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ON INTEGRAL EQUATIONS OF FREDHOLM KIND

IN BOHR SPACE OF ALMOST PERIODIC FUNCTIONS

I.Sh. JABBAROV, N.E. ALLAKHYAROVA

Abstract. In the present work we consider a question on extending the notion of the Fred-
holm integral equation or second kind integral equation, which allows one to consider the
issue on existence of solutions in the space of almost periodic functions. Almost periodic
functions are defined on the entire line. This is why it seems difficult to describe them by
some characteristics on finite intervals.
The Fredholm equations are known to be closely related with first order differential

equations. In some particular cases there were posed the questions on finding the solutions
in various classes of almost periodic functions. In some known cases there are no solutions
in the Bohr class for such equations with almost periodic coefficients.
There are known examples of almost periodic functions (in the Besicovitch sense), which

can not be solutions for a rather wide class of differential equations. It is natural to expect
that in the general case the integral equations are also not solvable in Bohr class of almost-
periodic functions. This is why a more specific approach is needed for the problem in the
space of almost-periodic functions.
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1. Introduction

In the present work we study the issue on an extension of the notion of the Fredholm integral
equation, or second kind integral equation

𝜙(𝑥) = 𝑓(𝑥) + 𝜆

𝑏∫︁
𝑎

𝐾(𝑥, 𝜉)𝜙(𝜉)𝑑𝜉 (1.1)

such that one could state that modified equation (1.1) is solvable in the Bohr class of almost
periodic functions; here for simplicity the parameter 𝜆 takes real values. It is natural to impose
certain condition on all functions involved in (1.1). The integration limits are to be chosen
appropriately since the almost periodic functions are defined on the entire real line.
Before formulating the issue, we first make certain natural comments. It is known that

equations of form (1.1) are closely related with first order differential equation

𝑦′ = 𝑓(𝑥, 𝑦).

In the theory of almost periodic functions, various particular cases of this equations were
considered and the questions on finding its solutions in various classes of almost periodic func-
tions were treated and the solvability was studied. There are known cases, when in the Bohr
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class there are no solutions even for equations of form [1]

𝑦′ + 𝐴(𝑥)𝑦 = 𝑓(𝑥),

where the functions 𝑓(𝑥) and 𝐴(𝑥) are almost periodic.
There are well-known examples of Besicovitch almost periodic functions which can not

solve a rather wide class of differential equations. For instance, in the well-known work [8],
S.M. Voronin proved that the Riemann zeta function 𝑦 = 𝑦(𝑡) = 𝜁(𝜎 + 𝑖𝑡), 𝑡 ∈ R, with
0.5 < 𝜎 < 1 can not solve a differential equation of form

𝐹 (𝑦, 𝑦′, . . . , 𝑦(𝑛)) = 0,

where a function 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛+1) is continuous. The function 𝑦(𝑡) = 𝜁(𝜎 + 𝑖𝑡), 𝑡 ∈ R, is
almost periodic in the Besicovitch sense, while for 𝜎 > 1 it is almost periodic in the Bohr sense.
Indeed, there are many examples of such kind.
It is natural to expect that in a general case integral equations of form (1.1) can not be

solvable in the usual sense in the Bohr class of almost periodic functions. Since the almost
periodic functions are defined on the entire real line, instead of equation (1.1) with fixed 𝑎 and
𝑏, we can consider the equation with a growing parameter 𝑇 letting 𝑎 = 0, 𝑏 = 𝑇 > 0:

𝜙(𝑥) = 𝑓(𝑥) + 𝜆

𝑇∫︁
0

𝐾(𝑥, 𝜉)𝜙(𝜉)𝑑𝜉.

However, in the space of the almost periodic functions a more specific approach to the problem
is needed since we seek the functions defined on the entire real line. We replace the integral in
the right hand side of (1.1) by an appropriate mean value and we write the integral equation
as follows:

𝜙(𝑥) = 𝑓(𝑥) + 𝜆 lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝐾(𝑥, 𝜉)𝜙(𝜉)𝑑𝜉. (1.2)

Speaking about integral Fredholm equation in the Bohr space of almost periodic function
(and also in more general sense), we shall mean equation of form (1.2). The kernel 𝐾(𝑥, 𝜉)
of the equation is also supposed to belong to the space of almost periodic functions of two
variables in the corresponding class. The limit in the right hand side in (1.2) can be replaced
by the upper limit. The main aim of the present paper is to prove that equation (1.2) has
a solution for rather natural assumptions for the kernel and function 𝑓(𝑥). We shall apply
known methods of the Fredhold theory with some modifications related with the features of
the considered space. We also note that here we consider the case of a symmetric kernel. We
shall establish a relation between equations (1.1) and (1.2) and in this way we shall reduce the
question on studying equation (1.2) to similar questions for some equation of form (1.1).

