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MAXIMAL TERM OF DIRICHLET SERIES

CONVERGING IN HALF-PLANE: STABILITY THEOREM

A.M. GAISIN, T.I. BELOUS

Abstract. We consider a problem on equivalence of logarithms of maximal terms in the
Hadamard composition (modified series)

∑︀
𝑛
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𝜆𝑛𝑧 and∑︀
𝑛
𝑏𝑛𝑒

𝜆𝑛𝑧 with positive exponents, the convergence domain of which is a half-plane. A

similar problem for entire Dirichlet series was first studied by A.M. Gaisin in 2003 and
there was obtained a criterion of the stability of the maximal term 𝜇(𝜎) = max

𝑛⩾1
{|𝑎𝑛|𝑒𝜆𝑛𝜎}.

This result turned out to be useful in studying asymptotic properties of the Dirichlet series
on arbitrary curves going to infinity, namely, in the proof of the famous Pólya conjecture.

Both in the case of entire Dirichlet series and ones converging only in the half-plane, a key
role in such problems is played by Leontiev formulae for the coefficients. The functions of the
corresponding biorthogonal system contains a factor, which the derivative of a characteristic
function at the points 𝜆𝑛, 𝑛 ⩾ 1. This fact naturally leads to the considered here problem
on the stability of the maximal term.

We obtain a criterion ensuring the equivalence of logarithm of the maximal term
in the Dirichlet series, the convergence domain of which is a half-plane, to the logarithm of
the maximal term of the modified series on an asymptotic set.

Keywords: Dirichlet series, convergence half-plane, maximal term, Hadamard composi-
tion, asymptotic set.
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1. Introduction

The stability of a maximal term of a Dirichlet series

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑠, 0 < 𝜆𝑛 ↑ ∞, (1.1)

absolutely converging in the entire plane was first studied in [1]. At the same time, the stability
property of the maximal term played an important role in resolving the Pólya problem, for
more details see [1]. Later the results of work [1] were extended to the case of a half-plane,
see [2], [3]. For instance, in [2], there was proved a theorem on stability of the maximal
term of series (1.1) absolutely converging in the half-plane Π0 = {s : Re s < 0}. Paper [3] was
devoted to application of this theorem to studying the behavior of Dirichlet series (1.1) on a
curve arbitrarily approaching the boundary of the half-plane Π0 of the direct convergence. For
illustration, we should clarify the matter and value of considered in [3] problems for a particular
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case, namely, for lacunary power series

𝑓(𝑧) =
∞∑︁
𝑛=1

𝑎𝑛𝑧
𝑝𝑛 , 0 < 𝑝𝑛 ↑ ∞, 𝑝𝑛 ∈ N, (1.2)

the convergence domain of which is the unit circle 𝐷(0, 1) = {𝑧 : |𝑧| < 1}. Let 𝛾 be an
arbitrary curve beginning in 𝐷(0, 1) and ending on the boundary of 𝐷(0, 1) or approaching its
asymptotically, for instance, along a spiral. We consider a special modified series

∞∑︁
𝑛=1

𝑎𝑛𝑄
′(𝑝𝑛)𝑧

𝑝𝑛 , (1.3)

where

𝑄(𝑧) =
∞∏︁
𝑛=1

(︂
1− 𝑧2

𝑝𝑛2

)︂
.

Under the conditions for {𝑝𝑛} ensuring the equivalence of the logarithms of the maximal terms
of series (1.2), (1.3), that is, under the stability of the maximal term of series (1.1), the following
was shown in [3]: there exists a sequence {𝜉𝑛}, 𝜉𝑛 ∈ 𝛾, |𝜉𝑛| → 1, such that

ln𝑀𝑓 (|𝜉𝑛|) = (1 + 𝑜(1)) ln |𝑓(𝜉𝑛)|,
where

𝑀𝑓 (𝑟) = max
|𝑧|=𝑟

|𝑓(𝑧)|, 0 < 𝑟 < 1.

As we see, in [2] the stability of the maximal term of Dirichlet series (1.1) (or series (1.2)) is
considered in relation with particular problems studied in [3]. Because of this the restrictions
for the sequence of exponents Λ = {𝜆𝑛} in [2], [3] turned out to be rather strict, 𝜆𝑛 were the
zeroes of an entire function of a finite order. However, the problem on stability of the maximal
term is of an independent interest. This is why the conditions for the exponents 𝜆𝑛 can be
weakened essentially.
The aim of the present paper is to prove the criterion of stability of the maximal term of series

(1.1) for a widest class of sequence in terms of the factors 𝑏𝑛 of the modified series
∞∑︀
𝑛=1

𝑎𝑛𝑏𝑛𝑒
𝜆𝑛𝑧

converging also in the half-plane Π0.

2. Definitions and main result

Let Λ = {𝜆𝑛} (0 < 𝜆𝑛 ↑ ∞) be a sequence obeying the condition

lim
𝑛→∞

ln𝑛

𝜆𝑛
= 0. (2.1)

By 𝐷𝑐(Λ) we denote the class of all functions 𝐹 represented by the Dirichlet series

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑠, 𝑠 = 𝜎 + 𝑖𝑡, (2.2)

in the half-plane Π𝑐 = {𝑠 : Re 𝑠 < 𝑐}, −∞ < 𝑐 ⩽ ∞, and converging only in this half-plane. It
follows from condition (2.1) that series (2.2) converges absolutely in the half-plane Π𝑐 and its
sum 𝐹 is an analytic in Π𝑐 function [4].
Together with series (2.2), we introduce also the series

𝐹 *(𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑏𝑛𝑒
𝜆𝑛𝑠, 𝑠 = 𝜎 + 𝑖𝑡, (2.3)



