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LOCAL BOUNDARY VALUE PROBLEMS FOR A LOADED

EQUATION OF PARABOLIC-HYPERBOLIC TYPE

DEGENERATING INSIDE THE DOMAIN

B.I. ISLOMOV, F.M. JURAEV

Abstract. In the beginning of 21st century, boundary value problems for non-degenerating
equations of hyperbolic, parabolic, hyperbolic-parabolic and elliptic-hyperbolic types were
studied. Recently this direction is intensively developed since rather important problems
in mathematical physics and biology lead to boundary value problems for non-degenerate
loaded partial differential equations. Boundary value problems for second order degener-
ating equation of a mixed type were not studied before. This is first of all because of the
fact that there is no representation for the general solution to this equations. On the other
hand, such problems are reduced to poorly studied integral equations with a shift. The
present work is devoted to formulating and studying local boundary value problems for
loaded equation of parabolic-hyperbolic type degenerating inside the domain.

In the present work we find a new approach for obtaining a representation for the general
solution to a degenerating loaded equation of a mixed type. The uniqueness of the formu-
lated problem is proved by the methods of energy integrals. The existence of solutions to
the formulated problems is equivalently reduced to a second order integral Fredholm and
Volterra equations with a shift. We prove the unique solvability of the obtained integral
equations.

Keywords: loaded equation of parabolic-hyperbolic type, loaded equation with a degen-
eration, representation of general solution, method of energy integrals, extremum principle,
integral equation with a shift.
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1. Introduction

First results on model equation of mixed type, containing parabolic-hyperbolic operators, on
constructing solutions, studying their properties and boundary value problems, were obtain in
paper by I.M. Gelfand [1]. Later they were developed in works by G.M. Struchina [2], Ya.S.
Uflyand [3] and L.A. Zolina [4].
Apart of these papers, in the end of the twentieth century, many papers by their pupils are

appeared [5]–[9]; in these works there were studied the Tricomi problem and its generalizations,
problems with shifts, problem of Bitsadze-Samarskii type and other non-local problems for par-
abolic and hyperbolic equations as well as for mixed parabolic-hyperbolic and elliptic-hyperbolic
second order equations.
In works [10]–[13], on the base of the methods of the spectral analysis, boundary value

problems for the mixed second order equations were studied in a rectangular domain.
Boundary value problems for loaded equations arise in studying many important problems in

mathematical physics and biology [14], especially problem of a long forecasting and controlling
ground water [15], modelling processes of particles transfer [16], problems on heat and mass
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transfer with a finite speed, modeling the filtration of a liquid in porous media [17], inverse
problem [18], many problems on optimal control of agroecosystem [19].
A notion “loaded equation” has appeared first in works by A. Kneser [20]. The definition of

loaded equations nowadays commonly used in the scientific literature was given by A.M. Nakhu-
shev in 1976. In its work [21], he provided most general definitions and classification of various
loaded equations, namely, loaded differential, integral, integral-differential, functional equations
as well as their various applications.
At present, the class of the considered equations for non-degenerate loaded hyperbolic, par-

abolic, hyperbolic-parabolic and elliptic-parabolic equations is essentially enlarged; here we
mention works [22]–[27]. The theory of boundary value problems for loaded second order
integral-differential operator was developed in works [28], [29]. In works [30], [31] local and
nonlocal boundary value problems were studied for degenerating hyperbolic and mixed type
equations of second and third order.
To the best of the authors’ knowledge, the boundary value problems for degenerating mixed

type equation of second order were studied relatively little. We mention works by A.M. Nakhu-
shev [32], B. Islomov and F. Juraev [33], R.R. Ashurov and S.Z. Jamalov [34]. First of all this
due to the absence of a representation for the general solution of such equations; on the other
hand, such problems are reduced to little-studied integral equations.
The present work is devoted to formulation and studying local boundary value problems for

a loaded parabolic-hyperbolic equation degenerating inside the domain.

2. Formulation of problem

Let Ω be a bounded simply connected domain in the plane of variables 𝑥, 𝑦 enveloped by the
curves:

𝑆1 = {(𝑥, 𝑦) : 𝑥 = 1, 0 < 𝑦 < 1}, 𝑆2 = {(𝑥, 𝑦) : 𝑥 = −1, 0 < 𝑦 < 1},
𝑆3 = {(𝑥, 𝑦) : 0 < 𝑥 < 1, 𝑦 = 1}, 𝑆4 = {(𝑥, 𝑦) : −1 < 𝑥 < 0, 𝑦 = 1};

Γ1 =

{︂
(𝑥, 𝑦) : 𝑥− 2

2−𝑚
(−𝑦)

2−𝑚
2 = 0, 𝑦 ⩽ 0

}︂
,

Γ2 =

{︂
(𝑥, 𝑦) : 𝑥+

2

2−𝑚
(−𝑦)

2−𝑚
2 = 0, 𝑦 ⩽ 0

}︂
,

Γ3 =

{︂
(𝑥, 𝑦) : 𝑥+

2

2−𝑚
(−𝑦)

2−𝑚
2 = 1, 𝑦 ⩽ 0

}︂
,

Γ4 =

{︂
(𝑥, 𝑦) : 𝑥− 2

2−𝑚
(−𝑦)

2−𝑚
2 = −1, 𝑦 ⩽ 0

}︂
, 𝑚 < 0.

We introduce the notations:

Ω+
1 = Ω ∩ {(𝑥, 𝑦) : 𝑥 > 0, 𝑦 > 0}, Ω+

2 = Ω ∩ {(𝑥, 𝑦) : 𝑥 < 0, 𝑦 > 0},
Ω−

1 = Ω ∩ {(𝑥, 𝑦) : 𝑥 > 0, 𝑦 < 0}, Ω−
2 = Ω ∩ {(𝑥, 𝑦) : 𝑥 < 0, 𝑦 < 0},

𝐼1 = {(𝑥, 𝑦) : 0 < 𝑥 < 1, 𝑦 = 0}, 𝐼2 = {(𝑥, 𝑦) : −1 < 𝑥 < 0, 𝑦 = 0},
𝐼3 = {(𝑥, 𝑦) : 𝑥 = 0, 0 < 𝑦 < 1}, Ω𝑗 = Ω+

𝑗 ∪ Ω−
𝑗 ∪ 𝐽𝑗, (𝑗 = 1, 2), Ω3 = Ω+

1 ∪ Ω+
2 ∪ 𝐽3,

𝐴𝑗((−1)𝑗+1, 0) = 𝐼𝑗 ∩ 𝑆𝑗, 𝐶𝑗

(︃
(−1)𝑗+11

2
;−
(︂
(−1)𝑗+12−𝑚

4

)︂2/(2−𝑚)
)︃

= Γ̄𝑗 ∩ Γ̄𝑗+2,

𝑂(0, 0) = 𝐼1 ∩ 𝐼2, 𝐵1(1, 1) = 𝑆1 ∩ 𝑆3, 𝐵2(−1, 1) = 𝑆2 ∩ 𝑆4, 𝐵0(0, 1) = 𝑆3 ∩ 𝑆4.
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In the domain Ω we consider the equation