2. Preliminary fact and lemmata

We first recall the definition of almost periodic Bohr functions, see [9]. Let 𝑓(𝑥) be a real
function defined on the entire real line; it is also possible to consider an arbitrary function
𝑓 : R→ 𝑋, where 𝑋 is some normed space.
A number 𝜏 is called an 𝜀-almost period if for each 𝑥 ∈ R the inequality holds

|𝑓(𝑥+ 𝜏)− 𝑓(𝑥)| ⩽ 𝜀.

Let 𝐸 ∈ R be some countable subset in R. The set 𝐸 is called relatively dense if there exists
𝐿 > 0 such that each interval of form

𝑎 < 𝑥 < 𝑎+ 𝐿, 𝑎 ∈ R
of the length 𝐿 contains at least one point from the set 𝐸.
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A function 𝑓(𝑥) continuous on the entire real line R is called almost periodic if for each 𝜀 > 0
the set of all 𝜀-almost periods of the function 𝑓(𝑥) is relatively dense in R.
There exists a close relation between almost periodic and periodic functions of many variables.

Definition 2.1. Let 𝐹1, 𝐹2, . . . be a sequence of continuous periodic functions 𝐹𝑘 : R
𝑛 → R.

If 𝐹𝑘 → 𝐹 uniformly in 𝑥 ∈ R𝑛, then the limit of this sequence, the function 𝐹 , is called a limit
periodic function.

In view of the definition it is clear that almost periodic functions are continuous. In the
same way one defines a limit periodic function of countably many variables. We denote by R∞

the set of all sequences of form (𝛼1, 𝛼2, . . . , 𝛼𝑘, . . .). Each function of finitely many variables of
form Φ : R𝑚 → R can be treated as a function Φ′ : R∞ → R of countably many variables by
letting 𝛼𝑘 = 0 for all 𝑘 > 𝑚.

Definition 2.2. Assume that we are given a sequence of continuous periodic functions 𝐹𝑘 :
R𝑚𝑘 → R, 𝑚1 < 𝑚2 < · · · , 𝑚𝑘 → ∞. If 𝐹𝑘 → 𝐹 uniformly in 𝑥 ∈ R∞, then the limit of
this sequence, the function 𝐹 : R∞ → R, is called a limit periodic function of countably many
variables.

It is convenient to introduce a metric in a space R∞ of all real sequences, which makes
this space a metric one. This metric is known as Tikhonov metric. Let 𝑥, 𝑦 ∈ R∞ and
𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑘, . . .). We introduce the Tikhonov metric by the identity [14]:

𝑑(𝑥, 𝑦) =
∞∑︁
𝑛=1

𝑒1−𝑛 |𝑥𝑛 − 𝑦𝑛| .

Without loss of generality we can extend all above definitions related with the infinite-
dimensional case to the introduced metric space.
Substituting equal values 𝑥 = 𝑥1 = . . . = 𝑥𝑚 instead of independent variables 𝑥1, . . . , 𝑥𝑚, we

obtain a diagonal function 𝑓(𝑥) = 𝐹 (𝑥, . . . , 𝑥) (or a function on the principal diagonal of the
space). In the same way we define a diagonal function in the infinite-dimensional space. One
of the main results by Bohr on almost periodic functions is as follows:

Lemma 2.1 (H. Bohr). Each almost periodic function is a diagonal function of some limit
periodic function of finitely many or countably many variables.

We make several remarks on almost periodic functions of two variables.
A pair of real numbers (𝜏, 𝜂) is called a pair of 𝜀-almost periods for the function 𝑓(𝑥, 𝑦) if for

each pair of real numbers (𝑥, 𝑦) the relations hold:

|𝑓(𝑥+ 𝜏, 𝑦)− 𝑓(𝑥, 𝑦)| ⩽ 𝜀, |𝑓(𝑥, 𝑦 + 𝜂)− 𝑓(𝑥, 𝑦)| ⩽ 𝜀.

Definition 2.3. A continuous on the entire plane (𝑥, 𝑦) ∈ R × R function is called almost
periodic if for each 𝜀 > 0 there exists 𝑙 = 𝑙(𝜀) > 0 such that for each pair (𝑥, 𝑦) ∈ R×R there
exists at least one pair (𝜏, 𝜂) of 𝜀-almost periods in the open square (𝑥, 𝑥+ 𝑙)×(𝑦, 𝑦+ 𝑙) ∈ R×R.

It is well-known that an almost periodic function is uniformly approximated by trigonometric
polynomials in the entire plane. A corresponding result reads as follows, see [3, Ch. 1, Sect.
12, Thm. 10].

