)/𝜕𝜁 = 0 on D. Then the
Chain rule in combination with (2.3) leads to (2.6). Generally the only solutions to (2.6) are
constant functions unless 𝐽 is integrable (then 𝐴 vanishes identically in suitable coordinates).
Note also that (2.6) is a linear PDE system while (2.3) is a quasilinear PDE system for a vector
function on D.
Every 1-differential form 𝜑 on (𝑀,𝐽) admits a unique decomposition 𝜑 = 𝜑1,0 + 𝜑0,1 with

respect to 𝐽 . In particular, if 𝐹 : (𝑀,𝐽) → C is a 𝐶1-complex function, we have 𝑑𝐹 =
𝑑𝐹 1,0 + 𝑑𝐹 0,1. We use the notation

𝜕𝐽𝐹 = 𝑑𝐹 1,0 and 𝜕𝐽𝐹 = 𝑑𝐹 0,1. (2.7)

In order to write these operators explicitely in local coordinates, we find a local basis in
the space of (1,0) and (0,1) forms. We view 𝑑𝑧 = (𝑑𝑧1, . . . , 𝑑𝑧𝑛)

𝑡 and 𝑑𝑧 = (𝑑𝑧1, . . . , 𝑑𝑧𝑛)
𝑡 as

vector-columns. Then the forms

𝛼 = (𝛼1, . . . , 𝛼𝑛)
𝑡 = 𝑑𝑧 − 𝐴𝑑𝑧 and 𝛼 = 𝑑𝑧 − 𝐴𝑑𝑧 (2.8)

form a basis in the space of (1,0) and (0,1) forms respectively. Indeed, it suffices to observe
that a 1-form 𝛽 is of type (1,0) (resp. (0, 1)) if and only if for every 𝐽-holomorphic disc 𝑧 the
pull-back 𝑧*𝛽 is a usual (1,0) (resp. (0, 1)) form on D. Using equations (2.3), we obtain the
claim.
Now we decompose the differential 𝑑𝐹 = 𝐹𝑧𝑑𝑧+𝐹𝑧𝑑𝑧 = 𝜕𝐽𝐹 +𝜕𝐽𝐹 with respect to the basis

𝛼, 𝛼 using (2.8). We obtain the explicit expression

𝜕𝐽𝐹 = (𝐹𝑧(𝐼 − 𝐴𝐴)−1 + 𝐹𝑧(𝐼 − 𝐴𝐴)−1𝐴)𝛼 (2.9)

It is easy to check that the holomorphy condition 𝜕𝐽𝐹 = 0 is equivalent to (2.6) because
(𝐼 − 𝐴𝐴)−1𝐴(𝐼 − 𝐴𝐴) = 𝐴. Thus,

𝜕𝐽𝐹 = (𝐹𝑧 + 𝐹𝑧𝐴)(𝐼 − 𝐴𝐴)−1𝛼

We note that the matrix factor (𝐼−𝐴𝐴)−1 as well as the forms 𝛼 affect only the non-essential
constants in local estimates of the 𝜕𝐽 -operator near a boundary point which we will perfom in
the next sections. So the reader can assume that this operator is simply given by the left hand
expression of (2.6).

Definition 2.1. Let 𝐹 be a complex function of class 𝐶1 on a (bounded) domain Ω in an
almost complex manifold (𝑀,𝐽) of dimension 𝑛. We call 𝐹 a subsolution of the 𝜕𝐽 operator
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or simply a 𝜕𝐽-subsolution on Ω if there exists constants 𝐶 > 0 and 𝜏 > 0 such that

‖ 𝜕𝐽𝐹 (𝑧) ‖⩽ 𝐶𝑑𝑖𝑠𝑡(𝑧, 𝑏Ω)−1/2+𝜏 (2.10)

for all 𝑧 ∈ Ω. Here we use the norm with respect to any fixed Riemannian metric on 𝑀 .

Obviously, non-constant 𝜕𝐽 -subsolutions exist in a sufficiently small neighborhhod of any
point of 𝑀 . For example, each function 𝐹 of class 𝐶1 in an open neighborhhod of the compact
set Ω is a 𝜕𝐽 -subsolution on Ω. Of course, any 𝐶1 function 𝐹 with uniformly bounded 𝜕𝐽𝐹 on
Ω, satisfies (2.10). This subclass of functions was studied in [17]. In the case of C𝑛, a similar
class of functions appeared in [5].
Let 𝐹 be a 𝜕𝐽 -subsolution on Ω. Suppose that 𝐴 is the complex matrix of 𝐽 in a local chart

𝑈 and 𝑧 : D → 𝑈 is a 𝐽-complex disc. It follows by the Chain Rule and (2.3) that

(𝐹 ∘ 𝑧)𝜁 = (𝐹𝑧 + 𝐹𝑧𝐴)𝑧𝜁 .

Thus, if ℎ : D → Ω is a 𝐽-complex disc of class 𝐶1(D), then the composition 𝐹 ∘ ℎ has
a 𝜕-derivative satisfying (2.10) on D that is 𝐹 ∘ ℎ is a 𝜕𝐽𝑠𝑡-subsolution on D. Note that the
constant 𝐶 and 𝜏 appearing in the upper bound of type (2.10) for the 𝜕(𝐹 ∘ ℎ) depend only
on constants from the upper bound on 𝜕𝐽𝐹 in (2.10), and the 𝐶1 norm of ℎ on D as well. In
particular, if (ℎ𝑡) is a family of 𝐽-complex discs in Ω and 𝐶1-norms of these discs are uniformly
bounded with respect to 𝑡, then then one can find 𝐶 > 0 and 𝜏 > 0 independent of 𝑡 for the
upper bound of ‖ 𝜕𝐽(𝐹 ∘ ℎ𝑡) ‖.

2.4. One-dimensional case. Recall some boundary properties of subsolutions of the
𝜕-operator in the unit disc.
Denote by𝑊 𝑘,𝑝(D) the usual Sobolev classes of functions admitting generalized partial deriva-

tives up to the order 𝑘 in 𝐿𝑝(D) (in fact we need only the case 𝑘 = 0 and 𝑘 = 1). In particular
𝑊 0,𝑝(D) = 𝐿𝑝(D). We will always assume that 𝑝 > 2.
Denote also by ‖ 𝑓 ‖∞= supD |𝑓 | the usual sup-norm on the space 𝐿∞(D) of complex functions

bounded on D.