0 =

{︃
𝑢𝑥𝑥 − |𝑥|𝑝𝑢𝑦 − 𝜌𝑗𝑢 (𝑥, 0) , (𝑥, 𝑦) ∈ Ω+

𝑗 ,

𝑢𝑥𝑥 − (−𝑦)𝑚𝑢𝑦𝑦 + 𝜇𝑗𝑢 (𝑥, 0) , (𝑥, 𝑦) ∈ Ω−
𝑗 ,

(2.1)

where 𝑚, 𝑝, 𝜌𝑗, 𝜇𝑗 (𝑗 = 1, 2) are arbitrary real numbers and

𝑚 < 0, 𝑝 > 0, 𝜌𝑗 > 0, 𝜇𝑗 > 0, 𝑗 = 1, 2. (2.2)

In the domain Ω, we study the following boundary value problems for equation (2.1).
Problem 1. Find a function 𝑢(𝑥, 𝑦) possessing the following properties:
1) 𝑢(𝑥, 𝑦) ∈ 𝐶

(︀
Ω̄
)︀
∩ 𝐶1 (Ω) ∩ 𝐶2,1

𝑥,𝑦

(︀
Ω+

1 ∪ Ω+
2

)︀
∩ 𝐶2

(︀
Ω−

1 ∪ Ω−
2

)︀
;

2) 𝑢(𝑥, 𝑦) is a regular solution of equation (2.1) in the domains Ω+
𝑗 and Ω−

𝑗 (𝑗 = 1, 2);
3) 𝑢 (𝑥, 𝑦) satisfies the boundary conditions

𝑢|𝑆𝑗
= 𝜙𝑗(𝑦), 0 ⩽ 𝑦 ⩽ 1, (2.3)

𝑢|Γ𝑗
= 𝜓𝑗(𝑥), 0 ⩽ (−1)𝑗+1𝑥 ⩽

1

2
, 𝑗 = 1, 2; (2.4)

4) on the curve of degeneration 𝐼𝑖, (𝑖 = 1, 3), the matching conditions are satisfied:

lim
𝑦→+0

𝑢𝑦(𝑥, 𝑦) = lim
𝑦→−0

𝑢𝑦(𝑥, 𝑦), (𝑥, 0) ∈ 𝐼𝑗, 𝑗 = 1, 2, (2.5)

lim
𝑥→+0

𝑢𝑥(𝑥, 𝑦) = lim
𝑥→−0

𝑢𝑥(𝑥, 𝑦), (𝑥, 0) ∈ 𝐼3; (2.6)

where 𝜙1(𝑦), 𝜙2(𝑦), 𝜓1(𝑥), 𝜓2(𝑥) are given functions and 𝜓1(0)=𝜓2(0),

𝜙𝑗(𝑦) ∈ 𝐶 [0, 1] ∩ 𝐶1 (0, 1) , 𝑗 = 1, 2, (2.7)

𝜓1(𝑥) ∈ 𝐶1

[︂
0,

1

2

]︂
∩ 𝐶3

(︂
0,

1

2

)︂
, 𝜓2(𝑥) ∈ 𝐶1

[︂
−1

2
, 0

]︂
∩ 𝐶3

(︂
−1

2
, 0

)︂
. (2.8)

Problem 2(3). Find a function 𝑢(𝑥, 𝑦) possessing all properties of Problem 1 except of
conditions (2.4), which are replaced by the conditions

𝑢|Γ1
= 𝑔1(𝑥), 0 ⩽ 𝑥 ⩽

1

2
, 𝑢|Γ4

= 𝑔2(𝑥), −1 ⩽ 𝑥 ⩽ −1

2
, (2.9)(︂

𝑢|Γ2
= 𝑓1(𝑥), −1

2
⩽ 𝑥 ⩽ 0, 𝑢|Γ3

= 𝑓2(𝑥),
1

2
⩽ 𝑥 ⩽ 1

)︂
, (2.10)

where 𝑔1(𝑥), 𝑔2(𝑥), (𝑓1(𝑥), 𝑓2(𝑥)) are given functions and 𝑔1(−1)=𝜙2(0), (𝑓2(1)=𝜙2(0)),

𝑔1(𝑥) ∈ 𝐶1

[︂
0,

1

2

]︂
∩ 𝐶3

(︂
0,

1

2

)︂
, 𝑔2(𝑥) ∈ 𝐶1

[︂
−1,−1

2

]︂
∩ 𝐶3

(︂
−1,−1

2

)︂
, (2.11)(︂

𝑓1(𝑥) ∈ 𝐶1

[︂
−1

2
, 0

]︂
∩ 𝐶3

(︂
−1

2
, 0

)︂
, 𝑓2(𝑥) ∈ 𝐶1

[︂
1

2
, 1

]︂
∩ 𝐶3

(︂
1

2
, 1

)︂)︂
. (2.12)

3. Uniqueness of solution to Problem 1

If Conditions 1) and 2) in Problem 1 are satisfied, then each regular solution to equation
(2.1) can be represented as [22]:

𝑢 (𝑥, 𝑦) = 𝜐 (𝑥, 𝑦) + 𝜔 (𝑥) , (3.1)

where

𝜐 (𝑥, 𝑦) =

{︃
𝜐𝑗 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω+

𝑗 ,

𝑤𝑗 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω−
𝑗 ,

(3.2)
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𝜔 (𝑥) =

{︃
𝜔+
𝑗 (𝑥), (𝑥, 0) ∈ 𝐼𝑗,

𝜔−
𝑗 (𝑥), (𝑥, 0) ∈ 𝐼𝑗,

(3.3)

where 𝜐𝑗 (𝑥, 𝑦) and 𝑤𝑗 (𝑥, 𝑦) (𝑗 = 1, 2) are regular solutions of the equation

𝐿𝜐𝑗 ≡ 𝜐𝑗𝑥𝑥 − |𝑥|𝑝 𝜐𝑗𝑦 = 0, (𝑥, 𝑦) ∈ Ω+
𝑗 , (3.4)

𝐿𝑤𝑗 ≡ 𝑤𝑗𝑥𝑥 − (−𝑦)𝑚𝑤𝑗𝑦𝑦 = 0, (𝑥, 𝑦) ∈ Ω−
𝑗 (𝑗 = 1, 2) , (3.5)

while 𝜔+
𝑗 (𝑥) and 𝜔

−
𝑗 (𝑥), 𝑗 = 1, 2, are arbitrary two continuously differentiable solutions of the

equation

𝜔+
𝑗
′′
(𝑥)− 𝜌𝑗𝜔

+
𝑗 (𝑥) = 𝜌𝑗𝜐𝑗 (𝑥, 0) , (𝑥, 0) ∈ 𝐼𝑗, (3.6)

𝜔−
𝑗
′′
(𝑥) + 𝜇𝑗𝜔

−
𝑗 (𝑥) = −𝜇𝑗𝑤𝑗 (𝑥, 0) , (𝑥, 0) ∈ 𝐼𝑗. (3.7)

Taking into consideration that the function 𝑎𝑥+ 𝑏 solves equations (3.4) and (3.5), arbitrary
functions 𝜔+

𝑗 (𝑥) and 𝜔
−
𝑗 (𝑥), (𝑗 = 1, 2), can be obeyed the conditions

𝜔+
𝑗 ((−1)𝑗+1) = 𝜔+

𝑗
′
((−1)𝑗+1) = 0, (3.8)

𝜔−
𝑗 (0) = 𝜔′

𝑗−(0) = 0 (𝑗 = 1, 2). (3.9)

The solutions to Cauchy problems (3.6), (3.8) and (3.7), (3.9) are respectively of the form:

𝜔+
𝑗 (𝑥) =

√
𝜌𝑗

𝑥∫︁
(−1)𝑗+1

𝜏𝑗(𝑡) sinh
√
𝜌𝑗(𝑥− 𝑡)𝑑𝑡, (𝑥, 0) ∈ 𝐼𝑗, (3.10)

𝜔−
𝑗 (𝑥) = −√

𝜇𝑗

𝑥∫︁
0

𝜏𝑗(𝑡) sinh
√
𝜇𝑗(𝑥− 𝑡)𝑑𝑡, (𝑥, 0) ∈ 𝐼𝑗, (3.11)

where

𝜏𝑗 (𝑥) ≡ 𝜐𝑗 (𝑥, 0) = 𝑤𝑗 (𝑥, 0) , (𝑥, 0) ∈ 𝐼𝑗. (3.12)

By (2.1), (2.3), (2.4), (3.2), (3.3), (3.8), (3.9), Problem 1 is reduced to Problem 1* for the
equation

0 =

{︃
𝐿𝜐𝑗, (𝑥, 𝑦) ∈ Ω+

𝑗 ,

𝐿𝑤𝑗, (𝑥, 𝑦) ∈ Ω−
𝑗

(3.13)

subject to the boundary conditions

𝜐𝑗|𝑆𝑗
= 𝜙𝑗(𝑦), 0 ⩽ 𝑦 ⩽ 1, (3.14)

𝑤𝑗|Γ𝑗
= 𝜓𝑗 (𝑥)− 𝜔−

𝑗 (𝑥), 0 ⩽ (−1)𝑗+1𝑥 ⩽
1

2
, (3.15)

where 𝜔−
𝑗 (𝑥) are determined by (3.11).

In order to prove the uniqueness of the solution to Problem 1, we first prove the same for
Problem 1* for equations (3.13).
The following lemma plays an important role in the proof of the uniqueness of the solution

to Problem 1*.

Lemma 3.1. If 𝜙1(𝑦) ≡ 𝜙2(𝑦) ≡ 0 as 𝑦 ∈ [0, 1], 𝜓1(𝑥) ≡ 0 as 𝑥 ∈
[︀
0, 1

2

]︀
and 𝜓2(𝑥) ≡ 0 as

𝑥 ∈
[︀
−1

2
, 0
]︀
, then

𝜏𝑗(𝑥) ≡ 0 as 𝑥 ∈ 𝐼𝑗, 𝑗 = 1, 2, (3.16)

where 𝜏𝑗(𝑥), 𝑗 = 1, 2, are determined by (3.12).
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Proof. We are going to prove this lemma by means of the method of energy integrals. Let
𝑤𝑗(𝑥, 𝑦) be a twice continuously differentiable solution to the homogeneous problem 1* in do-
mains Ω−

𝑗 and Ω−
𝑗𝜀, where Ω−

𝑗𝜀 is the domain with boundary 𝜕Ω−
𝑗𝜀 = 𝐼𝑗𝜀 ∪ Γ̄𝑗𝜀 ∪ Γ̄(𝑗+2)𝜀 located

strictly in the domain Ω−
𝑗 , (𝑗 = 1, 2), and 𝜀 is a sufficiently small positive number.

Let 𝑗 = 1. We integrate the identity

0 =𝑥𝑝(−𝑦)−𝑚𝑤1(𝑤1𝑥𝑥 − (−𝑦)𝑚𝑤1𝑦𝑦)

=
𝜕

𝜕𝑥
(𝑥𝑝(−𝑦)−𝑚𝑤1𝑤1𝑥)−

𝜕

𝜕𝑦
(𝑥𝑝𝑤1𝑤1𝑦)

− 𝑥𝑝
[︀
(−𝑦)−𝑚𝑤2

1𝑥 − 𝑤2
1𝑦

]︀
− 𝑝𝑥𝑝−1(−𝑦)−𝑚𝑤1𝑤1𝑥

(3.17)

over the domain Ω−
1𝜀 and apply the Green formula. Then we get:∫︁

Γ̄1𝜀∪Γ̄3𝜀∪𝐽1𝜀

𝑥𝑝(−𝑦)−𝑚𝑤1𝑤1𝑥𝑑𝑦 + 𝑥𝑝𝑤1𝑤1𝑦𝑑𝑥 =

∫︁∫︁
Ω−

1𝜀

𝑥𝑝
(︀
(−𝑦)−𝑚𝑤2

1𝑥 − 𝑤2
1𝑦

)︀
𝑑𝑥𝑑𝑦

+ 𝑝

∫︁∫︁
Ω−

1𝜀

𝑥𝑝−1(−𝑦)−𝑚𝑤1𝑤1𝑥𝑑𝑥𝑑𝑦.

Passing to the limit as 𝜀 → 0 and taking into consideration Condition 1) in Problem 1 as in
[35, Ch. 5], we obtain:

1∫︁
0

𝑥𝑝𝜏1(𝑥)𝜈1(𝑥)𝑑𝑥 =

∫︁
Γ̄3

𝑥𝑝(−𝑦)−
𝑚
2 𝑤1𝑑𝑤1 −

∫︁
Γ̄1

𝑥𝑝(−𝑦)−
𝑚
2 𝑤1𝑑𝑤1

−
∫︁∫︁
Ω−

1

𝑥𝑝
(︀
(−𝑦)−𝑚𝑤2

1𝑥 − 𝑤2
1𝑦

)︀
𝑑𝑥𝑑𝑦

− 𝑝

∫︁∫︁
Ω−

1

𝑥𝑝−1(−𝑦)−𝑚𝑤1𝑤1𝑥𝑑𝑥𝑑𝑦,

(3.18)

where

𝜏1(𝑥) = 𝑤1(𝑥, 0), (𝑥, 0) ∈ 𝐼1, 𝜈1(𝑥) = 𝑤1𝑦(𝑥, 0), (𝑥, 0) ∈ 𝐼1. (3.19)

In order to calculate the right hand side in identity (3.18) we pass to characteristic coordinates

𝜉 = 𝑥+
2

2−𝑚
(−𝑦)

2−𝑚
2 , 𝜂 = 𝑥− 2

2−𝑚
(−𝑦)

2−𝑚
2 . (3.20)

Then the domain Ω−
1 is mapped into a triangle ∆−

1 with sides 𝑂1𝐶11, 𝐶11𝐴11 and 𝐴11𝑂1 located
on the straight lines 𝜂 = 0, 𝜉 = 1 and 𝜂 = 𝜉.
By (3.11), (3.15), as 𝜓1(𝑥) = 0, in view of (3.20) and canonical form of equation (3.5) as

𝑗 = 1, that is, 𝜐𝜉𝜂 =
𝛽

𝜉−𝜂
(𝜐𝜉 − 𝜐𝜂), it follows from the right hand side of identity (3.18) that∫︁

Γ̄1

𝑥𝑝(−𝑦)−
𝑚
2 𝑤1𝑑𝑤1 =

(︂
1

2

)︂𝑝+1(︂
2−𝑚

4

)︂−2𝛽 (︂
𝜔−
1

(︂
1

2

)︂)︂2

− 𝑝− 2𝛽

2

(︂
1

2

)︂𝑝(︂
2−𝑚

4

)︂−2𝛽
1∫︁

0

𝜉𝑝−2𝛽−1𝑤2
1(𝜉, 0)𝑑𝜉,

(3.21)
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∫︁
Γ̄3

𝑥𝑝(−𝑦)−
𝑚
2 𝑤1𝑑𝑤1 =−

(︂
1

2

)︂𝑝+1(︂
2−𝑚

4

)︂−2𝛽 (︂
𝜔−
1

(︂
1

2

)︂)︂2

−
(︂
1

2

)︂𝑝+1(︂
2−𝑚

4

)︂−2𝛽

𝑝

1∫︁
0

(1 + 𝜂)𝑝−1(1− 𝜂)−2𝛽𝑤2
1(1, 𝜂)𝑑𝜂

+

(︂
1

2

)︂𝑝(︂
2−𝑚

4

)︂−2𝛽

𝛽

1∫︁
0

(1 + 𝜂)𝑝(1− 𝜂)−2𝛽−1𝑤2
1(1, 𝜂)𝑑𝜂,

(3.22)