Lemma 2.2. Let a continuous function 𝑓(𝑥, 𝑦) be almost periodic in R×R. Then for each
𝜀 > 0 we can find natural 𝑁𝜀 and 𝐿𝜀 such that⃒⃒⃒⃒

⃒𝑓(𝑥, 𝑦)−
𝑁𝜀∑︁
𝑛=1

𝐿𝜀∑︁
𝑟=1

𝑎𝑛,𝑟𝑒
2𝜋𝑖(𝜏𝑛𝑥+𝜇𝑟𝑦)

⃒⃒⃒⃒
⃒ < 𝜀

for all (𝑥, 𝑦) ∈ R×R; here 𝑎𝑛,𝑟, 𝜏𝑛, 𝜇𝑟 are real numbers.
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In particular, this lemma implies one more lemma.

Lemma 2.3. Each almost periodic function 𝑓(𝑥, 𝑦) is a diagonal function of some limit
periodic function of two finite or infinite system of variables.

Let 𝜙(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑦1, 𝑦2, . . . , 𝑦𝑚) is a limit periodic function of two system of variables.
This means that

𝜙(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑦1, 𝑦2, . . . , 𝑦𝑚) = lim
𝑘→∞

𝐺𝑘(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑦1, 𝑦2, . . . , 𝑦𝑚)

uniformly in R𝑛+𝑚, and 𝐺𝑘(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑦1, 𝑦2, . . . , 𝑦𝑚) are periodic function. Then, taking
the value of the function 𝐺𝑘 on the principal diagonals of the spaces R𝑛 and R𝑚, we obtain an
almost periodic function of two variables.
In the infinite-dimensional case the above said fact can be reformulated as follows: there

exist two systems of variables 𝑥1, . . . , 𝑥𝑚, . . . and 𝑦1, . . . , 𝑦𝑠, . . . and a sequence of periodic in
each variable functions 𝐺𝑘(𝑥1, 𝑥2, . . . ; 𝑦1, 𝑦2, . . .), 𝑘 = 1, 2, . . . such that

𝐺(𝑥1, 𝑥2, . . . ; 𝑦1, 𝑦2, . . .) = lim
𝑘→∞

𝐺𝑘(𝑥1, 𝑥2, . . . ; 𝑦1, 𝑦2, . . .),

uniformly in the above introduced metric and

𝐾(𝑥, 𝜉) = 𝐺(𝑥, 𝑥, . . . ; 𝜉, 𝜉, . . .).

In the present work we consider a simplest case of symmetric kernel when both systems of
variables are finite. Then the function

𝐺(𝑥1, . . . , 𝑥𝑚, 𝑦1, . . . , 𝑦𝑚)

is limit periodic of 2𝑚 variables and the periods in the pairs of the variables 𝑥𝑖 and 𝑦𝑖 coincide.
In work [9], H. Bohr studied mean values of form (1.2) on the base of a Kronecker theorem

on uniform distribution (mod 1) of some curves in a multi-dimensional unit cube ([12]). The
Kronecker theorem is as follows [7, App., Sect. 8, Thm. 1].

Lemma 2.4. Let real numbers 𝛼1, 𝛼2, . . . , 𝛼𝑁 be linearly independent over the field of ratio-
nal numbers, 𝛾 be some rectangular domain in the unit 𝑁-dimensional cube. Let 𝐼𝛾(𝑇 ) be the
measure of points 𝑡 ∈ (0, 𝑇 ), for which

(𝛼1𝑡, 𝛼2𝑡, . . . , 𝛼𝑁 𝑡) ∈ 𝛾(𝑚𝑜𝑑1).

Then

lim
𝑇→∞

𝐼𝛾(𝑇 )

𝑇
= Γ,

where Γ stands for the volume of the domain 𝛾.

We shall need the following definition from [10].

Definition 2.4. A family 𝐹 of functions 𝑓 defined on a subset 𝐸 of metric space 𝑋 is
called equicontinuous on 𝐸 if for each 𝜀 > 0 there exists 𝛿 > 0 such that |𝑓(𝑥)− 𝑓(𝑦)| < 𝜀 as
𝑑(𝑥, 𝑦) < 𝛿, 𝑥 ∈ 𝐸, 𝑦 ∈ 𝐸, 𝑓 ∈ 𝐹 ; here 𝑑 denotes the distance in 𝑋.

It is clear that each function in an equicontinuous family is uniformly continuous [10]. The
following lemma was proved in [7, App., Sect. 8, Lm. 1].

Lemma 2.5. Let a curve 𝛾(𝑡) be uniformly distributed modulo 1 in the space R𝑛. Let 𝐷 be
a closed subdomain in the unit cube measurable in the Jordan sense, Φ be a family of complex-
valued continuous functions defined on 𝐷. If Φ is uniformly bounded and equicontinuous, then

lim
𝑇→∞

𝑇−1

𝑇∫︁
0

𝑓({𝛾(𝑡)})𝑑𝑡 =
∫︁
𝐷

𝑓𝑑𝑥1 . . . 𝑑𝑥𝑁
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uniformly in 𝑓 ∈ Φ, where in the left hand side the integration is taken over 𝑡 ∈ (0, 𝑇 ), for
which

𝛾 (𝑡) ∈ 𝐷(𝑚𝑜𝑑1)

and
{𝛾(𝑡)} = ({𝛾1(𝑡)}, . . . , {𝛾𝑁(𝑡)}) .

