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INTEGRATION OF CAMASSA-HOLM EQUATION WITH A

SELF-CONSISTENT SOURCE OF INTEGRAL TYPE

G.U. URAZBOEV, I.I. BALTAEVA

Abstract. The work is devoted to studying Camassa-Holm equation with a self-consistent
source of integral type.
The source of the consistent equation corresponds to the continuous spectrum of a spectral

problem related with the Camassa-Holm equation. As it is known, integrable systems admit
operator Lax representation 𝐿𝑡 = [𝐿,𝐴], where 𝐿 is a linear operator, while 𝐴 is some
skew-symmetric operator acting in a Hilbert space. A generalized Lax representation for
the considered equation is of the form 𝐿𝑡 = [𝐿,𝐴] + 𝐶, where 𝐶 is the sum of differential
operators with coefficients depending on solutions of spectral problems for the operator 𝐿.
The construction of self-consistent source for the considered operator is based on the fact
that exactly squares of eigenfunctions of the spectral problems are essential while solving
integrable equations by the inverse scattering transform. Moreover, for the considered type
of equations the evolution of the eigenfunctions in the generalized Lax representation has a
singularity.
The application of the inverse scattering transform is based on the spectral problem

related with the classical Camassa-Holm equation. We describe the evolution of scattering
data of this spectral problem with a potential being a solution of the Camassa-Holm equation
with a self-consistent source. While describing the evolution of the spectral data, we employ
essentially Sokhotski-Plemelj formula. The results of the work on the evolution of the
scattering data related with the discrete spectrum are based on the methods used in the
previous works by the authors. The obtained results, formulated as a main theorem, allow us
to apply the inverse scattering transform for solving the Cauchy problem for the considered
equation. Our technique can be easily extended to higher analogues of the Camassa-Holm
equation.

Keywords: Camassa-Holm equation, Jost solution, self-consistent source, evolution of
scattering data, inverse scattering transform.
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1. Introduction

In 1967, American scientists C.S. Gardner, I.M. Green, M.D. Kruskal, R.M. Miura showed
that the solution to the Korteweg-de Vries equation can be obtained for all “fast decaying” initial
conditions [1], that is, for condition vanishing in a certain way as the coordinate tends to infinity.
This method was called the inverse scattering transform (IST) since it employs essentially the
problem on recovering the potential in the Sturm-Liouville operator on the entire axis by the
scattering data (inverse scattering problem). Later in 1968 Lax [2] generalized essentially their
ideas. Namely, he transformed the compatibility condition of linear problems into a convenient
operator form representing it as the commutation condition of linear differential operators:
𝐿𝑡 = [𝐿,𝐴], where 𝐿 is a linear operator and 𝐴 is some skew-symmetric operator acting in a
Hilbert space.
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In works by V.K. Melnikov [3], [4] some generalization of Lax equation was given in the form

𝐿𝑡 = [𝐿,𝐴] + 𝐶,

where 𝐶 is the sum of differential operators with the coefficients depending on solutions of
spectral problem for the operator 𝐿. Equations admitting such representation were called
equations with a self-consistent source. We also note that in work by J. Leon and A. Latifi [5] a
particular physical problem was provided, which was reduced to solving the KdV equation with
a source. Nonlinear evolution equations with a self-consistent source arise also in the problems
of hydrodynamics, physics of plasma, solid-state physics.
In 1993, by physical consideration, R. Camassa and D. Holm [6], derived the equation

𝑢𝑡 − 𝑢𝑡𝑥𝑥 + 3𝑢𝑢𝑥 + 2𝜔𝑢𝑥 = 2𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥,

which in dimensionless spatial-time coordinates (𝑥, 𝑡) describes a unidirectional wave propaga-
tion in a shallow water over a plat bottom, 𝑢(𝑥, 𝑡) is a horizontal speed component describing
a free surface, while a parameter 𝜔 > 0 is related with a critical speed. In a modern literature,
this equation is called Camassa-Holm equation.
Recently, the Camassa-Holm equation attracts a large interest as an example of an integrable

system possessing more general wave equations in comparison with the KdV equation. An
analysis made in [7], as well as in [8] and other works showed the existence of smooth solitons
for all 𝜔 > 0.
It was shown in works by A. Constantin, V. Gerdjikov, R. Ivanov [8], [9] that the inverse

scattering transform is applicable for obtaining solutions to the Camassa-Holm equation.
In work of Chinese scientists Huang Ye-Hui, Yao Yu-Qin, Zeng Yun-Bo [10], the Camassa-