24 A.M. GAISIN, T.I. BELOUS

where 𝐵 = {𝑏𝑛} is a sequence of complex numbers 𝑏𝑛, 𝑏𝑛 ̸= 0 as 𝑛 ⩾ 𝑁 , obeying the condition

lim
𝑛→∞

ln |𝑏𝑛|
𝜆𝑛

= 0. (2.4)

Then series (2.3) also converges absolutely in the half-plane Π𝑐, and 𝐹
* is an analytic in this

half-plane function. Condition (2.4) allows us to consider the Dirichlet series
∞∑︀

𝑛=𝑁

𝑎𝑛𝑏
−1
𝑛 𝑒𝜆𝑛𝑠

converging absolutely in the half-plane Π𝑐.
If 𝐹 is a function defined in the half-plane Π0 by series (2.2) and

𝐺(𝑠) =
∞∑︁
𝑛=1

𝑏𝑛𝑒
𝜆𝑛𝑠, (2.5)

then series (2.3) is the Hadamard composition of series (2.2) and (2.5), that is,

(𝐹 *𝐺)(𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑏𝑛𝑒
𝜆𝑛𝑠 = 𝐹 *(𝑠).

It is clear that if 𝐹 ∈ 𝐷0(Λ), then 𝐹
* ∈ 𝐷0(Λ); this is implied by condition (2.4).

Let 𝜇(𝜎) and 𝜇*(𝜎) be the maximal terms of series (2.2) and (2.3), respectively. By 𝐿 we
denote the class of all continuous unboundedly increasing on [0,∞) functions. Let

𝑊 =

⎧⎨⎩𝑤 ∈ 𝐿 :

∞∫︁
1

𝑤(𝑥)

𝑥2
𝑑𝑥 <∞

⎫⎬⎭ ,

𝑊𝜙 = {𝑤 ∈ 𝑊 : lim
𝑡→∞

𝜙(𝑡)𝐽(𝑡;𝑤) = 0},

𝑊𝜙 = {𝑤 ∈ 𝑊 : lim
𝑡→∞

𝜙(𝑡)𝐽(𝑡;𝑤) = 0},

where 𝜙 ∈ 𝐿, and

𝐽(𝑡;𝑤) =

∞∫︁
𝑡

𝑤(𝑥)

𝑥2
𝑑𝑥.

Let 𝑀 be the class of functions Φ in 𝐿 such that 𝑥Φ(𝑥) < Φ(𝑘𝑥) as 𝑥 ⩾ 𝑥0, where 𝑘 is
some constant. It is clear that all functions in 𝑀 grow faster than any power 𝑥𝑛, 𝑛 = 1, 2, . . ..
With each function Φ in 𝑀 we associated its inverse function 𝜙. Then we obtain a new class of
functions, which is denoted by 𝑀−1. Thus, the classes 𝑀 = {Φ} and 𝑀−1 = {𝜙} are formed
by mutually inverse functions. It is easy to show that if 𝜙 ∈𝑀−1, then the function 𝜔(𝑥) =

√
𝑥

belongs to the class 𝑊𝜙.
Let 𝑒 ⊂ [−1, 0) be a Lebesgue measurable set. An upper 𝐷𝑒 and a lower 𝑑𝑒 density of the

set 𝑒 are the quantities [5]

𝐷𝑒 = lim
𝜎→0−

m(e ∩ [𝜎, 0))

|𝜎|
, 𝑑𝑒 = lim

𝜎→0−

m(e ∩ [𝜎, 0))

|𝜎|
.

Let

𝐷0(Φ) =

{︃
𝐹 ∈ 𝐷0(Λ) : sup

𝜏>0
lim

𝜎→ 0−

ln𝜇(𝜎)

|𝜎|Φ( 𝜏
|𝜎|)

> 0

}︃
,

where 𝜇(𝜎) is the maximal term of series (2.2).
We say that the maximal term 𝜇(𝜎) of series (2.2) 𝐵(𝑑) (𝐵(𝐷)) is stable, see [2], if as 𝜎 → 0−,

outside some set 𝑒 ⊂ [−1, 0) of zero lower density 𝑑𝑒 (zero upper density 𝐷𝑒) the asymptotic
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identity holds

ln𝜇(𝜎) = (1 + 𝑜(1)) ln𝜇*(𝜎).

The set 𝐴 = [−1, 0) ∖ 𝑒 is called an asymptotic set.
We say that a sequence {𝑏𝑛}, 𝑏𝑛 ̸= 0 as 𝑛 ⩾ 𝑁 , is 𝑊𝜙-normal if there exists a function

𝜃 ∈ 𝑊𝜙 such that

− ln |𝑏𝑛| ⩽ 𝜃(𝜆𝑛), 𝑛 ⩾ 𝑁.

Let 𝑛(𝑡) =
∑︀
𝜆𝑛⩽𝑡

1 be a counting function of sequence Λ, and 𝑛𝑙(𝑡) be the a minimal concave

majorant of the function ln𝑛(𝑡). By condition (2.1), 𝑛𝑙(𝑡) = 𝑜(𝑡) as 𝑡→ ∞.
Now we are in position to formulate our main result.