∫︁∫︁
Ω−

1

𝑥𝑝
(︀
𝑤2

1𝑦 − (−𝑦)−𝑚𝑤2
1𝑥

)︀
𝑑𝑥𝑑𝑦 =

(︂
1

2

)︂𝑝(︂
2−𝑚

4

)︂−2𝛽
(︃(︂

𝜔−
1

(︂
1

2

)︂)︂2

− 𝑝− 𝛽

2

1∫︁
0

𝑤2
1(𝜉, 0)𝑑𝜉

𝜉1+2𝛽−𝑝
− 𝛽

1∫︁
0

(1 + 𝜂)𝑝𝑤2
1(1, 𝜂)𝑑𝜂

(1− 𝜂)2𝛽+1

+ 𝑝

1∫︁
0

(1 + 𝜂)𝑝−1𝑤2
1(1, 𝜂)𝑑𝜂

(1− 𝜂)2𝛽

− 𝑝(𝑝− 1)

∫︁∫︁
△1

(𝜉 + 𝜂)𝑝−2𝑤2
1(𝜉, 𝜂)

(𝜉 − 𝜂)2𝛽
𝑑𝜉𝑑𝜂

)︃
,

(3.23)

∫︁∫︁
Ω−

1

𝑥𝑝−1(−𝑦)−𝑚𝑤1𝑤1𝑥𝑑𝑥𝑑𝑦 =−
(︂
1

2

)︂𝑝+1(︂
2−𝑚

4

)︂−2𝛽
(︃ 1∫︁

0

𝜉𝑝−2𝛽−1𝑤2
1(𝜉, 0)𝑑𝜉

−
1∫︁

0

(1 + 𝜂)𝑝−1

(1− 𝜂)−2𝛽
𝑤2

1(1, 𝜂)𝑑𝜂

)︃
−
(︂
1

2

)︂𝑝(︂
2−𝑚

4

)︂−2𝛽

· (𝑝− 1)

∫︁∫︁
△1

(𝜉 + 𝜂)𝑝−2

(𝜉 − 𝜂)2𝛽
𝑤2

1(𝜉, 𝜂)𝑑𝜉𝑑𝜂,

(3.24)

where 2𝛽 = − 𝑚
2−𝑚

, 0 < 𝑚 < 1, and

0 < −𝛽 < 1

2
, 0 < 𝑝− 2𝛽 < 1. (3.25)

Substituting (3.22), (3.23) and (3.24) into (3.18), in view of (2.2) and (3.25) we get

1∫︁
0

𝑥𝑝𝜏1(𝑥)𝜈1(𝑥)𝑑𝑥 =
𝑝− 𝛽

2𝑝+1

(︂
2−𝑚

4

)︂−2𝛽
1∫︁

0

𝜉𝑝−2𝛽−1𝑤2
1(𝜉, 0)𝑑𝜉 ⩾ 0. (3.26)

Let 𝑗 = 2. Then as above, we integrate identity (3.17) over the domain Ω−
2 , we get

0∫︁
−1

(−𝑥)𝑝𝜏2(𝑥)𝜈2(𝑥)𝑑𝑥 =
𝑝− 𝛽

2𝑝+1

(︂
2−𝑚

4

)︂−2𝛽
0∫︁

−1

(−𝜉)𝑝−2𝛽−1𝑤2
2(𝜉, 0)𝑑𝜉 ⩾ 0, (3.27)

where

𝜏2(𝑥) = 𝑤2(𝑥, 0), (𝑥, 0) ∈ 𝐼2, 𝜈2(𝑥) = 𝑤2𝑦(𝑥, 0), (𝑥, 0) ∈ 𝐼2. (3.28)
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By Condition 1) in Problem 1 and by the continuity of 𝜔 (𝑥), in view of (3.1), (3.2), (3.3),
(3.19), (3.28) we have:

𝑤𝑗(𝑥,−0) = 𝜐𝑗(𝑥,+0) = 𝜏𝑗(𝑥), (𝑥, 0) ∈ 𝐼𝑗, (3.29)

𝑤𝑗𝑦(𝑥,−0) = 𝜐𝑗𝑦(𝑥,+0) = 𝜈𝑗(𝑥), (𝑥, 0) ∈ 𝐼𝑗 (𝑗 = 1, 2). (3.30)

Owing to the assumptions of Problem 1, we pass to the limit as 𝑦 → +0 in equation (3.4)
and in view of (3.29) and (3.30) we obtain:

𝜏 ′′𝑗 (𝑥)− |𝑥|𝑝 𝜈𝑗(𝑥) = 0. (3.31)

Then by the assumptions of Lemma 1, (3.31) and 𝜏𝑗(0) = 𝜏𝑗((−1)𝑗+1) = 0 we find:

(−1)𝑗+1∫︁
0

|𝑥|𝑝 𝜏𝑗(𝑥)𝜈𝑗(𝑥)𝑑𝑥+
(−1)𝑗+1∫︁
0

𝜏 ′
2
𝑗(𝑥)𝑑𝑥 = 0, 𝑗 = 1, 2. (3.32)

Comparing (3.26), (3.27) and (3.32), we obtain:

(−1)𝑗+1∫︁
0

|𝑥|𝑝𝜏𝑗(𝑥)𝜈𝑗(𝑥)𝑑𝑥 = 0

or
(−1)𝑗+1∫︁
0

𝜏 ′2𝑗 (𝑥)𝑑𝑥 = 0, 𝑗 = 1, 2.

By the conditions 𝜏𝑗(0) = 𝜏𝑗((−1)𝑗+1) = 0 this implies:

𝜏𝑗(𝑥) ≡ 0 as 𝑥 ∈ 𝐼𝑗, 𝑗 = 1, 2. (3.33)

By (3.33), (3.10), (3.11), (3.3) we get:

𝜔(𝑥) ≡ 0, for all 𝑥 ∈ 𝐼1 ∪ 𝐼2. (3.34)

Theorem 3.1. If the assumptions of Lemma 3.1 and (3.34) are satisfied, then in the domain
Ω Problem 1* for equation (3.13) can have at most one solution.