Holm equation with a simplest self-consistent source was integrated by means of a direct
method, a Darboux transform method.
In the present work we consider a system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − 𝑢𝑥𝑥𝑡 + 2𝜔𝑢𝑥 + 3𝑢𝑢𝑥 − 2𝑢𝑥𝑢𝑥𝑥 − 𝑢𝑢𝑥𝑥𝑥 =

∞∫︁
−∞

(𝑚
′

𝑥𝑔𝑓 + 2(𝑚+ 𝜔)(𝑔 𝑓)
′

𝑥)𝑑𝑘,

𝑔𝑥𝑥(𝑥, 𝑘, 𝑡) =

(︂
1

4
+ 𝜆(𝑚+ 𝜔)

)︂
𝑔(𝑥, 𝑘, 𝑡),

𝑓𝑥𝑥(𝑥, 𝑘, 𝑡) =

(︂
1

4
+ 𝜆(𝑚+ 𝜔)

)︂
𝑓(𝑥, 𝑘, 𝑡), 𝑥, 𝑘 ∈ R, 𝑡 > 0,

(1.1)

where

𝑚(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡), 𝜔 = 𝑐𝑜𝑛𝑠𝑡 > 0,

𝑚(𝑥, 𝑡) + 𝜔 > 0, 𝜆(𝑘) = − 1

𝜔

(︂
𝑘2 +

1

4

)︂
,

and 𝑢 = 𝑢(𝑥, 𝑡) is a real function possessing a sufficient smoothness tending to its limits as
𝑥→ ±∞ fast enough so that

∞∫︁
−∞

(1 + |𝑥|)

(︃
|𝑢(𝑥, 𝑡)| +

3∑︁
𝑘=1

⃒⃒⃒⃒
𝜕𝑘𝑢(𝑥, 𝑡)

𝜕𝑥𝑘

⃒⃒⃒⃒)︃
𝑑𝑥 <∞, 𝑡 > 0. (1.2)

Problem (1.1)–(1.2) is considered with an initial condition

𝑢(𝑥, 𝑡)|𝑡=0 = 𝑢0(𝑥),

where an initial function 𝑢0(𝑥) possesses the following properties:
1) 𝑢0(𝑥) − 𝑢′′0(𝑥) + 𝜔 > 0, 𝑥 ∈ R,
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2)
∞∫︀

−∞
(1 + |𝑥|) (|𝑢0(𝑥)| + |𝑢′′0(𝑥)|)𝑑𝑥 <∞,

3) the equation 𝜓𝑥𝑥 =
(︀
1
4

+ 𝜆(𝑚(𝑥) + 𝜔)
)︀
𝜓 with 𝑚(𝑥) = 𝑢0(𝑥) − 𝑢′′0(𝑥) possesses exactly 𝑁

simple eigenvalues 𝜆1(0), 𝜆2(0), 𝜆3(0), . . . , 𝜆𝑁(0) in the interval
(︀
− 1

4𝜔
; 0
)︀
.

The functions 𝑔 = 𝑔(𝑥, 𝑘, 𝑡), 𝑓 = 𝑓(𝑥, 𝑘, 𝑡) are continuous in the parameter 𝑘, possess the

first order derivatives 𝑔′𝑘 = 𝜕𝑔(𝑥,𝑘,𝑡)
𝜕𝑘

, 𝑓 ′
𝑘 = 𝜕𝑓(𝑥,𝑘,𝑡)

𝜕𝑘
, obey the inequalities

∞∫︁
−∞

(|𝑔(𝑥, 𝑘, 𝑡)|2 + |𝑓(𝑥, 𝑘, 𝑡)|2)𝑑𝑘 <∞,

∞∫︁
−∞

(︃⃒⃒⃒⃒
𝜕𝑔(𝑥, 𝑘, 𝑡)

𝜕𝑥

⃒⃒⃒⃒2
+

⃒⃒⃒⃒
𝜕𝑓(𝑥, 𝑘, 𝑡)

𝜕𝑥

⃒⃒⃒⃒2)︃
𝑑𝑘 <∞,

∞∫︁
−∞

(︃⃒⃒⃒⃒
𝜕𝑔(𝑥, 𝑘, 𝑡)