Theorem 2.1. Let Φ be some fixed function in the class 𝑀 , and 𝜙 be an inverse function

for Φ. Let 𝑛𝑙 ∈ 𝑊𝜙, and 𝐵 = {𝑏𝑛} be a sequence satisfying the condition

|𝑏𝑛|+
1

|𝑏𝑛|
⩽ 𝑒𝑤(𝜆𝑛), 𝑛 ⩾ 𝑁, (2.6)

where 𝑤 ∈ 𝑊 , such that

lim
𝑛→∞

𝜙(𝜆𝑛) ln |𝑏𝑛|
𝜆𝑛

= 0. (2.7)

Then estimates (2.6) with some function 𝑤 ∈ 𝑊𝜙 is a sufficient condition ensuring that for

each function 𝐹 ∈ 𝐷0(Φ) the maximal term of its series (2.2) is 𝐵(𝑑)-stable; for 𝑊𝜙-normal

sequence {𝑏𝑛} this condition is also necessary.

In [2] the sequence Λ obeyed a too strict condition

lim
𝑛→∞

ln𝑛

ln𝜆𝑛
<∞.

This means that ln𝑛 = ln𝑛(𝜆𝑛) ⩽ 𝑎 ln𝜆𝑛 (𝑛 ⩾ 1). Hence, 𝑛𝑙(𝑡) ⩽ 𝑎 ln 𝑡 and this is why
𝑛𝑙 ∈ 𝑊𝜙. The opposite is obviously not true. We also observe that consistency condition (2.7)
in Theorem 2.1 is essential, see [2].
Condition 𝑛𝑙 ∈ 𝑊𝜙 can be weakened, namely, it can be replaced by condition 𝜙(𝑡)𝐽(𝑡; ln𝑛) =

𝑜(1), 𝑡 → ∞. But the proof of this result requires a slightly different approach and will be
published in another paper.

3. Preliminaries

1. Convex Newton polygon. In the proof of Theorem 2.1 we shall need some properties of
the maximal term of a Dirichlet series. There is a well-known geometric description of the
maximal term of a power series or a Dirichlet series defining an entire function via a convex
Newton polygon, see, for instance, [4]. A similar description of the maximal term of a power
series converging only in the unit circle was given in a series of works, see, for instance, [6].
Let us construct a convex Newton polygon for Dirichlet series (2.2) converging absolutely

only the half-plane Π0. In order to do this, we suppose that sup
𝑛

|𝑎𝑛| = ∞ (we can also suppose

that 𝑎1 ̸= 0) and on the plane we choose the points 𝑃𝑛 = (𝜆𝑛, 𝑔𝑛), where 𝑔𝑛 = − ln |𝑎𝑛|; if
𝑎𝑛 = 0, then we let 𝑔𝑛 = ∞. Since 𝐹 ∈ 𝐷0(Λ), then

lim
𝑛→∞

ln |𝑎𝑛|
𝜆𝑛

= 0. (3.1)

Taking this into consideration, by 𝑄(𝐹 ) we denote a convex hull of the points 𝑃𝑛, 𝑛 ⩾ 1. Let
𝛾(𝑥) = inf{𝑦 : (𝑥, 𝑦) ∈ 𝑄(𝐹 )}. A curve described by the equation 𝑦 = 𝛾(𝑥), 𝑥 ⩾ 𝜆1, is called
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a diagram or convex Newton polygon [6]; we denote it by 𝐿(𝐹 ). It follows from (3.1) that the
Newton diagram a convex down polyline.
Let 𝐹 ∈ 𝐷0(Λ),

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑠, sup

𝑛
|𝑎𝑛| = ∞.

We let ̂︀𝐹 (𝑠) = ∞∑︁
𝑛=1

𝑇𝑛𝑒
𝜆𝑛𝑠, 𝑇𝑛 = 𝑒−𝛾(𝜆𝑛), 𝑛 ⩾ 1. (3.2)

The function ̂︀𝐹 is called a Newton majorant of the function 𝐹 ∈ 𝐷0(Λ).
Let 𝛾(𝜆𝑛) = 𝐺𝑛 (𝑛 ⩾ 1). Then (𝜆𝑛, 𝐺𝑛) ∈ 𝐿(𝐹 ). For infinitely many values 𝜆𝑛, in particular,

for abscissas 𝜆𝑛𝑖
(𝑖 ⩾ 1, 𝑛1 = 1) of all vertices of the polygon 𝐿(𝐹 ) we have 𝐺𝑛 = − ln |𝑎𝑛|.

We note that the point 𝑃𝑛 = (𝜆𝑛,− ln |𝑎𝑛|) lies either on the polygon 𝐿(𝐹 ); the point 𝑃𝑛𝑖

necessarily lies on the polygon or above it. The angular coefficient of the segment connecting
the vertices 𝑃𝑛𝑖

and 𝑃𝑛𝑖+1
of the polygon 𝐿(𝐹 ) is equal to

𝑅𝑖 =
𝐺𝑛𝑖+1

−𝐺𝑛𝑖

𝜆𝑛𝑖+1
− 𝜆𝑛𝑖

(𝑖 ⩾ 1, 𝜆1 = 1).

It is clear that 𝑅𝑖 ↑ 0 as 𝑖 → ∞. Therefore, as 𝑅𝑖−1 ⩽ 𝜎 < 𝑅𝑖, the central index
𝜈(𝜎) = 𝑛𝑖 = 𝑐𝑜𝑛𝑠𝑡, and ln𝜇(𝜎) = ln |𝑎𝑛𝑖

|+𝜆𝑛𝑖
𝜎 [4]. In particular, this implies that 𝜇(𝜎) = ̂︀𝜇(𝜎),

𝜈(𝜎) = ̂︀𝜈(𝜎), where ̂︀𝜇(𝜎) and ̂︀𝜈(𝜎) are the maximal term and the central index of series (3.2). It
is also known that the function ln𝜇(𝜎) is continuous and as sup

𝑛
|𝑎𝑛| = ∞, it grows unboundedly

on the interval [−1, 0) [4].