Lemma 2.2. Let 𝑓 ∈ 𝐿∞(D) and 𝑓𝜁 ∈ 𝐿𝑝(D) for some 𝑝 > 2. Then

(a) 𝑓 admits a non-tangential limit at almost every point 𝜁 ∈ 𝑏D.
(b) if 𝑓 admits a limit along a curve in D approaching 𝑏D non-tangentially at a boundary point

𝑒𝑖𝜃 ∈ 𝑏D, then 𝑓 admits a non-tangential limit at 𝑒𝑖𝜃.
(c) for each positive 𝑟 < 1 there exists a constant 𝐶 = 𝐶(𝑟) > 0 (independent of 𝑓) such that

for every 𝜁𝑗 ∈ 𝑟D, 𝑗 = 1, 2 one has

|𝑓(𝜁1)− 𝑓(𝜁2)| ⩽ 𝐶(‖ 𝑓 ‖∞ + ‖ 𝑓𝜁 ‖𝐿𝑝(D))|𝜁1 − 𝜁2|1−2/𝑝 (2.11)

The proof is contained in [17].
Sometimes it is convenient to apply the part (c) of Lemma on the disc 𝜌D with 𝜌 > 0. Let

𝑔 ∈ 𝐿∞(𝜌D) and 𝑔𝜁 ∈ 𝐿𝑝(𝜌D). The function 𝑓(𝜁) := 𝑔(𝜌𝜁) satisfies the assumptions of Lemma
2.2 on D. Let 0 < 𝛼 < 𝜌 and let |𝜏𝑗| < 𝛼, 𝑗 = 1, 2. Set 𝜁𝑗 = 𝜏𝑗/𝜌. Then |𝜁𝑗| < 𝑟 = 𝛼/𝜌 < 1,
𝑗 = 1, 2. Applying (c) Lemma 2.2 to 𝑓 we obtain:

|𝑔(𝜏1)− 𝑔(𝜏2)| ⩽ (𝐶(𝑟)/𝜌1−2/𝑝)(‖ 𝑔 ‖∞ +𝜌 ‖ 𝑔𝜁 ‖𝐿𝑝(𝜌D))|𝜏1 − 𝜏2|1−2/𝑝 (2.12)

Note that the constant 𝐶 = 𝐶(𝑟) = 𝐶(𝛼/𝜌) depends only on the quotient 𝑟 = 𝛼/𝜌 < 1. If 𝑟 is
separated from 1, the value of 𝐶 is fixed.
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3. Main results

First we introduce an almost complex analog of an admissible approach which is classical in
the case of C𝑛, see [15, 2].
Let Ω be a smoothly bounded domain in an almost complex manifold (𝑀,𝐽). Notice that any

domain with boundary of class 𝐶2 satisfies all assumptions imposed below. Fix a hermitian
metric on 𝑀 compatible with 𝐽 ; a choice of such metric will not affect our results since it
changes only constant factors in estimates. We measure all distances and norms with respect
to the choosen metric.
Let 𝑝 ∈ 𝑏Ω be a boundary point. A non-tangential approach to 𝑏Ω at 𝑝 can be defined as

the limit along the sets

𝐶𝛼(𝑝) = {𝑞 ∈ Ω : dist(𝑞, 𝑝) < 𝛼𝛿𝑝(𝑞)}, 𝛼 > 1. (3.1)

Here 𝛿𝑝(𝑞) denotes the minimum of distances from 𝑞 to the tangent plane 𝑇𝑝(𝑏Ω) and to 𝑏Ω.
We need to define a wider class of regions. An admissible approach to 𝑏Ω at 𝑝 is defined as

the limit along the sets

𝐴𝛼,𝜀(𝑝) = {𝑞 ∈ Ω : 𝑑𝑝(𝑞) < (1 + 𝛼)𝛿𝑝(𝑞), dist(𝑝, 𝑞)
2 < 𝛼𝛿1+𝜀

𝑝 (𝑞)}, 𝛼 > 0, 𝜀 > 0. (3.2)

Here 𝑑𝑝(𝑞) denotes the distance from 𝑞 to the holomorphic tangent space

𝐻𝑝(𝑏Ω) = 𝑇𝑝(𝑏Ω) ∩ 𝐽𝑇𝑝(𝑏Ω).
Similarly to the classical case of C𝑛, an admissible region approaches 𝑏Ω transversally in the
normal direction and can be tangent in the directions of the holomorphic tangent space.

Definition 3.1. A function 𝐹 : Ω → C has an admissible limit 𝐿 at 𝑝 ∈ 𝑏Ω if

lim
𝐴𝛼,𝜀(𝑝)∋𝑞

𝐹 (𝑞) = 𝐿 for all 𝛼, 𝜀 > 0.

Next we need the following notion.

Definition 3.2. Let Ω be a smoothly bounded domain in an almost complex manifold (𝑀,𝐽)
of complex dimension 𝑛 and 𝑝 ∈ 𝑏Ω be a boundary point. A real curve 𝛾 : [0, 1[→ Ω of class
𝐶1([0, 1]) is called an admissible 𝑝-curve if 𝛾(1) = 𝑝 and 𝛾 is transverse to the tangent space
𝑇𝑝(𝑏Ω) (i.e. the tangent vector of 𝛾 at 𝑝 is not contained in 𝑇𝑝(𝑏Ω)).

Definition 3.3. A function 𝐹 defined on Ω has a limit 𝐿 ∈ C along an admissible 𝑝-curve
𝛾 if there exists lim𝑡→1(𝐹 ∘ 𝛾)(𝑡) = 𝐿.

Our first main result is the following analog of the Chirka-Lindelöf principle [2].

Theorem 3.1. Let Ω be a smoothly bounded domain in an almost complex manifold (𝑀,𝐽)
of complex dimension 𝑛. Suppose that a complex function 𝐹 ∈ 𝐿∞(Ω) is a 𝜕𝐽-subsolution
(in the sense of Definition 2.1) on Ω. If 𝐹 has a limit along an admissible 𝑝-curve for some
𝑝 ∈ 𝑏Ω, then 𝐹 has an admissible limit at 𝑝.