𝜕𝑘

⃒⃒⃒⃒2
+

⃒⃒⃒⃒
𝜕𝑓(𝑥, 𝑘, 𝑡)

𝜕𝑘

⃒⃒⃒⃒2)︃
𝑑𝑘 <∞, 𝑡 > 0, 𝑥 ∈ (−∞;∞),

and as 𝑥→ ∞, they have the following asymptotics:

𝑓 ∼ 𝛼(𝑘)𝑒𝑖𝑘𝑥 + 𝛽(𝑘)𝑒−𝑖𝑘𝑥,

𝑔 ∼ 𝛾(𝑘)𝑒𝑖𝑘𝑥 + 𝛿(𝑥)𝑒−𝑖𝑘𝑥,
(1.3)

where complex-valued functions 𝛼 = 𝛼(𝑘, 𝑡), 𝛽 = 𝛽(𝑘, 𝑡), 𝛿 = 𝛿(𝑘, 𝑡), 𝛾 = 𝛾(𝑘, 𝑡) are continuous
in 𝑘 and 𝑡, possess the first order derivatives and satisfy the following conditions for 𝑡 > 0 :

∞∫︁
−∞

(|𝛼(𝑘, 𝑡)|2 + |𝛽(𝑘, 𝑡)|2 + |𝛿(𝑘, 𝑡)|2 + |𝛾(𝑘, 𝑡)|2)𝑑𝑘 <∞,

∞∫︁
−∞

(︃⃒⃒⃒⃒
𝜕𝛼(𝑘, 𝑡)

𝜕𝑘

⃒⃒⃒⃒2
+

⃒⃒⃒⃒
𝜕𝛽(𝑘, 𝑡)

𝜕𝑘

⃒⃒⃒⃒2
+

⃒⃒⃒⃒
𝜕𝛿(𝑘, 𝑡)

𝜕𝑘

⃒⃒⃒⃒2
+

⃒⃒⃒⃒
𝜕𝛾(𝑘, 𝑡)

𝜕𝑘

⃒⃒⃒⃒2)︃
𝑑𝑘 <∞.

(1.4)

We let
𝑄(𝑘, 𝑡) = 𝛽(𝑘, 𝑡)𝛾(𝑘, 𝑡) + 𝛼(−𝑘, 𝑡)𝛿(−𝑘, 𝑡).

In this work we show how to construct a solution to Cauchy problem (1.1)–(1.4).

2. Scattering problem

We consider an equation

𝜓𝑥𝑥(𝑥, 𝑘) =

(︂
1

4
+ 𝜆(𝑚(𝑥) + 𝜔)

)︂
𝜓(𝑥, 𝑘), (2.1)

where 𝑚(𝑥) = 𝑢(𝑥)− 𝑢𝑥𝑥(𝑥), 𝜔 = 𝑐𝑜𝑛𝑠𝑡 > 0, 𝑚(𝑥) + 𝜔 > 0, with a function 𝑢(𝑥) satisfying the
condition

∞∫︁
−∞

(1 + |𝑥|) (|𝑢(𝑥)| + |𝑢′′(𝑥)|)𝑑𝑥 <∞. (2.2)

Under condition (2.2), there exists a Jost solution for equation (2.1) with the following asymp-
totics:

𝜓1 = 𝑒−𝑖𝑘𝑥 + 𝑜(1), 𝜓2 = 𝑒𝑖𝑘𝑥 + 𝑜(1), 𝑥→ +∞,

𝜙1 = 𝑒−𝑖𝑘𝑥 + 𝑜(1), 𝜙2 = 𝑒𝑖𝑘𝑥 + 𝑜(1), 𝑥→ −∞.
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For real 𝑘, the pairs (𝜙1, 𝜙2) and (𝜓1, 𝜓2) are the pairs of linearly independent solutions of
equation (2.1) and this is why

𝜙1(𝑥, 𝑘) = 𝑎(𝑘)𝜓1(𝑥, 𝑘) + 𝑏(𝑘)𝜓2(𝑥, 𝑘).