In particular, Lemma 2.5 is true for an arbitrary continuous function 𝑓 on 𝐷. The following
lemma is useful for applications [10, Ch. 7, Thms. 7.24, 7.25].

Lemma 2.6. Let 𝐾 be a compact set.
a) if {𝑓𝑛} is a uniformly converging sequence of functions continuous on 𝐾, then {𝑓𝑛} is

equicontinuous on 𝐾;
b) if {𝑓𝑛} is pointwise bounded and equicontinuous on 𝐾, then {𝑓𝑛} contains a uniformly

converging subsequence and is uniformly bounded on 𝐾.

The following lemma is known as Hurwitz theorem [13, Ch. 3, Thm. 3.45].

Lemma 2.7. Let 𝑓1(𝑧), 𝑓2(𝑧), . . . be a sequence of functions analytic in some domain 𝐷
enveloped by a simple closed contour and let 𝑓𝑛(𝑧) → 𝑓(𝑧) uniformly in 𝐷. Assume that the
function 𝑓(𝑧) is not identically zero. Then a point 𝑧0 lying inside 𝐷 is a zero of the function
𝑓(𝑧) if and only if in 𝐷 there exists a sequence of points 𝑧1, 𝑧2 . . . converging to 𝑧0 such that
𝑧𝑛 is the zero of the function 𝑓𝑛(𝑧) as 𝑛 > 𝑛0 = 𝑛0(𝑧0).

3. Main results

The main results of the present paper are summarized in two theorems. To formulate and
prove these theorems, we first make some preliminary remarks. Let the kernel of the integral,
or, more precisely, limit integral equation (1.2) is a uniform limit periodic function of two
variables in the Bohr sense. Suppose that equation (1.2) possesses an almost periodic solution
𝜙(𝑥). Substituting into (1.2), we consider the identity:

𝜙(𝑥)− 𝑓(𝑥) = 𝜆 lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝐾(𝑥, 𝜉)𝜙(𝜉)𝑑𝜉. (3.1)

The right hand side of the identity is almost periodic in 𝑥 and has almost periods coinciding
with the almost periods of the function 𝐾(𝑥, 𝜉) in 𝑥 (and in 𝜉 by the symmetry). This is why,
representing 𝐾(𝑥, 𝑦) as a diagonal function of some limit periodic function, we can write:

𝐾(𝑥, 𝑦) = lim
𝑇→∞

𝐾𝑚(𝑥, 𝑥, . . . , 𝑥; 𝑦, 𝑦, . . . , 𝑦), (3.2)

where 𝐾𝑚(𝑥1, 𝑥2, . . . , 𝑥𝑠(𝑚); 𝑦1, 𝑦2, . . . , 𝑦𝑠(𝑚)) is a periodic function with periods 𝜆1, . . . , 𝜆𝑠(𝑚),
𝜆1, . . . , 𝜆𝑠(𝑚). Since the functions 𝐾𝑚(𝑥1, 𝑥2, . . . , 𝑥𝑠(𝑚); 𝑦1, 𝑦2, . . . , 𝑦𝑠(𝑚)) are periodic with the
above mentioned periods and continuous, they have the following Fourier expansions:

𝐾𝑚(𝑥1, 𝑥2, . . . , 𝑥𝑠(𝑚); 𝑦1, 𝑦2, . . . , 𝑦𝑠(𝑚))

∼
∞∑︁

𝑖1=−∞

· · ·
∞∑︁

𝑖𝑠(𝑚)=−∞

∞∑︁
𝑗1=−∞

· · ·
∞∑︁

𝑗𝑠(𝑚)=−∞

𝑎𝑖1···𝑗𝑚

× 𝑒2𝜋𝑖(𝑖1𝜃1𝑥1+···+𝑖𝑠(𝑚)𝜃𝑠(𝑚)𝑥𝑠(𝑚)+𝑗1𝜃1𝑦1+···+𝑗𝑠(𝑚)𝜃𝑠(𝑚)𝑦𝑠(𝑚)),

(3.3)

where 𝜃1, . . . , 𝜃𝑠(𝑚) are inverse values of the periods.
We proceed to the diagonal function in (3.3) substituting equal values 𝑥 = 𝑥1 = . . . = 𝑥𝑠(𝑚)

and 𝑦 = 𝑦1 = . . . = 𝑦𝑠(𝑚). We let

𝐾𝑚(𝑥, 𝑥, . . . , 𝑥; 𝑦, 𝑦, . . . , 𝑦) = 𝐾𝑚(𝑥1, 𝑥2, . . . , 𝑥𝑠(𝑚); 𝑦1, 𝑦2, . . . , 𝑦𝑠(𝑚))|𝑥=𝑥1=···=𝑥𝑠(𝑚),𝑦=𝑦1=···=𝑦𝑠(𝑚)
.
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In the same way we define functions 𝐻𝑚(𝑥, 𝑥, . . . , 𝑥). Returning back to (3.1), we replace the
kernel and solution of the equation by its expressions via limit periodic functions introduced
above:

𝐾(𝑥, 𝜉) = 𝐺(𝑥, 𝑥, . . . ; 𝜉, 𝜉, . . .), 𝜙(𝜉) = (𝜉, 𝜉, . . .),

where

𝐺(𝑥, 𝑥, . . . ; 𝜉, 𝜉, . . .) = lim
𝑇→∞

𝐺𝑚(𝑥, 𝑥, . . . , 𝑥; 𝜉, 𝜉, . . . , 𝜉),

𝜙(𝜉) = (𝜉, 𝜉, . . .) = lim
𝑇→∞

𝐻𝑚(𝜉, 𝜉, . . . , 𝜉).

The right hand sides of these identities involve limit periodic functions of 2𝑠(𝑚) and 𝑠(𝑚)
variables, respectively. We obtain the integral

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝐺(𝑥, 𝑥, . . . ; 𝜉, 𝜉, . . .)𝐻(𝜉, 𝜉, . . .)𝑑𝜉.

Since two functions under the integral are uniform limits of periodic functions, we can replace
the limit periodic functions by periodic ones with an error uniformly tending to zero as𝑚 → ∞:

lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝐺𝑚(𝑥, 𝑥, . . . ; 𝜉, 𝜉, . . .)𝐻𝑚(𝜉, 𝜉, . . .)𝑑𝜉. (3.4)

As it is known [2], the reciprocals 𝜃1, . . . , 𝜃𝑠(𝑚) of the periods can be assumed to be linearly
independent; otherwise we express in the rational way one via the others, we can replace the
periodic function 𝐾𝑚 by another one depending on less number of independent variables, which
on the principal diagonal gives the same periodic function. We consider a curve 𝛾(𝑡) defined

by the identity 𝛾(𝑡) =
(︁
2𝜋𝑡𝜆−1

1 , . . . , 2𝜋𝑡𝜆−1
𝑠(𝑚)

)︁
. Then latter integral (3.1) is also the integral

in Lemma 2.5 taken over this curve uniformly distributed in the cube ∆𝑠(𝑚) = ∆ with sides
equalling to 1. Applying Lemma 2.5, we obtain:

lim
𝑇→∞

𝑇−1

𝑇∫︁
0

𝑓({𝛾(𝑡)})𝑑𝑡 =
∫︁
Δ

𝑓𝑑𝑦1 . . . 𝑑𝑦𝑠(𝑚),

where 𝑁 = 𝑛, 𝑓(𝑦1, . . . , 𝑦𝑠(𝑚)) = 𝐺𝑚(𝑥1, . . . , 𝑥𝑠(𝑚); 𝑦1, . . . , 𝑦𝑠(𝑚))𝐻𝑚(𝑦1, . . . , 𝑦𝑠(𝑚)). In the first
two 𝑠(𝑚) components the values of the variables are arbitrary and if it is needed, we can replace
them by the value 𝑥 to obtain the vector (𝑥, . . . , 𝑥). Thus, our integral equation turns into a
usual Fredholm equation:

𝐻𝑘(�̄�)− 𝑓𝑘(�̄�) = 𝜆

∫︁
Δ

𝐺𝑘(�̄�, 𝜉)𝐻𝑘(𝜉)𝑑𝜉, �̄� ∈ ∆. (3.5)

Therefore, assuming the existence of solutions, we arrive at equation (3.5). This is why the
solvability of equation (3.5) is a necessary condition for the existence of solution to equation
(1.2).

Theorem 3.1. Let equation (3.5) be solvable for all considered 𝑘 and has a periodic solution
with periods 1 in all variables. If the sequence of solutions is uniformly bounded in the unit
cube, then equation (1.2) possesses an almost periodic solution.

Proof. For each 𝑘, we continue the found solutions 𝐻𝑘(�̄�) of equation (3.5) periodically in
all variables of the vector �̄� ∈ ∆ and obtain functions defined in the entire space R𝑠(𝑚); the
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obtained functions are again denoted by 𝐻𝑘(�̄�). We make a permutation replacing 𝑥𝑖 by the
number 𝜃𝑖𝑥𝑖. Then we obtain a sequence of functions

𝑌𝑘(�̄�) = 𝐻𝑘(𝜃1𝑥1, . . . , 𝜃𝑠(𝑚)𝑥𝑠(𝑚)),

which are continuous and have periods 𝜆1, . . . , 𝜆𝑠(𝑚). Let us prove that this sequence converges
uniformly to some limit periodic function 𝑌 (�̄�) and the corresponding diagonal function is
almost periodic and solves equation (1.2). Since there exists a uniform limit