2. Lemma of Borel-Nevanlinna type. Let 𝐿 be a class of all continuous unboundedly growing
on [0,∞) functions and 𝑊 be the above defined convergence class. For a function 𝑤 in 𝑊 we
introduce a notation

𝐽(𝑡;𝑤) =

∞∫︁
𝑡

𝑤(𝑥)

𝑥2
𝑑𝑥.

By 𝐻 we denote a subclass of 𝐿 consisting of the functions Φ obeying, see [5]:

1) 𝜙(2𝑡) ⩽ 𝑐𝜙(𝑡), 0 < 𝑐 <∞; 2) 𝜙(𝑡)𝑡−1 ln 𝑡 = 𝑜(1), 𝑡→ ∞,

where the function 𝜙 is inverse for Φ.
The following Borel-Nevanlinna theorem is well-known, it is widely used for studying asymp-

totic properties of the functions defined by Dirichlet series, see [7].

Theorem (Borel-Nevanlinna). Let a continuous function 𝑢(𝑟) be defined on [𝑟𝑜,∞) and this

function is non-decreasing and tends to +∞ as 𝑟 → ∞. Let 𝜙(𝑢) be a continuous positive

function defined on [𝑢𝑜,+∞), 𝑢𝑜 = 𝑢(𝑟𝑜)), non-decreasing and tending to 0 as 𝑢→ ∞ and

∞∫︁
𝑢0

𝜙(𝑢)𝑑𝑢 <∞.

Then for each 𝑟 > 𝑟𝑜 except possibly a set of a finite measure, the inequality holds

𝑢(𝑟 + 𝜙(𝑢(𝑟))) < 𝑢(𝑟) + 1.

In work [5] the following version of the Borel-Nevanlinna theorem was proved.
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Lemma 3.1. Let 𝑢(𝑡) be a continuous non-decreasing on [−1, 0) function, 𝑢(𝑡) → ∞ as

𝑡→ 0− and for some function Φ from 𝐻

lim
𝑡→0−

𝑒𝑢(𝑡)Φ−1

(︂
1

|𝑡|

)︂
> 0.

If

𝜙(𝑡)𝐽(𝑡;𝑤) = 𝑜(1), 𝑡→ ∞,

for some function 𝑤 from 𝑊 , then

𝑢(𝑡+ 𝛿(𝑡)) = 𝑢(𝑡) + 𝑜(1), 𝛿(𝑡) =
𝑤(𝑣(𝑡))

𝑣(𝑡)

as 𝑡→ 0−, outside some set 𝑒 ⊂ [−1, 0), 𝑑𝑒 = 0, where 𝑣 = 𝑣(𝑡) is a solution of the equation

𝑤(𝑣) = 𝑒𝑢(𝑡). (3.3)

In work [2] a more general version of Lemma 3.1 was proved, which we shall employ in what
follows.

Lemma 3.2. Let 𝑢(𝑡) be a continuous non-decaying on [−1, 0) function, 𝑢(𝑡) → ∞ as 𝑡 →
0−. Let 𝑤 ∈ 𝑊 and 𝑣 = 𝑣(𝑡) be a solution of equation (3.3). If

𝑤(𝑣(𝑡))

|𝑡|𝑣(𝑡)
= 𝑜(1), 𝑡→ 0−,

and for some sequence {𝜏𝑗}, 𝜏𝑗 ↑ 0,

lim
𝜏𝑗→0−

1

|𝜏𝑗|
𝐽(𝑣𝑗;𝑤) = 0, 𝑣𝑗 = 𝑣(𝜏𝑗), (3.4)

then

𝑚(𝑒 ∩ [𝜏𝑗, 0)) = 𝑜(|𝜏𝑗|), 𝜏𝑗 → 0−,

as 𝑡→ 0−, outside some set 𝑒 ⊂ [−1, 0) and the asymptotic identity holds:

𝑢

(︂
𝑡+

𝑤(𝑣(𝑡))

𝑣(𝑡)

)︂
= 𝑢(𝑡) + 𝑜(1).

4. Proof of Theorem 1.1

We proceed to proving Theorem 2.1.
Sufficiency. Let condition (2.7) be satisfied and

|𝑏𝑛|+
1

|𝑏𝑛|
⩽ 𝑒𝑤(𝜆𝑛), 𝑛 ⩾ 𝑁, (4.1)

where 𝑤 = 𝑤(𝑥) is some function from 𝑊𝜙. We can suppose that 𝑤(𝑥)𝜙(𝑥) = 𝑜(𝑥) as 𝑥→ ∞;
this follows from (2.7). Without loss of generality we also suppose that 𝑛𝑙(𝑥) ⩽ 𝑤(𝑥) and this
will allow us to simplify certain calculations. Then there exists a function 𝑤* ∈ 𝑊𝜙 such that
√
𝑥 ⩽ 𝑤*(𝑥), 𝑤*(𝑥)𝜙(𝑥)

𝑥
= 𝑜(1), 𝑤(𝑥) = 𝑜(𝑤*(𝑥)) as 𝑥 → ∞ [5]. Let 𝑣 = 𝑣(𝜎) be a solution of

equation

𝑤*(𝑣) = 2 ln𝜇(𝜎). (4.2)

It is clear that 𝑣(𝜎) ↑ ∞ as 𝜎 ↑ 0. Since 𝑤* ∈ 𝑊𝜙, there exists a sequence {𝜏𝑗} (𝜏𝑗 ↑ 0) such
that

lim
𝑣𝑗→∞

𝜙(𝑣𝑗)𝐽(𝑣𝑗;𝑤
*) = 0, (4.3)
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where 𝑣𝑗 = 𝑣(𝜏𝑗) → ∞ as 𝜏𝑗 → 0− and

𝐽(𝑣𝑗;𝑤
*) =

∞∫︁
𝑣𝑗

𝑤*(𝑥)

𝑥2
𝑑𝑥.