The function 𝑎(𝑘) is continued analytically in the upper half-plane and possesses there finitely
many simple zeroes 𝑘 = 𝑖𝑘𝑛, 𝑘𝑛 > 0, and 𝜆𝑛 = − 1

𝜔
(−𝑘2𝑛 + 1

4
), 𝑛 = 1, 2, . . . , 𝑁, is an eigenvalue

of equation (2.1) so that 𝜙1(𝑥, 𝑖𝑘𝑛) = 𝑏𝑛𝜓2(𝑥, 𝑖𝑘𝑛), 𝑛 = 1, 2, . . . , 𝑁.

The set {𝑟(𝑘) = 𝑎(𝑘)
𝑏(𝑘)

, 𝑘 ∈ R, 𝑘𝑛, 𝑏𝑛, 𝑛 = 1, 2, . . . , 𝑁} is called scattering data for equation

(2.1). A direct scattering problem is to determine the scattering data by the function 𝑢(𝑥). An
inverse scattering problem is to recover the function 𝑚(𝑥), and hence, 𝑢(𝑥) in equation (2.1)
by the scattering data. It was shown in work [9] that the function 𝑢(𝑥) is uniquely recovered
by the scattering data.

3. Evolution of spectral characteristics corresponding to continuous

spectrum

Let 𝑢 = 𝑢(𝑥, 𝑡) be a solution to problem (1.1)–(1.4). For the sake of convenience, in this
section we omit the dependence on 𝑡 if it is inessential. We consider a system of equations:

𝜓𝑥𝑥 =

(︂
1

4
+ 𝜆(𝑚(𝑥) + 𝜔)

)︂
𝜓, (3.1)

𝜕𝐹

𝜕𝑥
= (𝑚(𝑥) + 𝜔)𝜓(𝑥, 𝑘)𝑔(𝑥, 𝜂), 𝜂 ∈ R, (3.2)

where 𝜆 = − 1
𝜔

(︀
𝑘2 + 1

4

)︀
, and 𝑔(𝑥, 𝜂) and 𝑓(𝑥, 𝜂) are solutions of the equation

𝑦′′𝑥𝑥 =

(︂
1

4
+ 𝜉(𝑚+ 𝜔)

)︂
𝑦, 𝜉 = − 1

𝜔

(︂
𝜂2 +

1

4

)︂
.

We construct the following functions

𝜗 = 𝜓′
𝑡 −
(︂

1

2𝜆
− 𝑢

)︂
𝜓′

𝑥 −
𝑢𝑥
2
𝜓 − 𝛾1𝜓 − 𝜆

∞∫︁
−∞

𝑓(𝑥, 𝜂)𝐹 (𝑥, 𝑘, 𝜂)𝑑𝜂, (3.3)

𝐺(𝑥, 𝑘, 𝜂) =𝑔(𝑥, 𝜂)
𝜕𝜓(𝑥, 𝑘)

𝜕𝑥
− 𝜕𝑔(𝑥, 𝜂)

𝜕𝑥
𝜓(𝑥, 𝑘) − (𝜆− 𝜉)𝐹 (𝑥, 𝑘, 𝜂)

=𝑔(𝑥, 𝜂)
𝜕𝜓(𝑥, 𝑘)

𝜕𝑥
− 𝜕𝑔(𝑥, 𝜂)

𝜕𝑥
𝜓(𝑥, 𝑘) − 1

𝜔

(︀
𝜂2 − 𝑘2

)︀
𝐹 (𝑥, 𝑘, 𝜂).

For arbitrary 𝑘 we have the following system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜗𝑥𝑥 −

(︂
1

4
+ 𝜆(𝑚(𝑥) + 𝜔)

)︂
𝜗 = −𝜆

∞∫︁
−∞

(𝑚(𝑥) + 𝜔)𝑓(𝑥, 𝜂)𝐺(𝑥, 𝑘, 𝜂)𝑑𝜂,

𝜕𝐺(𝑥, 𝑘, 𝜂)

𝜕𝑥
≡ 0, 𝑥 ∈ R, 𝜂 ∈ (−∞;∞).

(3.4)

On the base of (3.2) and by means of Jost solutions to equations (3.1) we introduce the notations:

𝐹− =

𝑥∫︁
−∞

(𝑚(𝑧) + 𝜔)𝜙1(𝑧, 𝑘)𝑔(𝑧, 𝜂)𝑑𝑧,

𝐹+ = −
∞∫︁
𝑥

(𝑚(𝑧) + 𝜔)𝜓2(𝑧, 𝑘)𝑔(𝑧, 𝜂)𝑑𝑧.