Proof. According to the maximum principle for parabolic equations [6], [36], [37], by (3.33),
boundary value problem 1* for equation (3.13) in the domain Ω̄3 subject to homogeneous
conditions (3.12), (3.14) has no non-zero solutions, that is, 𝜐𝑗(𝑥, 𝑦) ≡ 0 in Ω̄+

𝑗 , (𝑗 = 1, 2). Then
it follows from (3.15), (3.3), (3.34) that

𝜔−
𝑗 (𝑥) ≡ 0, (𝑥, 0) ∈ 𝐼𝑗, 𝑗 = 1, 2. (3.35)

By the uniqueness of the solution to the Cauchy problem with homogeneous conditions

𝑤𝑗(𝑥, 𝑦)|𝑦=0 = 0, (𝑥, 0) ∈ 𝐼𝑗, 𝑤𝑗𝑦(𝑥, 𝑦)|𝑦=0 = 0, (𝑥, 0) ∈ 𝐼𝑗

for equation (3.13) in the domain Ω−
𝑗 and owing to (3.34) and (3.35) we obtain 𝑤𝑗(𝑥, 𝑦) ≡ 0 in

Ω̄−
𝑗 . Hence, by (3.2) we have:

𝜐(𝑥, 𝑦) ≡ 0, (𝑥, 𝑦) ∈ Ω̄. (3.36)

Now (3.36) yields the uniqueness of the solution to Problem 1* for equation (3.13).

Theorem 3.2. If the assumptions of Theorem 3.1 are satisfied, then in the domain Ω Prob-
lem 1 for equation (2.1) can have at most one solution.
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Proof. By (3.34), (3.36) it follows from (3.1) that

𝑢(𝑥, 𝑦) ≡ 0, (𝑥, 𝑦) ∈ Ω̄. (3.37)

This proves the uniqueness of solution to Problem 1 for equation (2.1).

4. Existence of solution to Problem 1

Theorem 4.1. If conditions (2.2), (2.7), (2.8) and (3.25) are satisfied, then Problem 1 is
solvable in the domain Ω.

In the proof of Theorem 4.1, the following problem play an important role; these problems
are also of an independent interest.
Problem 1𝑗. Find a solution 𝑢(𝑥, 𝑦) ∈ 𝐶(Ω̄𝑗)∩𝐶1(Ω𝑗)∩𝐶2(Ω+

𝑗 ∪Ω−
𝑗 ) (𝑗 = 1, 2) to equation

(2.1) satisfying conditions (2.3), (2.4) and

𝑢(0, 𝑦) = 𝜏3(𝑦), (0, 𝑦) ∈ 𝐼3, (4.1)

where 𝜏3(𝑦) is a given function and

𝜏3(𝑦) ∈ 𝐶(𝐼3) ∩ 𝐶1(𝐼3). (4.2)

Problem 13. Find a solution 𝑢(𝑥, 𝑦) ∈ 𝐶(Ω̄3)∩𝐶1(Ω3∪ 𝐼1∪ 𝐼2)∩𝐶2,1
𝑥, 𝑦(Ω

+
1 ∪Ω+

2 ) to equation
(2.1) satisfying conditions (2.3) and

𝑢(𝑥, 𝑦)|𝑦=0 = 𝜏𝑗(𝑥) + 𝜔+
𝑗 (𝑥), (𝑥, 0) ∈ 𝐼𝑗 (𝑗 = 1, 2),

where 𝜏𝑗(𝑥) and 𝜔
+
𝑗 (𝑥) are defined respectively by (3.29) and (3.10).

4.1. Study of Problem 1𝑗 (𝑗 = 1, 2).

Theorem 4.2. If conditions (2.2), (2.7), (2.8), (3.25) and (4.2) are satisfied, then Problem
1𝑗 is uniquely solvable in the domain Ω𝑗.

Proof. By Lemma 3.1 and the extremum principle for degenerating parabolic-hyperbolic equa-
tions [37] we see that a solution 𝑢(𝑥, 𝑦) to Problem 1𝑗 as 𝜓𝑗(𝑥) ≡ 0 attains its positive maximum
and negative minimum in the closed domain Ω̄+

𝑗 only on Γ𝑗 ∪ 𝐼3, (𝑗 = 1, 2).
According to the extremum principle, homogeneous Problem 1𝑗, that is, problem with zero

boundary conditions, has no non-zero solution. This implies a uniqueness of solution to Prob-
lem 1𝑗.
We proceed to proving the existence of solution to Problems 1𝑗 and 1*𝑗 subject to Condi-

tions (3.14), (3.15) and 𝜐𝑗(0, 𝑦) = 𝜏3(𝑦), (0, 𝑦) ∈ 𝐼3.
By the properties of solutions to Cauchy problem [33] for equation (3.13) in domain Ω−

𝑗

(𝑗 = 1, 2) and in view of (3.15) we have:

𝜓1

(︁𝑥
2

)︁
− 𝜔−

1

(︁𝑥
2

)︁
=𝛾1𝑥

1−2𝛽Γ (𝛽) 𝐷−𝛽
0𝑥 𝑥

𝛽−1𝜏1 (𝑥)

− 𝛾2Γ (1− 𝛽) 𝐷𝛽−1
0𝑥 𝑥−𝛽𝜈1 (𝑥) , (𝑥, 0) ∈ 𝐼1,

(4.3)

𝜓2

(︁𝑥
2

)︁
− 𝜔−

2

(︁𝑥
2

)︁
=𝛾1 (−𝑥)1−2𝛽 Γ (𝛽)𝐷−𝛽

𝑥0 (−𝑥)𝛽−1 𝜏2 (𝑥)

− 𝛾2Γ (1− 𝛽)𝐷𝛽−1
𝑥0 (−𝑥)−𝛽 𝜈2 (𝑥) , (𝑥, 0) ∈ 𝐼2,

(4.4)

where 𝜏𝑗(𝑥) and 𝜈𝑗(𝑥) are defined by (3.29) and (3.30), respectively,

𝛾1 =
Γ (2𝛽)

Γ2 (𝛽)
, 𝛾2 =

1

2

(︂
4

2−𝑚

)︂2𝛽
Γ (1− 2𝛽)

Γ2 (1− 𝛽)
,
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while 𝐷−𝛼
0𝑥 (·) and 𝐷−𝛼

𝑥0 (·) are integral operators of fractional order 𝛼 (𝛼 > 0) [38]:

𝐷−𝛼
𝑎𝑥 𝜑𝑗(𝑡) =

1

Γ(𝛼)

(−1)𝑗+1𝑥∫︁
𝑎

𝜑𝑗(𝑡)𝑑𝑡

(𝑥− 𝑡)1−𝛼
, (−1)𝑗+1𝑥 > 𝑎, Re𝛼 > 0. (4.5)

Applying differential operators, 𝑑
𝑑𝑥
𝐷−𝛽

0𝑥 . . . ≡ 𝐷1−𝛽
0𝑥 . . . and − 𝑑

𝑑𝑥
𝐷−𝛽

𝑥0 . . . ≡ 𝐷1−𝛽
𝑥0 . . . to both

sides of the identities (4.3), (4.4) and employing formulae [38]

𝐷1−𝛽
0𝑥 𝐷𝛽−1

0𝑥 𝜈1 (𝑥) = 𝜈1 (𝑥) ,

𝐷1−𝛽
𝑥0 𝐷𝛽−1

𝑥0 𝜈2 (𝑥) = 𝜈2 (𝑥) ,

𝐷1−𝛽
0𝑥 𝑥1−2𝛽𝐷−𝛽

0𝑥 𝑥
𝛽−1𝜏1 (𝑥) = 𝑥−𝛽𝐷1−2𝛽

0𝑥 𝜏1 (𝑥) ,

𝐷1−𝛽
𝑥0 (−𝑥)1−2𝛽 𝐷−𝛽

𝑥0 (−𝑥)𝛽−1 𝜏2 (𝑥) = (−𝑥)−𝛽 𝐷1−2𝛽
𝑥0 𝜏2 (𝑥) ,

we obtain functional relations between 𝜏𝑗(𝑥) and 𝜈𝑗(𝑥) transferred from the domain Ω−
𝑗 to 𝐼𝑗,