A similar result is obtained in [17] under considerably stronger assumptions. First, the
domain Ω in [17] is supposed strictly pseudoconvex. Second, it is assumed that an admissible
curve 𝛾 is contained in some pseudoholomorphic disc. Finally, assumption (2.10) is replaced
there by the stronger condition of boundedness of 𝜕𝐽𝐹 (𝑧) on Ω.
We use the notation 𝑓(𝑥) ∼ 𝑔(𝑥) for two functions 𝑓(𝑥), 𝑔(𝑥) when there exists a constant

𝐶 > 0 such that 𝐶−1𝑔(𝑥) ⩽ 𝑓(𝑥) ⩽ 𝐶𝑔(𝑥). In what follows the value of constants 𝐶 can change
from line to line.
As an application of the Chirka-Lindelöf principle we establish Fatou type results for

𝜕𝐽 -subsolutions. For holomorphic functions in C𝑛 the first versions of the Fatou theorem are
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due to E.Stein [15], E.Chirka [2], F. Forstnerič [5], Y.Khurumov [8] and A.Sadullaev [14]. Our
approach is inspired by [17].
We will deal with some standard classes of real submanifolds of an almost complex mani-

fold. A submanifold 𝐸 of an almost complex 𝑛-dimensional (𝑀,𝐽) is called totally real if at
every point 𝑝 ∈ 𝐸 the tangent space 𝑇𝑝𝐸 does not contain non-trivial complex vectors that is
𝑇𝑝𝐸 ∩ 𝐽𝑇𝑝𝐸 = {0}. This is well-known that the (real) dimension of a totally real submani-
fold of 𝑀 is not bigger than 𝑛; we will consider in this paper only 𝑛-dimensional totally real
submanifolds that is the case of maximal dimension. A real submanifold 𝑁 of (𝑀,𝐽) is called
generic if the complex span of 𝑇𝑝𝑁 is equal to the whole 𝑇𝑝𝑀 for each point 𝑝 ∈ 𝑁 . A real
𝑛-dimensional submanifold of (𝑀,𝐽) is generic if and only if it is totally real.

Our second main result here is the following theorem.

Theorem 3.2. Let 𝐸 be a generic submanifold of the boundary 𝑏Ω of a smoothly bounded
domain Ω in an almost complex manifold (𝑀,𝐽) of complex dimension 𝑛. Suppose that a
complex function 𝐹 ∈ 𝐿∞(Ω) is a 𝜕𝐽𝐹 -subsolution on Ω. Then 𝐹 has an admissible limit at
almost every point of 𝐸.

Note that the Hausdorff 𝑛-meausure on 𝐸 here is defined with respect to any metric on 𝑀 ;
the condition to be a subset of measuro zero in 𝐸 is independent of such a choice. A similar
result also is obtained in [17] under considerably stronger assumptions discussed above: the
domain Ω in [17] is supposed to be strictly pseudoconvex and the assumption (2.10) is replaced
there by the stronger condition of boundedness of 𝜕𝐽𝐹 (𝑧) on Ω.
Theorem 3.2 is established for boundaries and manifolds of class 𝐶∞ though this aregularity

assumption may be highly weakend. Here we consider the question of presice regulaity in the
important special case of the standard complex structure 𝐽𝑠𝑡 on C

𝑛.

Theorem 3.3. Let Ω be a bounded pseudoconvex domain in (C𝑛, 𝐽𝑠𝑡) with boundary 𝑏Ω of
class 𝐶1. Assume that Ω admits a defining function which is of class 𝐶1 on a neighborhood of
Ω and is plurisubharmonic in Ω. Let 𝐸 ⊂ 𝑏Ω be a generic submanifold of class 𝐶1. Suppose
that a complex function 𝐹 ∈ 𝐿∞(Ω) is a 𝜕𝐽𝑠𝑡-subsolution on Ω. Then 𝐹 has an admissible limit
at almost every point of 𝐸.

In this theorem the regularity assumption on the manifold 𝐸 is optimal.

4. Proof of Theorem 3.1

Assume that we are in the setting of Theorem 3.1. First we need the following lemma.

Lemma 4.1. Let 𝐹 satisfies assumptions of Theorem 3.1. If 𝐹 has a limit along
a 𝑝-admissible curve 𝛾1 at 𝑝 ∈ 𝐸, then 𝐹 has the same limit along each admissible curve
in Ω tangent to 𝛾1 at 𝑝.

Proof. Let 𝛾2 be another 𝑝-admissible curve and such that 𝛾1 and 𝛾2 have the same tangent
line at 𝑝. Without loss of generality asssume that 𝑝 = 0 (in local coordinates). Denote by 𝜌
a local defining function of Ω.
It follows by the Nijenhuis-Woolf theorem that there exists a family 𝑧𝑡(𝜁) : D → C𝑛,

of embedded 𝐽-holomorphic discs near the origin in C𝑛 satisfying the following properties:

(i) the family 𝑧𝑡 is smooth on D× [0, 1];
(ii) for every 𝑡 ∈ [0, 1] the disc 𝑧𝑡 transversally intersects each curve 𝛾𝑗 at a unique point

coresponding to some parameter value 𝜁𝑗(𝑡) ∈ D , 𝑗 = 1, 2. In other words 𝛾𝑗(𝑡) = 𝑧𝑡(𝜁𝑗(𝑡)).
Furthermore, 𝜁1(𝑡) = 0, i.e. this point is the center of the disc 𝑧𝑡.



134 A. SUKHOV

In the case of the standard complex structure each such disc is simply an open piece (suitably
parametrized) of a complex line intersecting transversally the both of curves 𝛾𝑗. Recall that
the curves are embedded near the origin and tangent at the origin so such a family of complex
lines obviously exist. The 𝐽-holomorphic discs are obtained from this family of lines by a small
deformation described in the proof of the Nijenhuis-Woolf theorem in Section 2. Note that for
𝑡 = 1 the disc 𝑧1 intersects transversally the both curves 𝛾𝑗 at the same point 𝛾𝑗(1) = 𝑝.