(3.5)
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For each 𝜂 ∈ (−∞,∞), the functions 𝐹− and 𝐹+ are analytic as Im 𝑘 > 0, therefore, by
equations (1.1), (3.1) and the asymptotics of the Jost solutions we obtain the identities:

𝐹−(𝑥, 𝑘, 𝜂) =
𝜔

𝜂2 − 𝑘2

(︂
𝑔(𝑥, 𝜂)

𝜕𝜙1(𝑥, 𝑘)

𝜕
− 𝜕𝑔(𝑥, 𝜂)

𝜕
𝜙1(𝑥, 𝑘)

)︂
,

𝐹+(𝑥, 𝑘, 𝜂) =
𝜔

𝜂2 − 𝑘2

(︂
𝑔(𝑥, 𝜂)

𝜕𝜓2(𝑥, 𝑘)

𝜕
− 𝜕𝑔(𝑥, 𝜂)

𝜕
𝜓2(𝑥, 𝑘)

)︂
,

(3.6)

and the right hand side in expansion (3.6) is valid for the values 𝑘2 ̸= 𝜂2. Similar to identity
(3.5), for identity (3.3) as Im 𝑘 > 0 we let

𝜗1 = 𝜙1𝑡 −
(︂

1

2𝜆
− 𝑢

)︂
𝜙1𝑥 −

𝑢𝑥
2
𝜙1 − 𝛾1𝜙1 − 𝜆

∞∫︁
−∞

𝑓(𝑥, 𝜂)𝐹−(𝑥, 𝑘, 𝜂)𝑑𝜂,

𝜗2 = 𝜓2𝑡 −
(︂

1

2𝜆
− 𝑢

)︂
𝜓2𝑥 −

𝑢𝑥
2
𝜓2 − 𝛾1𝜓2 − 𝜆

∞∫︁
−∞

𝑓(𝑥, 𝜂)𝐹+(𝑥, 𝑘, 𝜂)𝑑𝜂;

(3.7)

these functions are also analytic in the upper half-plane with respect to the parameter 𝑘,
moreover, for real non-zero values 𝑘 the functions 𝐹−(𝑥, 𝑘, 𝜂), 𝐹+(𝑥, 𝑘, 𝜂) have singularities as
𝜂 = 𝑘, 𝜂 = −𝑘.
Substituting expansions (3.6) into identities (3.7), as Im 𝑘 → +0, we calculate the functions

𝜗1 and 𝜗2. Then for Im 𝑘 = 0 the following identities hold:

𝜗1 =𝜙1𝑡 −
(︂

1

2𝜆
− 𝑢

)︂
𝜙1𝑥 −

𝑢𝑥
2
𝜙1 − 𝛾1𝜙1 − 𝜆

∞∫︁
−∞

𝑓(𝑥, 𝜂)𝐹−(𝑥, 𝑘, 𝜂)𝑑𝜂

+ Φ−
1 (𝑘)𝑓(𝑥, 𝑘) + Φ−

2 (𝑘)𝑓(𝑥,−𝑘),

(3.8)

𝜗2 =𝜓2𝑡 −
(︂

1

2𝜆
− 𝑢

)︂
𝜓2𝑥 −

𝑢𝑥
2
𝜓2 − 𝛾1𝜓2 − 𝜆

∞∫︁
−∞

𝑓(𝑥, 𝜂)𝐹+(𝑥, 𝑘, 𝜂)𝑑𝑘

+ Φ+
1 (𝑘)𝑓(𝑥, 𝑘) + Φ+

2 (𝑘)𝑓(𝑥,−𝑘),

(3.9)

where the integral is treated in the sense of the principle value, while the functions Φ−
1 , Φ−

2 , Φ+
1

and Φ+
2 are determined by the following identities:

Φ−
1 (𝑘) = −𝜋𝑖𝜔𝜆

2𝑘

(︂
𝑔(𝑥, 𝑘)

𝜕𝜙1(𝑥, 𝑘)

𝜕𝑥
− 𝜕𝑔(𝑥, 𝑘)

𝜕𝑥
𝜙1(𝑥, 𝑘)