(𝑗 = 1, 2):

𝜈1 (𝑥) =
𝛾1Γ (𝛽)

𝛾2Γ (1− 𝛽)
𝐷1−2𝛽

0𝑥 𝜏1 (𝑥)

+
𝑥𝛽

𝛾2Γ (1− 𝛽)
𝐷1−𝛽

0𝑥 𝜔−
1

(︁𝑥
2

)︁
− 𝑥𝛽

𝛾2Γ (1− 𝛽)
𝐷1−𝛽

0𝑥 𝜓1

(︁𝑥
2

)︁
, (𝑥, 0) ∈ 𝐼1,

(4.6)

𝜈2 (𝑥) =
𝛾1Γ (𝛽)

𝛾2Γ (1− 𝛽)
𝐷1−2𝛽

𝑥0 𝜏2 (𝑥)

+
(−𝑥)𝛽

𝛾2Γ (1− 𝛽)
𝐷1−𝛽

𝑥0 𝜔−
2

(︁𝑥
2

)︁
− (−𝑥)𝛽

𝛾2Γ (1− 𝛽)
𝐷1−𝛽

𝑥0 𝜓2

(︁𝑥
2

)︁
, (𝑥, 0) ∈ 𝐼2.

(4.7)

Bearing in mind conditions in Problem 1, we pass to the limit as 𝑦 → +0 in equation (3.4)
and in view of (3.29) and (3.30) we get (3.31) with conditions

𝜏1 (0) = 𝜏3(0) = 𝜓1(0), 𝜏1 (1) = 𝜙1 (0) , (4.8)

𝜏2 (−1) = 𝜙2 (0) , 𝜏2 (0) = 𝜏3(0) = 𝜓2(0). (4.9)

Solving problem (3.31) and (4.8), (4.9), we obtain a functional relation for 𝜏𝑗 (𝑥) and 𝜈𝑗 (𝑥)
transferred from the domain Ω+

𝑗 to 𝐼𝑗:

𝜏𝑗(𝑥) = (−1)𝑗+1

(−1)𝑗+1∫︁
0

𝐺𝑗 (𝑥, 𝑡)
(︀
(−1)𝑗+1𝑡

)︀𝑝
𝜈𝑗(𝑡)𝑑𝑡+ 𝑓𝑗(𝑥), (𝑥, 0) ∈ 𝐼𝑗, (4.10)

where

𝐺1 (𝑥, 𝑡) =

{︂
(𝑡− 1)𝑥, 0 ⩽ 𝑥 ⩽ 𝑡,

(𝑥− 1) 𝑡, 𝑡 ⩽ 𝑥 ⩽ 1,
(4.11)

𝐺2 (𝑥, 𝑡) =

{︂
(𝑥+ 1) 𝑡, −1 ⩽ 𝑥 ⩽ 𝑡,

(𝑡+ 1)𝑥, 𝑡 ⩽ 𝑥 ⩽ 0,
(4.12)

𝑓𝑗 (𝑥) = 𝜓𝑗 (0) + (−1)𝑗+1𝑥 (𝜙𝑗 (0)− 𝜓𝑗 (0)) . (4.13)

Excluding 𝜏𝑗(𝑥) from (4.6), (4.7) and (4.10), in view of (3.11) we obtain an integral equation
for 𝜈𝑗(𝑥), (𝑗 = 1, 2):

𝜈1(𝑥)−
1∫︁

0

𝐾1(𝑥, 𝑡)𝑡
𝑝𝜈1(𝑡)𝑑𝑡 = Ψ1(𝑥), (𝑥, 0) ∈ 𝐼1, (4.14)
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𝜈2(𝑥) +

0∫︁
−1

𝐾2(𝑥, 𝑡)(−𝑡)𝑝𝜈2(𝑡)𝑑𝑡 = Ψ2(𝑥), (𝑥, 0) ∈ 𝐼2, (4.15)

where

𝐾𝑗(𝑥, 𝑡) =
𝛾1Γ(𝛽)

𝛾2Γ(1− 𝛽)
𝐴1−2𝛽

𝑗𝑥 𝐺𝑗(𝑥, 𝑡)−

(︁
(−1)𝑗+1𝑥

)︁𝛽
2𝛾2Γ (1− 𝛽)

𝐴1−𝛽
𝑗𝑥

·
𝑥∫︁

0

sin

√
𝜇1(𝑥− 𝑧)

2
𝐺𝑗

(︁𝑧
2
, 𝑡
)︁
𝑑𝑧,

(4.16)

Ψ𝑗(𝑥) =
𝛾1Γ(𝛽)

𝛾2Γ(1− 𝛽)
𝐴1−2𝛽

𝑗𝑥 𝑓𝑗(𝑥)−
((−1)𝑗+1𝑥)

𝛽

𝛾2Γ (1− 𝛽)
𝐴1−𝛽

𝑗𝑥 𝜓𝑗

(︁𝑥
2

)︁

−

(︁
(−1)𝑗+1𝑥

)︁𝛽
2𝛾2Γ (1− 𝛽)

𝐴1−𝛽
𝑗𝑥

𝑥∫︁
0

sin

√
𝜇1(𝑥− 𝑧)

2
𝑓𝑗

(︁𝑧
2

)︁
𝑑𝑧, (𝑥, 0) ∈ 𝐼𝑗,

(4.17)

𝐴𝛼
𝑗𝑥𝑔(𝑥) =

{︂
𝐷𝛼

0𝑥𝑔(𝑥), 𝑗 = 1,

𝐷𝛼
𝑥0𝑔(𝑥), 𝑗 = 2.

(4.18)

By (2.2), (2.7), (2.8) and (3.25), the properties of the operator of integro-differentiation and
of Beta and hypergeometric functions [38, Ch. 1] and the function 𝐺𝑗(𝑥, 𝑡) (𝑗 = 1, 2), it follows
from (4.16), (4.17) that the kernel and the right hand side of equations (4.14) and (4.15) admit
the estimates:

|𝐾𝑗(𝑥, 𝑡)| ⩽ 𝑐1, (4.19)

|Ψ𝑗(𝑥)| ⩽ 𝑐𝑜𝑛𝑠𝑡 |𝑥|2𝛽−1 , 𝑐𝑗 = 𝑐𝑜𝑛𝑠𝑡 > 0. (4.20)

By (2.7), (2.8), (4.20) we hence conclude that Ψ𝑗(𝑥) ∈ 𝐶2 (𝐼𝑗) and the function Ψ𝑗(𝑥) can
possess a singularity of order less than 1− 2𝛽 as |𝑥| → 0 and it is bounded as |𝑥| → 1.
By (2.2), (4.19) and (4.20), equations (4.14) and (4.15) are integral Fredholm equation of

second kind. According to the theory of integral Fredholm equations [39] and by the uniqueness
of solution to Problem 1𝑗 we conclude that integral equations (4.14) and (4.15) are uniquely
solvable in the class 𝐶2 (𝐼𝑗) and 𝜈𝑗(𝑥) can have a singularity of order less than 1−2𝛽 as |𝑥| → 0
and is bounded as |𝑥| → 1; the solutions are given by the formula:

𝜈𝑗(𝑥) = Ψ𝑗(𝑥) +

(−1)𝑗+1∫︁
0

𝐾*
𝑗 (𝑥, 𝑡)Ψ𝑗(𝑡)𝑑𝑡, (𝑥, 0) ∈ 𝐼𝑗 (𝑗 = 1, 2), (4.21)

where 𝐾*
𝑗 (𝑥, 𝑡) is the resolvent of the kernel 𝐾𝑗(𝑥, 𝑡).