Furthermore, because of the condition (i), the compositions 𝐹 ∘ 𝑧𝑡 have 𝜁- derivatives of class
𝐿𝑝 on their domains of definitions, for each 𝑝 > 2 close enough to 2. Moreover, their 𝐿𝑝 norms
are bounded on D uniformly with respect to 𝑡. Indeed, it follows by the Chain Rule and (2.3)
that

(𝐹 ∘ 𝑧)𝜁 = (𝐹𝑧 + 𝐹𝑧𝐴)𝑧𝜁

and now we use the assumption that 𝜕𝐽𝐹 (𝑧) has the growth of order dist(𝑧, 𝑏Ω)−1/2+𝜏 , 𝜏 > 0.
Since the curves 𝛾𝑗 are tangent at the origin, we have

|𝜁2(𝑡)| = 𝑜(1− 𝑡) (4.1)

as 𝑡→ 1. The curve 𝛾1 is admissible, so we have

dist(𝛾1(𝑡), 𝑏Ω) = 𝑂(1− 𝑡)

as 𝑡 → 1. Hence, there exists 𝜌(𝑡) = 𝑂(1 − 𝑡) as 𝑡 → 1 such that 𝑧𝑡(𝜌(𝑡)D) is contained in Ω.
Applying (2.12) to the composition 𝑓 := 𝐹 ∘ 𝑧𝑡(𝜁) on the disc 𝜌(𝑡)D, we obtain (fixing 𝑟 > 0)

|𝑓(0)− 𝑓(𝜁2(𝑡))| ⩽ (𝐶/𝑂(1− 𝑡)1−2/𝑝)(‖ 𝑓 ‖∞ +𝑂(1− 𝑡) ‖ 𝑓𝜁 ‖𝐿𝑝)𝑜((1− 𝑡)1−2/𝑝 → 0 (4.2)

as 𝑡 → 1. Note that by (4.1) for every 𝑡 the point 𝜁2(𝑡) is contained in (1/2)𝜌(𝑡)D; hence, the
constant 𝐶 is independent of 𝑡 (see the remark after (2.12)). This completes the proof.

We continue proving the theorem. First we consider a special case where our almost complex
manifold 𝑀 coincides with C𝑛 and the almost complex structure 𝐽 coincides with 𝐽𝑠𝑡.
It suffices to consider the case where 𝑝 = 0. Furthermore, after a linear change of coordinates

we have the defining function 𝜌 of Ω has the form

𝜌(𝑧) = 𝑦𝑛 + 𝑜(|𝑧|) (4.3)

In particular, the holomorphic tangent space 𝐻0(𝑏Ω) has the form

𝐻0(𝑏Ω) = {𝑧𝑛 = 0} (4.4)

Without loss of generality we employ the usual Euclidean distance.
We have 𝑇0(𝑏Ω0) = {𝑦𝑛 = 0}. Note that

dist(𝑧, 𝑏Ω0) ∼ |𝜌(𝑧)| ⩽ |𝑦2| = dist(𝑧, 𝑇0(𝑏Ω0)).

Hence we can assume 𝛿0(𝑧) = |𝜌(𝑧)|. Since 𝑑𝑖𝑠𝑡(𝑧,𝐻0(𝑏Ω0)) = |𝑧𝑛|, for each 𝛼 > 0 the admissible
regions 𝐴𝛼,𝜀(0) from (3.2) are defined by the conditions

|𝑧𝑛| < (1 + 𝛼)|𝜌(𝑧)| (4.5)

and

|𝑧|2 < 𝛼|𝜌(𝑧)|1+𝜀 (4.6)

After an additional linear change of coordinates (which preserves the previous setting)
one can assume that the tangent line 𝑇0(𝛾) is contained in the coordinate complex line
𝐿𝑛 = (0, . . . , 0, 𝑧𝑛), 𝑧𝑛 ∈ C. By Lemma 4.1 the function 𝐹 admit the limit along the ray
in 𝐿𝑛 which is tangent to 𝑇0(𝛾).
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The intersection of the complex normal plane 𝐿𝑛 with Ω is the plane domain

Π := {𝑧 : 𝑧1 = . . . = 𝑧𝑛−1 = 0, 𝑦𝑛 + 𝑜(𝑦𝑛) < 0}

and the first inequality (4.5) defines a non-tangential region there (which tends to this half-plane
when 𝛼 increases).
Fix a point (0, . . . , 0, 𝑧0𝑛) which satisfies (4.5). Fix a unit vector 𝑣 ∈ 𝐻0(𝑏Ω) of the form

𝑣 = (𝑣1, . . . , 𝑣𝑛−1, 0). Consider a complex line through the point (0, . . . , 0, 𝑧0𝑛) in the direction
𝑣:

𝑓(𝑣, 𝑧0𝑛) : C ∋ 𝜁 ↦→ (𝜁𝑣, 𝑧0𝑛) (4.7)

which is parallel to 𝐻0(𝑏Ω0). A simple calculation shows that the second assumption (4.6) is
equivalent to the fact that 𝑓(𝑣, 𝑧0𝑛)(𝑟D) ⊂ 𝐴𝛼,𝜀(0) when

𝑟 ∼ |𝑦0𝑛|1/2+𝜀 (4.8)

Clearly, this family of complex discs fill the region 𝐴𝛼,𝜀(0) when (0, . . . , 0, 𝑧0𝑛) satisfies the
first condition (4.5). Furtermore, since 𝜌0 := |𝜌(0, . . . , 0, 𝑧0𝑛)| ∼ |𝑦0𝑛|, the disc 𝑓(𝑣, 𝑧0𝑛)(𝜌