)︂
,

Φ−
2 (𝑘) = −𝜋𝑖𝜔𝜆

2𝑘

(︂
𝑔(𝑥,−𝑘)

𝜕𝜙1(𝑥, 𝑘)

𝜕𝑥
− 𝜕𝑔(𝑥,−𝑘)

𝜕𝑥
𝜙1(𝑥, 𝑘)

)︂
,

Φ+
1 (𝑘) = −𝜋𝑖𝜔𝜆

2𝑘

(︂
𝑔(𝑥, 𝑘)

𝜕𝜓2(𝑥, 𝑘)

𝜕𝑥
− 𝜕𝑔(𝑥, 𝑘)

𝜕𝑥
𝜓2(𝑥, 𝑘)

)︂
,

Φ+
2 (𝑘) = −𝜋𝑖𝜔𝜆

2𝑘

(︂
𝑔(𝑥,−𝑘)

𝜕𝜓2(𝑥, 𝑘)

𝜕𝑥
− 𝜕𝑔(𝑥,−𝑘)

𝜕𝑥
𝜓2(𝑥, 𝑘)

)︂
.

(3.10)

Since the functions 𝑔(𝑥, 𝑘), 𝑔(𝑥,−𝑘), 𝜙1(𝑥, 𝑘), 𝜓2(𝑥, 𝑘) are solutions to equation (3.1), the
functions Φ−

1 , Φ−
2 , Φ+

1 and Φ+
2 are independent of 𝑥.

Letting

𝐺−(𝑥, 𝑘, 𝜂) = 𝑔(𝑥, 𝜂)
𝜕𝜙1(𝑥, 𝑘)

𝜕𝑥
− 𝜕𝑔(𝑥, 𝜂)

𝜕𝑥
𝜙1(𝑥, 𝑘) − 1

𝜔

(︀
𝜂2 − 𝑘2

)︀
𝐹−(𝑥, 𝑘, 𝜂),

𝐺+(𝑥, 𝑘, 𝜂) = 𝑔(𝑥, 𝜂)
𝜕𝜓2(𝑥, 𝑘)

𝜕𝑥
− 𝜕𝑔(𝑥, 𝜂)

𝜕𝑥
𝜓2(𝑥, 𝑘) − 1

𝜔

(︀
𝜂2 − 𝑘2

)︀
𝐹+(𝑥, 𝑘, 𝜂),

(3.11)



82 G.U. URAZBOEV, I.I. BALTAEVA

according to expansion (3.6), in the upper closed half-plane Im 𝑘 > 0 we have:

𝐺− = 𝐺+ ≡ 0, 𝜂 ∈ (−∞,∞) . (3.12)

By identities (3.4), (3.11), (3.12) and the definition of the functions 𝜗1(𝑥, 𝑘), 𝜗2(𝑥, 𝑘) for each
𝑘 ∈ (−∞,∞) we obtain:

𝜗1𝑥𝑥 −
(︂

1

4
+ 𝜆 (𝑚+ 𝜔)

)︂
𝜗1 = 𝜗2𝑥𝑥 −

(︂
1

4
+ 𝜆 (𝑚+ 𝜔)

)︂
𝜗2 = 0. (3.13)

Identities (3.12)-(3.13) are a simplified form of system (3.3). For each 𝑘 ∈ (−∞,∞), according
to asymptotic expansions (1.3) we have:

𝑓(𝑥, 𝑘) = 𝛼(𝑘)𝜓2(𝑥, 𝑘) + 𝛽(𝑘)𝜓1(𝑥, 𝑘),

𝑔(𝑥, 𝑘) = 𝛾(𝑘)𝜓2(𝑥, 𝑘) + 𝛿(𝑘)𝜓1(𝑥, 𝑘).
(3.14)

On the other hand, the expansions hold:

𝑓(𝑥, 𝑘) = 𝑝(𝑘)𝜙2(𝑥, 𝑘) + 𝑞(𝑘)𝜙1(𝑥, 𝑘),

𝑔(𝑥, 𝑘) = 𝑙(𝑘)𝜙2(𝑥, 𝑘) + 𝑠(𝑘)𝜙1(𝑥, 𝑘),
(3.15)

where

𝑝(𝑘) = 𝛼(𝑘)𝑎(𝑘) − 𝛽(𝑘)𝑏(𝑘), 𝑞(𝑘) = −𝛼(𝑘)𝑏(−𝑘) − 𝛽(𝑘)𝑎(−𝑘),

𝑙(𝑘) = 𝛾(𝑘)𝑎(𝑘) − 𝛿(𝑘)𝑏(𝑘), 𝑠(𝑘) = −𝛾(𝑘)𝑏(−𝑘) + 𝛿(𝑘)𝑎(−𝑘).