�̃�(�̄�, 𝑦) = lim
𝑇→∞

𝐺𝑚(𝑥1, 𝑥2, . . . , 𝑥𝑠(𝑚); 𝑦1, 𝑦2, . . . , 𝑦𝑠(𝑚)), �̄�, 𝑦 ∈ ∆,

by Lemma 2.1 this sequence is equicontinuous. Let us prove that the sequence of solutions is
also equicontinuous. By conditions, the set of solutions is uniformly bounded:

|𝑌𝑘(�̄�)| ⩽ 𝐿, �̄� ∈ ∆, 𝑘 ⩾ 1,

with some constant 𝐿. Then

|𝐻𝑘(�̄�)−𝐻𝑘(�̄�
′)| ⩽ |𝑓𝑘(�̄�)− 𝑓𝑘(�̄�

′)|+ 𝐿 |𝜆|
∫︁
Δ

⃒⃒
𝐺𝑘(�̄�, 𝜉)−𝐺𝑘(�̄�

′, 𝜉)
⃒⃒
𝑑𝜉 ⩽ 𝜀(1 + 𝐿 |𝜆|),

as soon as |�̄�− �̄�′| < 𝛿. This relation and the arbitrariness of 𝜀 implies the needed statement.
Then by Lemma 2.6 the sequence of solutions contains a uniformly converging subsequence.
Passing uniformly to the limit over such subsequence, we obtain that the limit periodic function
defined by this subsequence gives a some almost periodic function on the principal diagonal of
the space. Then this solution solves equation (1.2). The proof is complete.

We proceed to studying the solvability of equation (3.5) and we are going to establish the
conditions under which (3.5) has a sequence of solutions uniformly bounded in 𝑘.
We introduce analogues of known notions from the theory of Fredholm integral equations

[11], [13]. The analogues of the Fredholm functions 𝐷(𝜆) and 𝐷(𝑥, 𝑦;𝜆) are defined as follows.
Let

𝐷(𝜆) = 1 +
∞∑︁
𝑛=1

𝑏𝑛𝜆
𝑛

𝑛!
,

where

𝑏𝑛 = (−1)𝑛 lim
𝑇→∞

1

𝑇 𝑛
×

𝑇∫︁
0

· · ·
𝑇∫︁

0

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝐾(𝑥1, 𝜉1) 𝐾(𝑥1, 𝜉2) · · · 𝐾(𝑥1, 𝜉𝑛)
𝐾(𝑥2, 𝜉1) 𝐾(𝑥2, 𝜉2) · · · 𝐾(𝑥2, 𝜉𝑛)

...
...

. . .
...

𝐾(𝑥𝑛, 𝜉1) 𝐾(𝑥𝑛, 𝜉2) · · · 𝐾(𝑥𝑛, 𝜉𝑛)

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑑𝜉1𝑑𝜉2 · · · 𝑑𝜉𝑛.

In the same way we let

𝐷𝑘(𝑥, 𝑦;𝜆) = 𝜆𝐷(𝜆)𝐾(𝑥, 𝑦) +
∞∑︁
𝑛=1

(−1)𝑛+1𝑄𝑛(𝑥, 𝑦)𝜆
𝑛+1

𝑛!
, 𝑥, 𝑦 ∈ R,

where

𝑄𝑛(𝑥, 𝑦) = − lim
𝑇→∞

𝑛

𝑇 𝑛

𝑇∫︁
0

· · ·
𝑇∫︁

0

𝑃𝑛(𝑥, 𝜉, 𝜉1, . . . , 𝜉𝑛−1)𝐾(𝜉, 𝑦)𝑑𝜉𝑑𝜉1 · · · 𝑑𝜉𝑛−1,

and

[𝑃𝑛(𝑥, 𝜉, 𝜉1, . . . , 𝜉𝑛−1) =

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝐾(𝑥, 𝜉) 𝐾(𝑥, 𝜉1) · · · 𝐾(𝑥, 𝜉𝑛−1)

𝐾(𝜉1, 𝜉) 𝐾(𝜉1, 𝜉1) · · · 𝐾(𝜉1, 𝜉𝑛−1)
...

...
. . .

...
𝐾(𝜉𝑛−1, 𝜉) 𝐾(𝜉𝑛−1, 𝜉1) · · · 𝐾(𝜉𝑛−1, 𝜉𝑛−1)

⃒⃒⃒⃒
⃒⃒⃒⃒ .
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By an arguing similar to that in [11], [13], one can show the the analogues of the Fredholm
functions are entire functions and by the symmetricity of the kernel the equation 𝐷(𝜆) = 0 has
only real roots [1]. In our case these roots play an important role for equation (1.2). Here we
consider only the case when 𝜆 is a real number not being a root of the equation 𝐷(𝜆) = 0.