0D) is
contained in Ω.
The restriction 𝐹 ∘ 𝐿𝑛 is a bounded function on Π and (𝐹 ∘ 𝐿𝑛)𝜁 is of class 𝐿𝑝 with 𝑝 > 2

close enogh to 2. Furthermore, 𝐹 ∘ 𝐿𝑛 admits a limit 𝐿 along some ray in Π with vettex at 0.
By (b) Lemma 2.2 the function 𝐹 ∘ 𝐿𝑛 admits the limit 𝐿 along any non-tangential region in
Π. Let now 𝑧 ∈ 𝐴𝛼,𝜀(0). Then there exists a unit vector 𝑣 ∈ 𝐻0(𝑏Ω) and a point 𝑧0𝑛 in the non-
tangential region on Π such that the disc 𝑓(𝑣, 𝑧0𝑛) contains the point 𝑧 that is 𝑧 = 𝑓(𝑣, 𝑧0𝑛)(𝜁)
for some 𝜁 with |𝜁| ⩽ 𝐶|𝑦0𝑛|1/2. Since also 𝑓(𝑣, 𝑧0𝑛)(0) = 𝑧0𝑛, by (2.12) we have the estimate:

|𝐹 (𝑧)− 𝐹 (0, . . . , 0, , 𝑧0𝑛)| = |(𝐹 ∘ 𝑓(𝑣, 𝑧0𝑛))(𝜁)− (𝐹 ∘ 𝑓(𝑣, 𝑧0𝑛))(0)| ⩽ 𝐶|𝑦0𝑛|𝜏

with 𝜏 = 𝜀(1 − 2/𝑝) > 0. Note that we apply (2.12) on a disc 𝜌0D and use (4.8) because
𝑧 ∈ 𝐴𝛼,𝜀(0). Since 𝐹 (0, . . . , 0, 𝑧𝑛) → 𝐿 as 𝑦0𝑛 → 0, we conclude that 𝐹 (𝑧) → 𝐿.
The case of a general almost complex structure 𝐽 follows by the same argument using a

slight deformation transforming the above 𝐽𝑠𝑡-holomorphic discs to 𝐽-holomorphic discs. Such
a deformation is always possible by the Nijenhuis-Woolf theorem and is continuous in any 𝐶𝑘

norm. Thus, it changes only constants in estimates and the above argument literally goes
through. This proves Theorem 3.1.
Now the proof of Theorem 3.2 follows exactly as in [17] using Theorem 3.1. We attach the

family of pseodoholomorphic discs to the manifold 𝐸; each disc is glued to 𝐸 along an open
arc. Then we apply Lemma 2.2 to the restriction of 𝐹 on every disc and use Theorem 3.1. This
proves Theorem.
In the next section we describe this construction of complex discs with the minimal boundary

regularity for the case of 𝐽𝑠𝑡 in C
𝑛.

5. Gluing complex discs to 𝐶1 totally real manifolds

For the convenience of readers we recall here the main steps of the construction of gluing
holomorphic discs to a totally real manifold of class 𝐶1. The details are contained in [18].
Everywhere we are in C𝑛 with the standard complex structure. As usual, by a wedge-type

domain we mean a domain

𝑊 = {𝑧 ∈ C𝑛 : 𝜑𝑗(𝑧) < 0, 𝑗 = 1, . . . , 𝑛} (5.1)

with the edge (or the corner)

𝐸 = {𝑧 ∈ C𝑛 : 𝜑𝑗(𝑧) = 0, 𝑗 = 1, . . . , 𝑛} (5.2)
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We assume that the defining functions 𝜑𝑗 are of class 𝐶1. Furthermore, as usual we suppose
that 𝐸 is a generic manifold that is 𝜕𝜑1 ∧ . . . ∧ 𝜕𝜑𝑛 ̸= 0 in a neighborhood of 𝐸.
Given 𝛿 > 0 (which is supposed to be small enough) we also define a shrinked wedge

𝑊𝛿 = {𝑧 ∈ C𝑛 : 𝜑𝑗 − 𝛿
∑︁
𝑙 ̸=𝑗

𝜑𝑙 < 0, 𝑗 = 1, . . . , 𝑛} ⊂ 𝑊 (5.3)

It has the same edge 𝐸. Note that there exists a constant 𝐶 > 0 such that for every point
𝑧 ∈ 𝑊𝛿 one has

𝐶−1 dist(𝑧, 𝑏𝑊 ) ⩽ dist(𝑧, 𝐸) ⩽ 𝐶 dist(𝑧, 𝑏𝑊 ) (5.4)

In what follows we often use the notation 𝐶, 𝐶1, 𝐶2,. . . for positive constants which can change
from line to line.
Consider a wedge-type domain (5.1) with the edge (5.2). A complex (or analytic, or holo-

morphic) disc is a holomorphic map ℎ : D → C𝑛 which is at least continous on the closed disc
D. Denote by 𝑏D+ the upper semi-circle. We say that such a disc is glued (or attached) to a
subset 𝐾 of C𝑛 along an (open, nonempty) arc 𝛾 ⊂ 𝑏D, if 𝑓(𝛾) ⊂ 𝐾. Usually 𝛾 wil be 𝑏D+.
Let 𝐸 be an 𝑛-dimensional totally real manifold of class 𝐶1 in a neighborhood of 0 in C𝑛;

we assume 0 ∈ 𝐸. After a linear change of coordinates, using the implicit function theorem
we also may assume that in a neighbourhood Ω of the origin the manifold 𝐸 is defined by the
(vector) equation

𝑦 = ℎ(𝑥) (5.5)

where a vector function ℎ = (ℎ1, . . . , ℎ𝑛) of class 𝐶
1 in a neighborhood of 0 in R𝑛 and satisfies

the conditions

ℎ𝑗(0) = 0, ∇ℎ𝑗(0) = 0, 𝑗 = 1, . . . , 𝑛. (5.6)

Here and below ∇ denotes the gradient.
Fix a positive non-integer 𝑠. Consider the Hilbert transform 𝑇 : 𝑢→ 𝑇𝑢, associating to a real

function 𝑢 ∈ 𝐶𝑠(𝑏D) its harmonic conjugate function vanishing at the origin. In orther words,
𝑢 + 𝑖𝑇𝑢 is a trace on 𝑏D of a function, holomorphic on D and of class 𝐶𝑠(D), and satisfying
𝑇𝑢(0) = 0.
Recall that the Hilbert transform is given explicitly

𝑇𝑢(𝑒𝑖𝜃) =
1

2𝜋
𝑣.𝑝.