Equation (4.2) can be written as

𝑤*(𝑣) = 𝑒𝑢(𝜎), 𝑢(𝜎) = ln 2 + ln ln𝜇(𝜎). (4.4)

Since 𝐹 ∈ 𝐷0(Φ), then for some 𝜏 > 0

lim
𝜎→ 0−

𝑒𝑢(𝜎)

|𝜎|Φ( 𝜏
|𝜎|)

> 0.

Therefore, taking into consideration (4.4) and that Φ ∈𝑀, we hence have:

𝑤*(𝑣(𝜎)) > 𝜀𝑜|𝜎|Φ
(︂
𝜏

|𝜎|

)︂
> 𝜀𝑜Φ

(︂
𝜀1
|𝜎|

)︂
,

where 𝜀𝑜 > 0, 𝜀1 > 0, 𝜎′ < 𝜎 < 0. Since 𝑤*(𝑥) = 𝑜(𝑥) as 𝑥 → ∞, by these estimates we obtain
that

1

|𝜎|
< 𝜀−1

1 𝜙(𝜀−1
𝑜 𝑤*(𝑣)) < 𝜀−1

1 𝜙(𝑣), (4.5)

where 𝑣 = 𝑣(𝜎), 𝜎′ < 𝜎′′ < 𝜎 < 0. The latter estimate is true, in particular, for 𝜎 = 𝜏𝑗, 𝑗 ⩾ 𝑗′.
By (4.2)–(4.4) we see that for the function 𝑤* conditions (3.3), (3.4) of Lemma 3.2 are satisfied.
Moreover, it follows (4.5) that

0 <
𝑤*(𝑣(𝜎))

|𝜎|𝑣(𝜎)
< 𝜀−1

1

𝜙(𝑣(𝜎))𝑤*(𝑣(𝜎))

𝑣(𝜎)
→ 0

as 𝜎 → 0 − . Hence, by applying Lemma 3.2, as 𝜎 → 0−, outside some set 𝑒1 ⊂ [−1, 0),
𝑚(𝑒1 ∩ [𝜏𝑗, 0)) = 𝑜(|𝜏𝑗|), 𝜏𝑗 → 0−, we obtain

𝜇(𝜎 + ℎ) < 𝜇(𝜎)(1+𝑜(1)), ℎ =
𝑤*(𝑣)

𝑣
, 𝑣 = 𝑣(𝜎). (4.6)

Let

𝑅𝑣 =
∑︁
𝜆𝑛>𝑣

|𝑎𝑛|𝑒𝜆𝑛𝜎.

Then ln𝑛 = ln𝑛(𝜆𝑛) ⩽ 𝑛𝑙(𝜆𝑛). Since the function 𝑛𝑙(𝑡) is concave, then

𝑛𝑙(𝜆𝑛) ⩽
𝑤(𝑣)

𝑣
𝜆𝑛 (4.7)

as 𝜆𝑛 ⩾ 𝑣. Therefore, as 𝜎 ∈ [𝜎𝑜, 0) ∖ 𝑒1,

𝑅𝑣 ⩽ 𝜇(𝜎 + ℎ)
∑︁
𝜆𝑛>𝑣

𝑒−ℎ𝜆𝑛 ⩽ 𝐶𝑜𝜇(𝜎 + ℎ) exp[max
𝑡⩾𝑣

𝜓(𝑡)],

where

𝜓(𝑡) = 2𝑛𝑙(𝑡)− ℎ𝑡, 𝐶𝑜 =
∞∑︁
𝑛=1

1

𝑛2
.

Hence, if we take into consideration estimate (4.7), as 𝜎 → 0− we have

max
𝑡⩾𝑣

(𝜓(𝑡)) ⩽ 2
𝑤(𝑣)

𝑣
𝑡− ℎ𝑡 ⩽ −𝑣(1 + 𝑜(1))ℎ.

Then in view of (4.2), (4.6), we obtain that

𝑅𝑣 ⩽ 𝐶𝑜𝜇(𝜎)
(1+𝑜(1)) exp[−𝑤*(𝑣)(1 + 𝑜(1))] = 𝜇(𝜎)−1(1+𝑜(1)) (4.8)



MAXIMAL TERM OF DIRICHLET SERIES CONVERGING IN HALF-PLANE. . . 29

as 𝜎 → 0−, outside 𝑒1. Hence, 𝜆𝜈(𝜎) ⩽ 𝑣(𝜎) as 𝜎 ∈ [𝜎1, 0) ∖ 𝑒1, where 𝜈 = 𝜈(𝜎) is the central
index of series (2.2). Then as 𝜎 → 0−, outside 𝑒1, in view of (4.1), (4.2) we have:

𝜇(𝜎) = |𝑎𝜈 |𝑒𝜆𝜈𝜎 = |𝑎𝜈𝑏𝜈 |𝑒𝜆𝜈𝜎|𝑏𝜈 |−1 ⩽ 𝜇*(𝜎)𝑒𝑤(𝑣) = 𝜇*(𝜎)𝜇(𝜎)𝑜(1).