Therefore, by identities (3.10) and expansions (3.14), (3.15) we obtain Φ−
1 (𝑘) = −𝜋𝜔𝜆𝑙(𝑘).

Similarly we find:

Φ−
1 (𝑘) = −𝜋𝜔𝜆 𝑙(𝑘), Φ+

1 (𝑘) = 𝜋𝜔𝜆 𝛿(𝑘),

Φ−
2 (𝑘) = −𝜋𝜔𝜆 𝑠(−𝑘), Φ+

2 (𝑘) = 𝜋𝜔𝜆 𝛾(−𝑘).
(3.16)

According (3.13), for real 𝑘 ̸= 0 the function 𝜗1(𝑥, 𝑘) is expressed as a linear combination of
solutions 𝜙1(𝑥, 𝑘), 𝜙2(𝑥, 𝑘), and 𝜗2(𝑥, 𝑘) is expressed via the solutions 𝜓1(𝑥, 𝑘), 𝜓2(𝑥, 𝑘). By
(3.8), (3.9) and asymptotic expansions for the Jost function we let

𝜗1(𝑥, 𝑘) = 𝐾−(𝑘)𝜙1(𝑥, 𝑘) +𝐾−
0 (𝑘)𝜙2(𝑥, 𝑘),

𝜗2(𝑥, 𝑘) =

(︂
−𝑖𝑘
𝜆

+𝐾+(𝑘)

)︂
𝜓2(𝑥, 𝑘) +𝐾+

0 (𝑘)𝜓1(𝑥, 𝑘),

𝜗2(𝑥,−𝑘) = 𝐾+(−𝑘)𝜓1(𝑥, 𝑘) +𝐾+
0 (−𝑘)𝜓2(𝑥, 𝑘),

(3.17)

where the functions 𝐾−(𝑘), 𝐾+(𝑘), 𝐾−
0 (𝑘), 𝐾−

0 (𝑘) are independent of 𝑥.
Now we are going to determine these functions introducing the notations

𝐶−(𝑘) = −𝑖𝜔𝜆
∞∫︁

−∞

(︂
𝑝(𝜂)𝑠(𝜂)

𝜂 + 𝑘
− 𝑞(𝜂)𝑙(𝜂)

𝜂 − 𝑘

)︂
𝑑𝜂,

𝐶(𝑘) = 𝜆𝜔𝜋 (𝑝(𝑘)𝑙(𝑘) + 𝑞(−𝑘)𝑠(−𝑘)) ,

we get

Φ−(𝑥, 𝑘) ∼ 𝐶−(𝑘)𝑒−𝑖𝑘𝑥 + 𝐶(𝑘)𝑒𝑖𝑘𝑥 as 𝑥→ −∞. (3.18)

Similarly we obtain

Φ+(𝑥, 𝑘) ∼ 𝐶0(𝑘)𝑒−𝑖𝑘𝑥 + 𝐶+(𝑘)𝑒𝑖𝑘𝑥 as 𝑥→ ∞,



INTEGRATION OF CAMASSA-HOLM EQUATION. . . 83

where

𝐶+(𝑘) = −𝑖𝜔𝜆
∞∫︁

−∞

(︂
𝛼(𝜂)𝛿(𝜂)

𝜂 − 𝑘
− 𝛽(𝜂)𝛿(𝜂)

𝜂 + 𝑘

)︂
𝑑𝜂,

𝐶0(𝑘) = −𝜆𝜔𝜋 (𝛼(−𝑘)𝛾(−𝑘) + 𝛽(𝑘)𝛿(𝑘)) . (3.19)

We introduce the function

𝜗(𝑥, 𝑘) = 𝜗1(𝑥, 𝑘) − 𝑎(𝑘)𝜗2(𝑥,−𝑘) − 𝑏(𝑘)𝜗2(𝑥, 𝑘). (3.20)

By identities (3.8) and (3.9), expansions (3.14), (3.15), identity (3.16) and according to def-
inition (3.6) and the expansion of the fundamental system of solutions we get the following
identity