∫︁ 𝜋

−𝜋

𝑢(𝑒𝑖𝑡) cot

(︂
𝜃 − 𝑡

2

)︂
𝑑𝑡

This is a classical linear singular integral operator; it is bounded on the space 𝐶𝑠(𝑏D) for
any non-integer 𝑠 > 0. Furthermore, for 𝑝 > 1 the operator 𝑇 : 𝐿𝑝(𝑏D) → 𝐿𝑝(𝑏D) is a bounded
linear operator as well; we denote by ‖ 𝑇 ‖𝑝 its norm.
Let 𝑏D+ = {𝑒𝑖𝜃 : 𝜃 ∈ [0, 𝜋]} and 𝑏D− = {𝑒𝑖𝜃 : 𝜃 ∈]𝜋, 2𝜋[} denote the upper and the lower

semicircles respectively. Fix a 𝐶∞-smooth real functions 𝜓𝑗 on 𝑏D such that 𝜓𝑗|𝑏D+ = 0
and 𝜓𝑗|𝑏D− < 0, 𝑗 = 1, . . . , 𝑛 (one may take the same function independently of 𝑗). Set
𝜓 = (𝜓1, . . . , 𝜓𝑛). Consider the generalized Bishop equation

𝑢(𝜁) = −𝑇ℎ(𝑢(𝜁))− 𝑡𝑇𝜓(𝜁) + 𝑐, 𝜁 ∈ 𝑏D, (5.7)

where 𝑐 ∈ R𝑛 and 𝑡 = (𝑡1, . . . , 𝑡𝑛) ∈ R𝑛, 𝑡𝑗 ⩾ 0, are real parameters; here and below we use
the notation 𝑡𝑇𝜓 = (𝑡1𝑇𝜓1, . . . , 𝑡𝑛𝑇𝜓𝑛). The main step of our construction claims that for
any 𝑝 > 2, and for any 𝑐, 𝑡 close enough to the origin, this singular integral equation admits a
unique solution 𝑢(𝑐, 𝑡)(𝜁) in the Sobolev class 𝑊 1,𝑝(𝑏D) of vector functions. Such a solution is
of class 𝐶𝛼(𝑏D), 𝛼 = 1− 2/𝑝, by the Sobolev embedding.
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We explain also how such a solution is related to complex discs glued to 𝐸 along 𝑏D+. Indeed,
consider the function

𝑈(𝑐, 𝑡)𝜁) = 𝑢(𝑐, 𝑡)(𝜁) + 𝑖ℎ(𝑢(𝑐, 𝑡)(𝜁)) + 𝑖𝑡𝜓(𝜁).

Since 𝑇 2 = −𝐼𝑑 and 𝑢 is a solution of (5.7), the function 𝑈 extends holomorphically on D as
a function

𝐻(𝑐, 𝑡)(𝜁) = 𝑃𝑈(𝑐, 𝑡), 𝜁 ∈ D (5.8)

of class 𝐶𝛼(D). Here 𝑃 denotes the Poisson operator of harmonic extension to D:

𝑃𝑈(𝑐, 𝑡)(𝜁) =
1

2𝜋

∫︁ 𝜋

−𝜋

1− |𝜁|2

|𝑒𝑖𝑡 − 𝜁|2
𝑈(𝑐, 𝑡)(𝑒𝑖𝑡)𝑑𝑡 (5.9)

The function 𝜓 vanishes on 𝑏D+, so by (5.5) we have 𝐻(𝑐, 𝑡)(𝑏D+) ⊂ 𝐸 for all (𝑐, 𝑡).
It is convenient to extend the equation (5.7) on the entire space C𝑛. Fix a 𝐶∞ smooth

function 𝜆 : R𝑛 → R+ = [0,+∞[ equal to 1 on the unit ball B𝑛 and vanishing on R𝑛 ∖ 2B𝑛.
For 𝛿 > 0 small enough the function ℎ𝛿(𝑥) = 𝜆(𝑥/𝛿)ℎ(𝑥) naturally extends by 0 on the entire
space R𝑛. Fix 𝜏 > 0 small enough which will be choosen later. Then in view of (5.6) we can
choose 𝛿 = 𝛿(𝜏) > 0 such that the gradient ∇ℎ𝛿(𝑥) is small on the whole R𝑛:

‖ ∇ℎ𝛿 ‖𝐿∞(R𝑛)⩽ 𝜏 (5.10)

First we study the global equation

𝑢(𝜁) = −𝑇ℎ𝛿(𝑢(𝜁))− 𝑡𝑇𝜓(𝜁) + 𝑐, 𝜁 ∈ 𝑏D, (5.11)

We prove that its solutions depend continuously on parameters (𝑐, 𝑡); this allows to localize the
solutions and to conclude with the initial equation (5.7).
Let 𝑉 be a domain in R𝑚 and 𝑓 ∈ 𝐿𝑝(𝑉 × 𝑏D), 𝑝 > 1. Then by the Fubini theorem

𝑇𝑓 ∈ 𝐿𝑝(𝑉 ×𝑏D); the variables in 𝑉 are treated as parameters when the operator 𝑇 acts. Hence,
keeping the same notation, we obtain a bounded linear operator 𝑇 : 𝐿𝑝(𝑉 × 𝑏D) → 𝐿𝑝(𝑉 × 𝑏D)
with the same norm as in 𝐿𝑝(𝑏D). We again denote its norm by ‖ 𝑇 ‖𝑝.
Fix a domain 𝑉 ⊂ R2𝑛 of the parameters (𝑐, 𝑡).

Lemma 5.1. Under the above assumptions, for any 𝑝 > 1, one can choose 𝜏 > 0 in (5.10),
and 𝛿 = 𝛿(𝜏) > 0, such that the equation (5.11) admits a unique solution 𝑢(𝑐, 𝑡)(𝜁) ∈ 𝐿𝑝(𝑉×𝑏D).

The proof is contained in [18].
Since 𝑉 is arbitrary we conclude that the equation (5.11) admits a unique solution

𝑢 ∈ 𝐿𝑝
𝑙𝑜𝑐(R

2𝑛 × 𝑏D). By this space we mean the space of 𝐿𝑝 functions on 𝐾 × 𝑏D for each
(Lebesgue) measurable compact subset 𝐾 ⊂ R2𝑛.
Next we study the regularity of solutions of (5.11) in the Sobolev scale.