Therefore, as 𝜎 → 0−, outside 𝑒1 ⊂ [−1, 0) we obtain the estimate

(1 + 𝑜(1)) ln𝜇(𝜎) ⩽ ln𝜇*(𝜎). (4.9)

On the other hand, since |𝑏𝑛| ⩽ 𝑒𝑤(𝜆𝑛), 𝑛 ⩾ 1, we have

𝜇*(𝜎) = |𝑎𝑘𝑏𝑘|𝑒𝜆𝑘𝜎 ⩽ 𝜇(𝜎)𝑒𝑤(𝜆𝑘), (4.10)

where 𝑘 = 𝑘(𝜎) is the central index of series (2.3).
Let 𝑥 = 𝑥(𝜎) be a solution of equation

𝑤*(𝑥) = 3 ln𝜇*(𝜎), (4.11)

and 𝑅*
𝑥 =

∑︀
𝜆𝑛>𝑥

|𝑎𝑛||𝑏𝑛|𝑒𝜆𝑛𝜎. We are going to obtain an estimate of type (4.8) for 𝑅*
𝑥.

Let {𝜏𝑗} be the above introduced sequence. By (4.9) as 𝜎 ∈ [𝜎2, 0) ∖ 𝑒1 we have:

ln𝜇(𝜎) <
3

2
ln𝜇*(𝜎). (4.12)

If for some subsequence {𝜏𝑗𝑛} in the sequence {𝜏𝑗} the estimates ln𝜇(𝜏𝑗𝑛) <
3
2
ln𝜇*(𝜏𝑗𝑛) hold,

then taking into consideration (4.2), (4.11) we obtain

2 ln𝜇(𝜏𝑗𝑛) = 𝑤*(𝑣(𝜏𝑗𝑛)) < 3 ln𝜇*(𝜏𝑗𝑛) = 𝑤*(𝑥(𝜏𝑗𝑛)) (𝑛 ⩾ 1).

Therefore, 𝑣(𝜏𝑗𝑛) < 𝑥(𝜏𝑗𝑛), 𝑛 ⩾ 1. Since 𝐹 ∈ 𝐷0(Φ), then for some 𝜏 > 0, 𝑝 > 0,

ln𝜇(𝜎)

|𝜎|Φ
(︁

𝜏
|𝜎|

)︁ ⩾ 𝑝 > 0, 𝜎 = 𝜏𝑗𝑛 (𝑛 ⩾ 1).

Using that Φ ∈𝑀 , for some 𝑞, 0 < 𝑞 < 1 we hence obtain that

ln𝜇(𝜎) ⩾ 𝑝
Φ(𝜏 |𝜎|−1)

|𝜎|−1
> 𝑝Φ(𝑞|𝜎|−1), 𝜎 = 𝜏𝑗𝑛 , 𝑛 ⩾ 𝑛0. (4.13)

Then in view of (4.2) we obtain the estimates:

1

|𝜏𝑗𝑛|
< 𝐴𝜙(𝑣(𝜏𝑗𝑛)), 𝑛 ⩾ 𝑛1. (4.14)

But 𝑣(𝜏𝑗𝑛) < 𝑥(𝜏𝑗𝑛), 𝑛 ⩾ 1. Therefore, by (4.3), (4.14) we have:

1

|𝜏𝑗𝑛|
𝐽(𝑥(𝜏𝑗𝑛);𝑤

*) < 𝐴𝜙(𝑣𝑗𝑛)𝐽(𝑣𝑗𝑛 ;𝑤
*) = 𝑜(1)

as 𝜏𝑗𝑛 → 0 − . In view of this, we apply Lemma 3.2 to the function 𝑢(𝜎) = ln 3 + ln ln𝜇*(𝜎).
Then as 𝜎 → 0−, outside some set 𝑒2 ⊂ [−1, 0),

𝑚(𝑒2 ∩ [𝜏𝑗𝑛 , 0)) = 𝑜(|𝜏𝑗𝑛|), 𝜏𝑗𝑛 → 0−,
we obtain the estimate

𝜇*(𝜎 + ℎ*) < 𝜇*(𝜎)1+𝑜(1), ℎ* =
𝑤*(𝑥)

𝑥
, 𝑥 = 𝑥(𝜎). (4.15)

In the same way how estimate (4.8) was obtained, we see that

𝑅*
𝑥 < 𝜇*(𝜎)−2(1+𝑜(1)) (4.16)

as 𝜎 → 0−, outside 𝑒2.
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Let 3
2
ln𝜇*(𝜏𝑗) ⩽ ln𝜇(𝜏𝑗) for each 𝜏𝑗, 𝑗 ⩾ 𝑗1. We consider the set

𝐴𝑗 =

{︂
𝑥 : 𝑥 ⩾ 𝜏𝑗, ln𝜇(𝜏𝑗) <

3

2
ln𝜇*(𝑥)

}︂
, 𝑗 ⩾ 𝑗1.

Since 𝜏𝑗 ̸∈ 𝐴𝑗 for 𝑗 ⩾ 𝑗1, it follows from the continuity of the function 𝜇*(𝜎) that ln𝜇(𝜏𝑗) =
3
2
ln𝜇*(𝑥𝑗), where 𝑥𝑗 = inf{𝑥 : 𝑥 ∈ 𝐴𝑗}. Hence, by (4.2), (4.11) we obtain that 𝑤*(𝑣(𝜏𝑗)) =

𝑤*(𝑥(𝑥𝑗)), i.e., 𝑣(𝜏𝑗) = 𝑥(𝑥𝑗) (𝑗 ⩾ 𝑗1). Then it follows from (4.12) that {𝜏𝑗} ⊂ 𝑒1, {𝑥𝑗} ⊂ 𝑒1.
Since 𝑚(𝑒1 ∩ [𝜏𝑗, 0)) = 𝑜(|𝜏𝑗|) as 𝜏𝑗 → 0−, then 𝑥𝑗 − 𝜏𝑗 = 𝑜(|𝜏𝑗|), that is, 𝑥𝑗 = (1 + 𝑜(1))𝜏𝑗.
Therefore, taking into consideration (4.3) and estimate of type (4.14), we have:

1

|𝑥𝑗|
𝐽(𝑥(𝑥𝑗);𝑤

*) =
1

(1 + 𝑜(1))|𝜏𝑗|
𝐽(𝑣𝑗;𝑤

*) → 0

as 𝑗 → ∞, 𝑣𝑗 = 𝑣(𝜏𝑗). We see that the functions 𝑤* and 𝑢(𝜎) = ln 3 + ln ln𝜇*(𝜎) satisfy all
assumptions of Lemma 3.2. Hence, according to this lemma, estimate (4.15), and hence, (4.16),
is true as 𝜎 → 0− outside some set

𝑒3 ⊂ [−1, 0), 𝑚(𝑒3 ∩ [𝑥𝑗, 0)) = 𝑜(|𝑥𝑗|), 𝑥𝑗 → 0− .

Therefore, 𝑚(𝑒3 ∩ [𝜏𝑗, 0)) = 𝑜(|𝜏𝑗|), 𝜏𝑗 → 0− . Thus, as 𝜎 → 0−, outside the set 𝑒4 = 𝑒2 ∪ 𝑒3 we
have 𝑚(𝑒4 ∩ [𝜏𝑗𝑛 , 0)) = 𝑜(|𝜏𝑗𝑛|), 𝜏𝑗𝑛 → 0−, and estimate (4.16) holds true. But this means that
𝜆𝑘(𝜎) ⩽ 𝑥(𝜎), if 𝜎 ∈ [𝜎3, 0) ∖ 𝑒4. Therefore, by (4.10) we obtain that for such 𝜎

𝜇*(𝜎) ⩽ 𝜇(𝜎)𝑒𝑤(𝑥(𝜎)) = 𝜇(𝜎)𝜇*(𝜎)𝑜(1),

that is,

(1 + 𝑜(1)) ln𝜇*(𝜎) ⩽ ln𝜇(𝜎). (4.17)

By estimates (4.9), (4.17) we finally obtain that as 𝜎 → 0−, outside the set 𝑒 = 𝑒1 ∪ 𝑒4, we
have 𝑚(𝑒 ∩ [𝜏𝑗𝑛 , 0)) = 𝑜(|𝜏𝑗𝑛|), 𝜏𝑗𝑛 → 0−, and the needed identity holds:

ln𝜇(𝜎) = (1 + 𝑜(1)) ln𝜇*(𝜎).

Since 𝑑𝑒 = 0, this proves the sufficiency.
Necessity. We should show that if a sequence {𝑏𝑛} is 𝑊𝜙-normal and for each function

𝐹 ∈ 𝐷0(Φ) the maximal term of representing it series (2.2) is 𝐵(𝑑)-stable, then there exists a
function 𝑤 ∈ 𝑊𝜙 such that

|𝑏𝑛|+
1

|𝑏𝑛|
⩽ 𝑒𝑤(𝜆𝑛), 𝑛 ⩾ 𝑁.

Suppose the opposite. Then for the sequence {ln |𝑏𝑛|}∞𝑛=𝑁 there exists no majorant 𝑤(𝜆𝑛),
𝑤 ∈ 𝑊𝜙. This means that

lim
𝑡→∞

𝜙(𝑡)

∞∫︁
𝑡

𝛼(𝑥)

𝑥2
𝑑𝑥 > 0, (4.18)

where 𝛼 = 𝛼(𝑡) is the smallest non-decreasing majorant of the sequence {ln |𝑏𝑛|}∞𝑛=𝑁 , that is,
𝛼(𝑡) = max

𝜆𝑛⩽𝑡
{ln |𝑏𝑛| : 𝑛 ⩾ 𝑁}. Without loss of generality we can suppose that 𝛼(𝑡) > 0 as

𝑡 ⩾ 𝜆𝑁 . We note that 𝛼(𝑡) is a right continuous step function. Let 𝑇 = {𝑡𝑛}, 𝑡𝑛 = 𝜆𝑗𝑛 , be a
sequence of all discontinuity points of the function 𝛼(𝑡). Let 𝑞, 0 < 𝑞 < 1, be an arbitrary but
fixed number, 𝛽(𝑡) = 𝑞𝛼(𝑡), 𝐼𝑛 = 𝐽(𝑡𝑛; 𝛽), 𝐺𝑛 = −𝑡𝑛𝐼𝑛 (𝑛 ⩾ 1). We let

𝑎𝑘 =

⎧⎪⎨⎪⎩
𝑒−𝐺1 as 𝑘 = 1, 2, . . . , 𝑗1;

𝑒−𝐺𝑛 as 𝑘 = 𝑗𝑛, 𝑛 ⩾ 1;

𝑒−𝛾𝑛(𝜆𝑘)−1 as 𝑗𝑛 < 𝑘 < 𝑗𝑛+1 (𝑛 ⩾ 1),



MAXIMAL TERM OF DIRICHLET SERIES CONVERGING IN HALF-PLANE. . . 31

where 𝑦 = 𝛾𝑛(𝑥) is the equation of the straight line passing through the points 𝑃𝑛 = (𝑡𝑛, 𝐺𝑛)
and 𝑃𝑛+1 = (𝑡𝑛+1, 𝐺𝑛+1).
Let us make sure that 𝑅𝑛 ↑ 0 as 𝑛→ ∞, where

𝑅𝑛 =
𝐺𝑛+1 −𝐺𝑛

𝑡𝑛+1 − 𝑡𝑛
.