Substituting (4.21) into (4.10), we find:

𝜏𝑗(𝑥) ∈ 𝐶(𝐼𝑗) ∩ 𝐶2(𝐼𝑗) (𝑗 = 1, 2) . (4.22)

Therefore, Problem 1*𝑗 is uniquely solvable by its equivalence to integral Fredholm equations of
second kind (4.14) and (4.15).
Thus, the solution to Problem 1*𝑗 can recovered in the domain Ω+

𝑗 as a solution to the Dirichlet

problem for equations (3.4) [40], while in Ω−
𝑗 it is recovered as a solution to the Cauchy problem

for equation (3.5).
This completes the studying of solvability of Problem 1*𝑗 for equation (3.13).
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By (4.10), (4.21), (3.10), (3.11), (3.1), (3.2), (3.3) we determine the functions 𝜔+
𝑗 (𝑥) and

𝜔−
𝑗 (𝑥). Then the solution to Problem 1𝑗 in the domain Ω+

𝑗 can be found as

𝑢(𝑥, 𝑦) = 𝜐𝑗(𝑥, 𝑦) + 𝜔+
𝑗 (𝑥), (4.23)

where 𝜐𝑗(𝑥, 𝑦) is the solution to the Dirichlet problem for equation (3.4) [37], [40], while in the
domains Ω+

𝑗 it reads as

𝑢(𝑥, 𝑦) = 𝑤𝑗(𝑥, 𝑦) + 𝜔−
𝑗 (𝑥) (𝑗 = 1, 2) , (4.24)

where 𝑤𝑗(𝑥, 𝑦) is the solution of the Cauchy problem for equation (3.5) in the domain Ω−
𝑗

(𝑗 = 1, 2) [33].
Thus, Problem 1𝑗 is uniquely solvable in the domain Ω𝑗.

4.2. Study of Problem 13.

Theorem 4.3. Let conditions (2.2, (2.7), (3.25) and (4.22) be satisfied. Then Problem 13
is uniquely solvable in the domain Ω3.

Proof. The solution to the Dirichlet boundary value problem subject to conditions (3.14), (4.1)
for equation (3.4) in the domain Ω+

𝑗 reads as [40]

𝜐𝑗(𝑥, 𝑦) =(−1)𝑗+1

⎛⎜⎝ (−1)𝑗+1∫︁
0

𝑅 𝑗(𝑥, 𝑡, 𝑦;𝛼)
(︁
(−1)𝑗+1𝑡

)︁𝑝
𝜏𝑗(𝑡)𝑑𝑡

+
𝜕

𝜕𝑦

𝑦∫︁
0

𝑅
(1)
𝑗 (𝑥, 𝑦 − 𝑡;𝛼) 𝜏3(𝑡)𝑑𝑡 +

𝜕

𝜕𝑦

𝑦∫︁
0

𝑅
(2)
𝑗 (𝑥, 𝑦 − 𝑡;𝛼)𝜙𝑗(𝑡)𝑑𝑡

⎞⎠
(4.25)

and belongs to the class 𝑢(𝑥, 𝑦) ∈ 𝐶(Ω̄+
𝑗 ) ∩ 𝐶1(Ω𝑗 ∪ 𝐼𝑗) ∩ 𝐶2,1

𝑥,𝑦(Ω
+
𝑗 ) if conditions (2.7), (4.2),

(4.22) are satisfied. Here 𝑅𝑗(𝑥, 𝑡, 𝑦;𝛼) is the Green function of Dirichlet problem for equation
(3.13) in the domain Ω+

𝑗 , (𝑗 = 1, 2):

𝑅𝑗(𝑥, 𝜉, 𝑦;𝛼) =
∞∑︁
𝑘=0

exp

(︂
−𝜆

2
𝑘𝑦

4

)︂
(1− 𝛼)

√
𝑥𝜉

𝐽2
2−𝛼(𝜆𝑘)

𝐽1−𝛼

(︃
𝜆𝑘(1− 𝛼)

(︀
(−1)𝑗+1𝑥

)︀ 1
2(1−𝛼)

)︃
· 𝐽1−𝛼

(︁
𝜆𝑘(1− 𝛼)

(︀
(−1)𝑗+1𝜉

)︀ 1
2(1−𝛼)

)︁
,

(4.26)

𝑅
(1)
𝑗 (𝑥, 𝑦;𝛼) =1 + (−1)𝑗(1− 𝛼)2(1−𝛼)𝑥

−
(−1)𝑗+1∫︁
0

(︀
1 + (−1)𝑗(1− 𝛼)2(1−𝛼)𝜉

)︀
𝑅𝑗(𝑥, 𝑡, 𝑦;𝛼)

(︀
(−1)𝑗+1𝜉

)︀𝑝
𝑑𝜉,

(4.27)

𝑅
(2)
𝑗 (𝑥, 𝑦;𝛼) =(−1)𝑗+1(1− 𝛼)2(1−𝛼)𝑥

−
(−1)𝑗+1∫︁
0

𝑅𝑗(𝑥, 𝑡, 𝑦;𝛼)
(︁
(−1)𝑗+1(1− 𝛼)2(1−𝛼)𝜉

)︁ (︀
(−1)𝑗+1𝜉

)︀𝑝
𝑑𝜉,

(4.28)

where

𝐽𝜃(𝑧) =
∞∑︁
𝑘=0

(−1)𝑘

𝑘!Γ(𝑘 + 𝜃 + 1)

(︁𝑧
2

)︁𝜃+2𝑘
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is the Bessel function of the first kind, 𝜆𝑘 are positive roots of the equation 𝐽2
1−𝛼(𝜆𝑘) = 0,

𝑘 ∈ N ∪ {0} , 𝛼 = 𝑝+1
𝑝+2

, and

1

2
< 𝛼 < 1. (4.29)

Differentiating (4.25) with respect to 𝑥 and passing to the limit as 𝑥→ 0, we get

𝜈3(𝑦) =
𝜕

𝜕𝑦

𝑦∫︁
0

𝑁𝑗(𝑦 − 𝑡;𝛼)𝜏3(𝑡)𝑑𝑡+ Φ𝑗(𝑦), (0, 𝑦) ∈ 𝐼3, (4.30)

where 𝜐𝑗𝑥(0, 𝑦) = 𝜈3(𝑦), (0, 𝑦) ∈ 𝐼3,

Φ𝑗(𝑦) =lim
𝑥→0

(−1)𝑗+1 𝜕

𝜕𝑥

⎛⎝ 1∫︁
0

𝑅𝑗(𝑥, 𝑡, 𝑦;𝛼)
(︁
(−1)𝑗+1𝑡

)︁𝑝
𝜏𝑗(𝑡)𝑑𝑡

+
𝜕

𝜕𝑦

𝑦∫︁
0

𝑅
(2)
𝑗 (𝑥, 𝑦 − 𝑡;𝛼)𝜙𝑗(𝑡)𝑑𝑡

⎞⎠ ,

(4.31)

𝑁𝑗(𝑦 − 𝑡;𝛼) ≡(1− 𝛼)2𝛼−1(−1)𝑗+1 lim
𝑥→0

𝜕

𝜕𝑥

(︁
𝑅

(1)
𝑗 (𝑥, 𝑦 − 𝑡;𝛼)

)︁
=(−1)𝑗

(︃
(1− 𝛼) +

∞∑︁
𝑘=0

exp

(︂
−𝜆

2
𝑘(𝑦 − 𝑡)

4

)︂
22𝛼𝜆−2𝛼

𝑘

Γ2(1− 𝛼)𝐽2
2−𝛼(𝜆𝑘)

)︃
.