Lemma 5.2. Every solution 𝑢 of (5.11) is of class 𝑊 1,𝑝
𝑙𝑜𝑐 (R

2𝑛 × 𝑏D).

The proof is contained in [18].
It follows by the Sobolev embedding that a solution 𝑢 belongs to 𝐶1−(2𝑛+1)/𝑝(𝑉 × 𝑏D), where

𝑉 is an open subset in R2𝑛. In particular, the constructed family of discs is continuous in all
variables for 𝑝 big enough.
Now we note that for 𝑡 = 0 the equation (5.11) admits a constant solution 𝑢(𝑐, 0)(𝜁) = 𝑐.

When 𝑐 is close enough to the origin in R𝑛, this solution gives a point 𝑐 + 𝑖ℎ(𝑐) ∈ 𝐸. By
continuity and uniqueness of solutions, there exists a neighborhood 𝑉 of the origin in R2𝑛, such
that for (𝑐, 𝑡) ∈ 𝑉 any solution of (5.11) is a solution of (5.7). We obtain the following lemma.

Lemma 5.3. Given 𝑝 > 2 the exists a neighborhood 𝑉 of the origin in R2𝑛 such that the
Bishop equation (5.7) admits a unique solution 𝑢(𝑐, 𝑡)(𝜁) ∈ 𝑊 1,𝑝(𝑉 × 𝑏D).
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Since 𝑝 is arbitrary, we obtain that our equation admits solutions in the Holder class
𝐶𝛼(𝑉 × 𝑏D) with 𝛼 = 1 − (2𝑛 + 1)/𝑝. Note that here 𝑉 depends on 𝑝 (and hence, on 𝛼).
Nevertheless, it follows from [3] that for each (𝑐, 𝑡) fixed, the map 𝜁 ↦→ 𝑢(𝑐, 𝑡)(𝜁) is of class
𝐶𝛼(𝑏D) for every 𝛼 < 1.
Until now we did not study any geometric properties of family (5.8). Here we consider

some of them which will be useful for our applications. We represent family (5.8) as a small
perturbation in the 𝑊 1,𝑝 norm of some model family. The model case arises when 𝐸 = R𝑛 that
is ℎ = 0 in (5.2). Then the general solution of equation (5.7) has the form

𝑢(𝜁) = −𝑡𝑇𝜓(𝜁) + 𝑐, 𝜁 ∈ 𝑏D, (5.12)

where as usual 𝑐 ∈ R𝑛 and 𝑡 = (𝑡1, . . . , 𝑡𝑛), 𝑡𝑗 ⩾ 0, are real parameters. In this case the family
(5.8) becomes

𝐻(𝑐, 𝑡)(𝜁) = 𝑃𝑈(𝑐, 𝑡), 𝜁 ∈ D, (5.13)

where

𝑈(𝑐, 𝑡)𝜁) = −𝑡𝑇𝜓(𝜁) + 𝑐+ 𝑖𝑡𝜓(𝜁). (5.14)

Geometrically this family of discs arises from the family of complex lines intersecting R𝑛 along
real lines; the discs are simply obtained by a biholomorphic reparametrization of the corre-
sponding half-lines by the unit disc. These lines are given by 𝑙(𝑐, 𝑡) : 𝜁 ↦→ 𝑡𝜁 + 𝑐, 𝜁 ∈ C. The
conformal map −𝑇𝜓 + 𝑖𝜓 takes the unit disc into a smoothly bounded domain in the lower
half-plane, gluing 𝑏D+ to the real axes. One can view the parameter 𝑡 as a directing vector
of 𝑙. In what follows we refer this case as the flat case and we call the discs (5.14) flat discs.
Their geometric properties are very simple; their detailled description (in a more general case)
is contained, for example, in [17].
Let 𝐸 be a totally real manifold given by (5.5), (5.6). Given 𝑑 ∈ 𝐼 ∖ {0}, where 𝐼 ∋ 0 is an

open interval in R small enough, consider the manifolds 𝐸𝑑 given by

𝑦 = 𝑑−1ℎ(𝑑𝑥) (5.15)

Note that for every 𝑑 ̸= 0 the manifold 𝐸𝑑 is biholomorphic to 𝐸 via the isotropic dilation
𝑧 ↦→ 𝑑−1𝑧.
Set ℎ(𝑥, 𝑑) = 𝑑−1ℎ(𝑑𝑥) when 𝑑 ̸= 0 and ℎ(𝑥, 0) = 0. In the last case, when 𝑑 = 0, we have

𝐸0 = {𝑦 = 0} = R𝑛 = 𝑇0(𝐸) that is, the flat case. Note that the function ℎ(𝑥, 𝑑) and its first
order partial derivatives with respect to 𝑥 are continuous in 𝑑 ∈ 𝐼.
Thus, we consider the 1-parameter family 𝐸𝑑 of totally real manifolds defined by the equation

𝑦 = ℎ(𝑥, 𝑑), (5.16)

ℎ𝑗(0, 𝑑) = 0, ∇𝑥ℎ𝑗(0, 𝑑) = 0, 𝑑 ∈ 𝐼, 𝑗 = 1, . . . , 𝑛; (5.17)

we consider the gradient ∇𝑥 with respect to 𝑥. Hence for each (𝑐, 𝑡, 𝑑) we have the discs
𝐻(𝑐, 𝑡, 𝑑) defined by (5.8). By the uniqueness of the solution of the Bishop equation, the family
𝐻(𝑐, 𝑡, 0)(𝜁) coincides with the family ( 5.14).

Lemma 5.4. For any 𝑝 > 1 one has

‖ 𝐻(𝑐, 𝑡, 𝑑)(𝜁)−𝐻(𝑐, 𝑡, 0)(𝜁) ‖𝑊 1,𝑝(𝑉×D)→ 0

as 𝑑→ 0.

The proof is contained in [18].
The following proposition is the key technical step.
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Proposition 5.1. Assume that Ω ⊂ C𝑛 is a pseudoconvex domain with 𝐶1-boundary. Let
also 𝑊 ⊂ Ω be a wedge (5.1) with the edge 𝐸 ⊂ Γ of type (5.2). Then one can find a family of
complex discs for 𝐸 satisfying the following properties:

(i) each disc is glued to 𝐸 along 𝑏D+;
(ii) the discs fill a shrinked wedge 𝑊𝛿 for each 𝛿 > 0;
(iii) every disc is contained in Ω.