Indeed, 𝑅𝑛 = −𝐼𝑛 + 𝛽(𝑡𝑛)
𝑡𝑛

, 𝑛 ⩾ 1; here we have used that 𝛽(𝑡) = 𝑞𝛼(𝑡), and 𝛼(𝑡) = 𝛼(𝑡𝑛) as
𝑡𝑛 ⩽ 𝑡 < 𝑡𝑛+1. This implies:

𝑅𝑛+1 −𝑅𝑛 = 𝑞

(︂
𝛼(𝑡𝑛+1)− 𝛼(𝑡𝑛)

𝑡𝑛+1

)︂
> 0, 𝑛 ⩾ 1.

But since 𝐺𝑛 = 𝑜(𝑡𝑛) as 𝑛 → ∞, then indeed 𝑅𝑛 ↑ 0 as 𝑛→ ∞. Therefore, the set of all
segments of the straight lines connecting the points 𝑃𝑛 and 𝑃𝑛+1, 𝑛 ⩾ 1, is the convex Newton
polygon 𝐿(𝐹 ) for Dirichlet series [4]

𝐹 (𝑠) =
∞∑︁
𝑘=1

𝑎𝑘𝑒
𝜆𝑘𝑠, (4.19)

and since the points (𝜆𝑘,− ln |𝑎𝑘|) as 𝑗𝑛 < 𝑘 < 𝑗𝑛+1, 𝑛 ⩾ 1, lie above 𝐿(𝐹 ), the vertices of
the polygon 𝐿(𝐹 ) are exactly the points 𝑃𝑛 = (𝑡𝑛, 𝐺𝑛), 𝑡𝑛 = 𝜆𝑗𝑛 , 𝑛 ⩾ 1. In view of this, we
estimate the maximal term 𝜇(𝜎) of series (4.19) from above. As 𝑅𝑛−1 ⩽ 𝜎 < 𝑅𝑛, the maximal
term is |𝑎𝑛|𝑒𝜆𝑛𝜎 [4]. Therefore, for each 𝑛 ⩾ 1,

ln𝜇(𝜎) = −𝐺𝑛 + 𝑡𝑛𝜎 <
𝑡𝑛𝑡𝑛+1

𝑡𝑛+1 − 𝑡𝑛

𝑡𝑛+1∫︁
𝑡𝑛

𝛽(𝑥)

𝑥2
𝑑𝑥 = 𝑞𝛼𝑛. (4.20)

On the other hand, 𝜇*(𝜎) ⩾ |𝑎𝑗𝑛𝑏𝑗𝑛|𝑒𝜆𝑗𝑛𝜎, 𝑏𝑗𝑛 = 𝑒𝛼(𝑡𝑛), 𝛼(𝑡𝑛) = 𝛼𝑛, 𝑛 ⩾ 1. Therefore, for
𝑅𝑛−1 ⩽ 𝜎 < 𝑅𝑛 we obtain that for each 𝑛 ⩾ 1,

ln𝜇*(𝜎) ⩾ 𝛼𝑛 + 𝑡𝑛(𝐼𝑛 + 𝜎) = 𝛼𝑛 + ln𝜇(𝜎) > 𝛼𝑛. (4.21)

Thus, by (4.20), (4.21) we obtain that ln𝜇(𝜎) < 𝑞 ln𝜇*(𝜎) if 𝑅𝑛−1 ⩽ 𝜎 < 𝑅𝑛. Hence,

lim
𝜎→ 0−

ln𝜇(𝜎)

ln𝜇*(𝜎)
⩽ 𝑞 < 1,

and the maximal term 𝜇(𝜎) possesses no property of 𝐵(𝑑)-stability.
Let us confirm that 𝐹 ∈ 𝐷0(Φ). Indeed, by the representation [4]

ln𝜇(𝜎) = ln𝜇(−1) +

𝜎∫︁
−1

𝜆𝜈(𝑡)𝑑𝑡

we get that

ln𝜇(
𝜎

2
) ⩾

𝜎/2∫︁
𝜎

𝜆𝜈(𝑡)𝑑𝑡 ⩾
|𝜎|
2
𝜆𝜈(𝜎) (𝜎 < 0). (4.22)

Then

𝑅𝑛 = −𝐼𝑛 +
𝛽(𝑡𝑛)

𝑡𝑛
, 𝛽(𝑡𝑛) = 𝛼𝑛𝑞, 𝑛 ⩾ 1.

Therefore, in view of (2.7), (4.18) we have:

|𝑅𝑛|𝜙(𝑡𝑛) = 𝐼𝑛𝜙(𝑡𝑛)−
𝛽(𝑡𝑛)

𝑡𝑛
𝜙(𝑡𝑛) ⩾ 𝛾 > 0 𝑛 ⩾ 1.
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Let 𝑅𝑛−1 ⩽ 𝜎 < 𝑅𝑛. Then 𝜆𝜈(𝜎) = 𝑡𝑛 and

𝜙(𝜆𝜈) ⩾
𝛾

|𝑅𝑛|
>

𝛾

|𝜎|
, 𝜈 = 𝜈(𝜎).

Therefore, by (4.22) we obtain that for 𝑅𝑛−1 ⩽ 𝜎 < 𝑅𝑛, 𝑛 ⩾ 1,

ln𝜇
(︁𝜎
2

)︁
>

|𝜎|
2
𝜆𝜈 >

|𝜎|
2
Φ

(︂
𝛾

|𝜎|

)︂
, 𝑛→ ∞.

This means that

lim
𝜎→ 0−

ln𝜇(𝜎)

|𝜎|Φ
(︁

𝜏
|𝜎|

)︁ > 0, 𝜏 =
𝛾

2
.

Hence, 𝐹 ∈ 𝐷0(Φ). The proof is complete.
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