Theorem 3.2. Let 𝜆 be a real number and 𝐷(𝜆) ̸= 0. Then equation (1.2) has a unique
almost periodic solution and it is given by the formula

𝜙(𝑥) = 𝑓(𝑥) + lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑓(𝜉)
𝐷(𝑥, 𝜉;𝜆)

𝐷(𝜆)
𝑑𝜉. (3.6)

Proof. Reproducing the arguing of the proof of Theorem 3.1, we consider equation (3.5) for a
fixed 𝑘. As it is known, [11], the techniques from the theory of system of linear equations gives
an expression for the Fredholm function 𝐷𝑘(𝜆):

𝐷𝑘(𝜆) = 1 +
∞∑︁
𝑛=1

𝑎𝑛𝜆
𝑛

𝑛!
,

and

𝑎𝑛 = (−1)𝑛
∫︁
Δ

· · ·
∫︁
Δ

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝐺𝑘(�̄�1, 𝜉1) 𝐺𝑘(�̄�1, 𝜉2) · · · 𝐺𝑘(�̄�1, 𝜉𝑛)
𝐺𝑘(�̄�2, 𝜉1) 𝐺𝑘(�̄�2, 𝜉2) · · · 𝐺𝑘(�̄�2, 𝜉𝑛)

...
...

. . .
...

𝐺𝑘(�̄�𝑛, 𝜉1) 𝐺𝑘(�̄�𝑛, 𝜉2) · · · 𝐺𝑘(�̄�𝑛, 𝜉𝑛)

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑑𝜉1𝑑𝜉2 · · · 𝑑𝜉𝑛;

the integration is made over the unit cube ∆. The integral in the right hand side of the latter
identity has a multiplicity 𝑛𝑠(𝑘). The Fredholm function 𝐷𝑘(�̄�, 𝑦, 𝜆) is represented by a series
converging in the entire complex plane [11]:

𝐷𝑘(�̄�, 𝑦;𝜆) = 𝜆𝐷(𝜆)𝐾(�̄�, 𝑦) +
∞∑︁
𝑛=1

(−1)𝑛+1𝑄𝑛(�̄�, 𝑦)𝜆
𝑛+1

𝑛!
, �̄�, 𝑦 ∈ ∆,

where

𝑄𝑛(�̄�, 𝑦) = −𝑛

∫︁
Δ

· · ·
∫︁
Δ

𝑃𝑛𝐾(𝜉, 𝑦)𝑑𝜉𝑑𝜉1 · · · 𝑑𝜉𝑛−1,

𝑑𝜉𝑗 = 𝑑𝜉𝑗1 · · · 𝑑𝜉𝑗𝑠(𝑘), 𝜉𝑗𝑖 ∈ ∆,

and

𝑃𝑛 = 𝑃𝑛(�̄�, 𝜉, 𝜉1, . . . , 𝜉𝑛−1) =

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝐺𝑘(�̄�, 𝜉) 𝐺𝑘(�̄�, 𝜉1) · · · 𝐺𝑘(�̄�, 𝜉𝑛−1)

𝐺𝑘(𝜉1, 𝜉) 𝐺𝑘(𝜉1, 𝜉1) · · · 𝐺𝑘(𝜉1, 𝜉𝑛−1)
...

...
. . .

...
𝐺𝑘(𝜉𝑛−1, 𝜉) 𝐺𝑘(𝜉𝑛−1, 𝜉1) · · · 𝐺𝑘(𝜉𝑛−1, 𝜉𝑛−1)

⃒⃒⃒⃒
⃒⃒⃒⃒ .

Let us prove that in each closed domain in the complex plane the limiting relations

𝐷(𝑧) = lim
𝑘→∞

𝐷𝑘(𝑧), 𝐷(𝑥, 𝑦, 𝑧) = lim
𝑘→∞

𝐷𝑘(𝑥, . . . , 𝑥, 𝑦, . . . , 𝑦; 𝑧)

hold uniformly in 𝑧. Without loss of generality we can suppose that |𝑧| ⩽ 𝑀 for sufficiently
large 𝑀 . Since the function 𝐾(𝑥, 𝑦) is almost periodic, it is bounded on the entire real line,
that is, there exists a positive constant 𝐿 such that |𝐾(𝑥, 𝑦)| ⩽ 𝐿. Let 𝜀 > 0 be an arbitrary
positive number and 𝑁 be a natural number, which we shall define below. Let us estimate an
𝑁th remainder of the series for 𝐷(𝜆). By the Hadamard inequality [11], [13] we have:

|𝑏𝑛| ⩽ 𝐿𝑛𝑛𝑛/2.



ON INTEGRAL EQUATIONS OF FREDHOLM KIND . . . 49

Hence, ⃒⃒⃒⃒
⃒

∞∑︁
𝑛=𝑁+1

𝑏𝑛𝜆
𝑛

𝑛!

⃒⃒⃒⃒
⃒ ⩽

∞∑︁
𝑛=𝑁+1

(|𝜆|𝐿
√
𝑛)

𝑛

𝑛!
⩽

∞∑︁
𝑛=𝑁+1

(︂
𝑒𝐿𝑀√

𝑁

)︂𝑛

.