Owing to the properties of the function 𝐽𝜃(𝑧), the function 𝑁𝑗(𝑦 − 𝑡;𝛼) can be represented
as [40]

𝑁𝑗(𝑦 − 𝑡;𝛼) =
(−1)𝑗

Γ(1− 𝛼)
(𝑦 − 𝑡)𝛼−1 +𝐵𝑗(𝑦 − 𝑡), (4.32)

where 𝐵𝑗(𝑦 − 𝑡), (𝑗 = 1, 2), are continuously differentiable functions as 𝑦 ⩾ 𝑡.
Substituting (4.32) into (4.30), we obtain a functional relation for 𝜏3(𝑦) and 𝜈3(𝑦) transferred

from the domain Ω+
𝑗 to 𝐼3 :

𝜈3(𝑦) =
(−1)𝑗

Γ(1− 𝛼)

𝜕

𝜕𝑦

𝑦∫︁
0

(𝑦 − 𝑡)𝛼−1𝜏3(𝑡)𝑑𝑡+
𝜕

𝜕𝑦

𝑦∫︁
0

𝐵𝑗(𝑦 − 𝑡)𝜏3(𝑡)𝑑𝑡+ Φ𝑗(𝑦).

Then by formula (4.5) we have

𝜈3(𝑦) =
(−1)𝑗Γ(𝛼)

(1− 𝛼)
𝐷1−𝛼

0𝑦 𝜏3(𝑦) +𝐵𝑗(0)𝜏3(𝑦) +

𝑦∫︁
0

𝐵′
𝑗(𝑦 − 𝑡)𝜏3(𝑡)𝑑𝑡+ Φ𝑗(𝑦). (4.33)

Excluding 𝜈3(𝑦) from relations (4.33) for 𝑗 = 1 and for 𝑗 = 2 and applying the integral
operator 𝐷𝛼−1

0𝑦 (�), in view of the identities 𝜏3(0) = 0 and 𝐷𝛼−1
0𝑦 𝐷1−𝛼

0𝑦 𝜏3(𝑦) = 𝜏3(𝑦), we obtain

𝜏3(𝑦) =

𝑦∫︁
0

𝑀(𝑦, 𝑡)𝜏3(𝑡)𝑑𝑡+ Φ(𝑦), (0, 𝑦) ∈ 𝐼3, (4.34)

where

𝑀(𝑦, 𝑡) =
1

2Γ(𝛼)

(︂
𝐵2(0)−𝐵1(0)

(𝑦 − 𝑡)𝛼
−

𝑦∫︁
𝑡

𝐵′
2(𝑧 − 𝑡)−𝐵′

1(𝑧 − 𝑡)

(𝑦 − 𝑧)𝛼
𝑑𝑧

⎞⎠ , (4.35)
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Φ(𝑦) =
Γ(1− 𝛼)

2(𝛼)
𝐷𝛼−1

0𝑦 (Φ2(𝑦)− Φ1(𝑦)) ; (4.36)

here Φ𝑗(𝑦), (𝑗 = 1, 2), is determined by (4.31).
By (2.2), (2.7), (3.25), (4.22), (4.29), properties of the function 𝐵𝑗(𝑦 − 𝑡), (4.26), (4.27),

(4.28), (4.31), (4.35), (4.36) we see that:
1) the kernels 𝑀(𝑦, 𝑡) are continuous in {(𝑦, 𝑡) : 0 ⩽ 𝑡 < 𝑦 ⩽ 1} and as 𝑦 → 𝑡, they admit the

estimate

|𝑀(𝑦, 𝑡)| ⩽ 𝑐𝑜𝑛𝑠𝑡(𝑦 − 𝑡)−𝛼; (4.37)

2) the function Φ(𝑦) belongs to the class 𝐶
(︀
𝐼3
)︀
∩ 𝐶1 (𝐼3) and admits the estimate

|Φ(𝑦)| ⩽ 𝑐𝑜𝑛𝑠𝑡 𝑦1−𝛼. (4.38)

It follows from (4.37) and (4.38) that integral equation (4.34) is an integral Volterra equation
of second kind with a weak singularity.
According to the theory of integral Volterra equations of second kind [39] we conclude that

integral equation (4.34) is uniquely solvable in the class 𝐶
(︀
𝐽3
)︀
∩ 𝐶1 (𝐽3) and its solution is

given by the formula

𝜏3(𝑦) =

𝑦∫︁
0

𝑀*(𝑦, 𝑡)Φ(𝑡)𝑑𝑡+ Φ(𝑦), (0, 𝑦) ∈ 𝐼3, (4.39)

where 𝑀*(𝑦, 𝑡) is the resolvent of the kernel 𝑀(𝑦, 𝑡).
Substituting (4.39) into (4.33) and taking into consideration (4.37), (4.38), we define a func-

tion 𝜈3(𝑦)

𝜈3(𝑦) ∈ 𝐶1 (𝐼3) , (4.40)

and 𝜈3(𝑦) can have a singularity of order less than 1− 𝛼 as 𝑦 → 0 and is bounded as 𝑦 → 1.
Therefore, problem 1*3 is uniquely solvable.
Thus, the solution to Problem 1*3 can be recovered in the domain Ω+

𝑗 , (𝑗 = 1, 2), as the
solution to the Dirichlet problem for equation (3.4) [40]. This completes the study of the
solvability of Problem 1*3 for equation (3.4) in the domain Ω3.
By (4.10), (4.21), (3.10), (3.1), (3.2), (3.3) we determine the functions 𝜔+

𝑗 (𝑥). Then the
solution to Problem 13 in the domain Ω3 can be found as

𝑢(𝑥, 𝑦) = 𝜐𝑗(𝑥, 𝑦) + 𝜔+
𝑗 (𝑥), (4.41)

where 𝜐𝑗(𝑥, 𝑦) is the solution to the Dirichlet problem for equation (3.4), see(4.25).
Therefore, Problem 13 is uniquely solvable.

We proceed to proving the solvability of Problem 1.

Proof. Let 𝑢(𝑥, 𝑦) be the solution to Problem 1 in the domain Ω subject to conditions (2.3)–
(2.6). Then employing the results on Problems 1𝑖, (𝑖 = 1, 3), see Sections 4.1 and 4.2, Problem 1
is equivalently reduced to Problems 11 and 12 for equation (2.1), where 𝜏3(𝑦) is defined by
formula (4.39).

The unique solvability of Problems 11 and 12 is implied by Theorem 4.2. Therefore, there
exists a solution to Problem 1 in the domain Ω. This completes the studying of Problem 1 for
equation (2.1).
The following statements hold true.

Theorem 4.4. If conditions (2.2), (2.7), (2.11), (3.25) and (4.29) are satisfied, then Prob-
lem 2 is uniquely solvable in the domain Ω.
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Theorem 4.5. If conditions (2.2), (2.7), (2.12), (3.25) and (4.29) are satisfied, then Prob-
lem 3 is uniquely solvable in the domain Ω.

The proof of Theorems 4.4 and 4.5 follow the same lines as that of Theorems 3.2 and 4.1.
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