Proof. Everything is local; we may assume that 0 ∈ 𝐸 and 𝑇0𝐸 = R, as in previous sections.
Consider the family of discs constructed in the former section and attached to 𝐸 along 𝑏D+.
The flat discs fill a prescribed wedge of type (5.1) with the edge 𝐸0 = R𝑛. More precisely, we
can fix an open convex cone 𝐾 in 𝑊 0 = {(𝑥, 𝑦) ∈ R2𝑛 : 𝑦𝑗 < 0, 𝑗 = 1, . . . , 𝑛} with the vertex
at the origin and such that 𝐾 ∩ 𝑟B𝑛 is contained in 𝑊 0 ∪ {0}, for some 𝑟 > 0 small enough.
Clearly, the flat discs fill a neighborhood of 𝐾 ∩ 𝑟B𝑛. The same remains true for the cone 𝐾𝑧

obtained by the parallel translation of 𝐾 to the vertex at 𝑧 ∈ R𝑛. Since the family 𝐻(𝑐, 𝑡, 𝑑)(𝜁)
is a small perturbation of the flat discs in 𝐶𝑠(𝑉 × D) (with any 0 < 𝑠 < 1), we conclude by
continuity that for 𝑑 small enough the family 𝐻(𝑐, 𝑡, 𝑑)(𝜁) also fills a presribed edge of type
(5.3) with the edge 𝐸𝑑. By the holomorphic equivalence, the same is true for the initial edge 𝐸
and a shrinked wedge 𝑊𝛿 with any 𝛿 > 0. Note that in this construction we consider the discs
𝐻(𝑐, 𝑡, 𝑑)(𝜁) with the parameter 𝑡 separated from the origin, so the discs do not degenerate to
the constant ones 𝐻(𝑐, 0, 𝑑)(𝜁) ≡ 𝑐. If 𝜌 is a 𝐶1-defining function of 𝑏Ω, we use it also as a
defining function of 𝐸. Hence, by construction of discs, the composition of 𝜌 with each disc is
negative on 𝑏D−and vanishes on 𝑏D+. By Kerzman-Rosay [6] the domain Ω admits a bounded
smooth strictly pseudoconvex exhaustion function on Ω. Hence, by the maximum principle
each disc is contained in Ω.

6. Proof of Theorem 3.3

For the proof of Theorem 3.3 we need some additional geometric properties of complex discs.
Each disc ℎ : D → Ω is of class 𝐶𝛼(D) with any 𝛼 < 1. Hence, its derivatives satisfy the
estimate

|𝑑ℎ/𝑑𝜁| ⩽ 𝐶(1− |𝜁|)
By the classical Fatou theorem we conclude that each derivative 𝑑ℎ/𝑑𝜁 admits a normal limit
almost everywhere on 𝑏D. Hence, the image of such a normal ray is a curve 𝛾 : [0, 1[→ Ω of
class 𝐶1 in [0, 1]. Let us prove that such a curve is admissible. By assumption of theorem, Ω
admits a plurisubharmonic defining function 𝜌 of class 𝐶1. Note that

𝐶−1 dist(𝑧, 𝑏Ω) ⩽ 𝜌(𝑧) ⩽ 𝐶 dist(𝑧, 𝑏Ω)

for all 𝑧 ∈ Ω. Applying the Hopf lemma to the function 𝜌 ∘ ℎ which is subharmonic on D, we
obtain that

|(𝜌 ∘ ℎ)(𝜁)| ⩾ 𝐶(1− |𝜁|) (6.1)

This shows that the approach of the curve 𝛾 to 𝑏Ω is non-tangential, i.e. 𝛾 is an admissible
curve. It follows from Lemma 2.2 (see (6.1)) that the composition of 𝐹 with each disc admits a
limit along almost every normal ray. Then it follows from Theorem 3.1 that 𝐹 has an admissible
limit at the point 𝛾(1) ∈ 𝐸.
Finally, we choose a suitable subset of parameters defining our complex discs ℎ. Recall

that the flat discs ℎ0, as well as our discs ℎ, depend on the parameters (𝑐, 𝑡). Fix a non-zero
vector 𝑡 ∈ R𝑛

+. It defines a normal direction for each disc. Then we vary the parameter 𝑐 in a
neighborhood 𝑉 of 0 in 𝑅𝑛−1 such that the boundaries of discs fill a neighborhood of the origin
on 𝐸 = 𝑖R𝑛. Then the evaluation map Φ0 : (𝑐, 𝑡, 𝜁) ↦→ ℎ0(𝑐, 𝑡)(𝜁) is a smooth diffeomorphism
between 𝑉 × 𝑏D+ and a neighborhood of the origin in 𝐸. Similarly we define the evaluation
map Φ : (𝑐, 𝑡, 𝜁) ↦→ ℎ(𝑐, 𝑡)(𝜁) using the discs ℎ attached to 𝐸. Then the map Φ is a small
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deformation of Φ0 in the Sobolev𝑊 1,𝑝-norm; the map Φ is a homeomorphism between 𝑉 ×𝑏D+

and a neighborhood of the origin in 𝐸. It follows by the well-known results (see [13]) that
Φ satisfies the 𝑁 -property of Lusin, i.e. the image of a set of 𝑛-measure 0 has 𝑛-measure 0.
Therefore, 𝐹 has admissible limits almost everywhere on 𝐸. This completes the proof.
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Departement de Mathématique, 59655 Villeneuve d’Ascq, Cedex, France,
The author is partially suported by Labex CEMPI.
E-mail: sukhov@math.univ-lille1.fr


	to1. Introduction
	to2.  Almost complex manifolds and almost holomorphic functions
	to2.1.  Almost complex manifolds
	to2.2. Pseudoholomorphic discs
	to2.3. The J-operator on an almost complex manifold (M,J)
	to2.4. One-dimensional case

	to3. Main results 
	to4. Proof of Theorem 3.1
	to5. Gluing complex discs to C1 totally real manifolds
	to6. Proof of Theorem 3.3
	 References