Then taking 𝑁 large enough, we get the inequality⃒⃒⃒⃒
⃒

∞∑︁
𝑛=𝑁+1

𝑏𝑛𝜆
𝑛

𝑛!

⃒⃒⃒⃒
⃒ ⩽ 1

4
𝜀.

According to the above obtained relations

|𝐷(𝜆)−𝐷𝑘(𝜆)| ⩽
1

2
𝜀+

𝑁∑︁
𝑛=1

|𝑏𝑛 − 𝑎𝑛|𝑀𝑛

𝑛!
⩽

1

2
𝜀+ 𝑒𝑀𝑁max

𝑛⩽𝑁
|𝑏𝑛 − 𝑎𝑛| .

Now we observe that we open the determinant in the expression for 𝑏𝑛 and then integrate
term by term the obtained sum, by the above arguing we see that for sufficiently large 𝑘 the
expression for 𝑎𝑛 is arbitrarily close to 𝑏𝑛, that is, as 𝑛 ⩽ 𝑁 , the relation lim

𝑘→∞
𝑎𝑛 → 𝑏𝑛 holds

uniformly on the principal diagonal. This is why for sufficiently large 𝑘 we have:

|𝐷(𝜆)−𝐷𝑘(𝜆)| ⩽ 𝜀,

and this proves the uniform convergence

𝐷(𝑧) = lim
𝑘→∞

𝐷𝑘(𝑧)

in the circle |𝑧| ⩽ 𝑀 . In the same way we prove the uniform convergence

𝐷(𝑥, 𝑦; 𝑧) = lim
𝑘→∞

𝐷𝑘(𝑥, . . . , 𝑥, 𝑦, . . . , 𝑦; 𝑧).

To complete the proof of Theorem 3.2, we need to establish the unique solvability of equation
(1.2) and to prove the formula for its solution.
Let 𝜆 be a real number such that 𝐷(𝜆) ̸= 0. We take a closest to the number 𝜆 zero 𝜆0 of the

function 𝐷(𝜆) and |𝜆0 − 𝜆| = 𝑟. By the Hurwitz theorem [4, Lm. 2.7], in the neighbourhood
|𝜆− 𝑧| ⩽ 𝑟/2 of the number 𝜆 there can be at most finitely many zeroes of the functions 𝐷𝑘(𝜆).
This is why for sufficiently large 𝑘 we have: 𝐷𝑘(𝜆) ̸= 0, at the same time, 𝐷𝑘(𝜆) is sufficiently
close to 𝐷(𝜆). For such values 𝑘, equation (3.5) possesses a unique solution defined by the
formula:

𝐻𝑘(�̄�) = 𝑓𝑘(�̄�) +

∫︁
Δ

𝑓𝑘(𝜉)
𝐷𝑘(�̄�, 𝜉;𝜆)

𝐷𝑘(𝜆)
𝑑𝜉, 𝑑𝜉 = 𝑑𝜉1 · · · 𝑑𝜉𝑠(𝑘), 𝜉𝑗 ∈ ∆𝑗.

Since the convergence in 𝑘 is uniform, by the above estimates and arguing we get the uniform
boundedness of these solutions. Then by Theorem 3.1, equation (1.2) has an almost periodic
solution. Substituting the vector �̄�′ = (𝑥, 𝑥, . . . , 𝑥) instead of the variables �̄� under the integral,
we obtain

𝐻𝑘(�̄�
′) = 𝑓𝑘(�̄�

′) +

∫︁
Δ

𝑓𝑘(𝜉)
𝐷𝑘(�̄�

′, 𝜉;𝜆)

𝐷𝑘(𝜆)
𝑑𝜉 = 𝑓𝑘(�̄�

′) + lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑓𝑘(𝜉
′)
𝐷𝑘(�̄�

′, 𝜉′;𝜆)

𝐷𝑘(𝜆)
𝑑𝜉.

By the uniform convergence, we can pass to limit in 𝑘 under the integral interchanging also the
order of passing to the limit. Indeed, deducting the latter expression from the right hand side
of (3.6), we get:

𝑓(𝑥)− 𝑓𝑘(�̄�
′) + lim

𝑇→∞

1

𝑇

𝑇∫︁
0

(︂
𝑓(𝜉)

𝐷(𝑥, 𝜉;𝜆)

𝐷(𝜆)
− 𝑓𝑘(𝜉

′)
𝐷𝑘(�̄�

′, 𝜉′;𝜆)

𝐷𝑘(𝜆)

)︂
𝑑𝜉.
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For sufficiently large 𝑘, the absolute value of this difference is arbitrarily small. This proves the
needed statement. We therefore obtain solution (3.6) to equation (1.2). The uniqueness of the
solution is implied by that for equation (3.5). The proof is complete.
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