𝜗(𝑥, 𝑘) =

(︂
𝜕𝑎(𝑘)

𝜕𝑡
− 2𝜆𝜔𝜋𝑎(𝑘)𝑄(𝑘)

)︂
𝜓1(𝑥, 𝑘) +

(︂
𝜕𝑏(𝑘)

𝜕𝑡
+ 2𝑎(𝑘)𝐶0(−𝑘)

)︂
𝜓2(𝑥, 𝑘). (3.21)

On the other hand, passing to the limit 𝑥 → −∞ in (3.8), employing identities (3.15), (3.16),
asymptotic expansions of the Jost solutions to equation (3.1), (3.18),

𝐾−(𝑘) = 𝐶−(𝑘) − 𝜋𝜔𝜆 (𝑙(𝑘)𝑞(𝑘) + 𝑠(−𝑘)𝑝(−𝑘)) , (3.22)

𝐾−
0 (𝑘) = 𝐶(𝑘) − 𝜋𝜔𝜆 (𝑙(𝑘)𝑞(𝑘) + 𝑠(−𝑘)𝑝(−𝑘)) , (3.23)

we find:

𝜗1(𝑥, 𝑘) = 𝐾−(𝑘)𝜙1(𝑥, 𝑘) +𝐾−
0 (𝑘)𝜙2(𝑥, 𝑘).

Passing to the limit as 𝑥→ +∞ and introducing the notation 𝛾1 = 𝑖𝑘
2𝜆
,

𝐾+(𝑘) = 𝐶+(𝑘) + 𝜋𝜔𝜆 (𝛿(𝑘)𝛼(𝑘) + 𝛾(−𝑘)𝛽(−𝑘)) ,

𝐾+
0 (𝑘) = 𝐶0(𝑘) + 𝜋𝜔𝜆 (𝛿(𝑘)𝛽(𝑘) + 𝛼(−𝑘)𝛾(−𝑘)) ,

we obtain:

𝜗2(𝑥, 𝑘) = 𝐾+
0 (𝑘)𝜓1(𝑥, 𝑘) +

(︂
𝑖𝑘

𝜆
+𝐾+(𝑘)

)︂
𝜓2(𝑥, 𝑘).

Similarly, making the change 𝑘 = −𝑘 in (3.11), we consider the function 𝜗2(𝑥,−𝑘). Then by
the notations (3.22), (3.23) for 𝛾1 = 𝑖𝑘

2𝜆
we get:

𝜗2(𝑥,−𝑘) = 𝐾−
0 (−𝑘)𝜓2(𝑥, 𝑘) +𝐾+(−𝑘)𝜓1(𝑥, 𝑘).

Employing respectively (3.18) and (3.19), we have:

𝐾+
0 (𝑘) = 𝐾−

0 (𝑘) ≡ 0.

Therefore, identities (3.17) can be rewritten as

𝜗1(𝑥, 𝑘) = 𝐾−(𝑘)𝜙1(𝑥, 𝑘),

𝜗2(𝑥, 𝑘) =

(︂
−𝑖𝑘
𝜆

+𝐾+(𝑘)

)︂
𝜓2(𝑥, 𝑘),

𝜗2(𝑥,−𝑘) = 𝐾+(−𝑘)𝜓1(𝑥, 𝑘).

(3.24)

Similarly, employing the expansion of the fundamental system of solutions to equation (3.1),
by (3.20) we conclude that

𝜗(𝑥, 𝑘) = 𝑎(𝑘)
(︀
𝐾−(𝑘) −𝐾+(𝑘)

)︀
𝜓1(𝑥, 𝑘) + 𝑏(𝑘)

(︂
𝑖𝑘

𝜆
+𝐾−(𝑘) −𝐾+(𝑘)

)︂
𝜓2(𝑥, 𝑘). (3.25)
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Combining identities (3.21) and (3.25) and comparing the coefficients at 𝜓1(𝑥, 𝑘) and 𝜓2(𝑥, 𝑘),
we get the evolution equations for 𝑎(𝑘) and 𝑏(𝑘):

𝜕𝑎(𝑘)

𝜕𝑡
− 2𝜆𝜋𝜔𝑎(𝑘)𝑄(𝑘) = 𝑎(𝑘)

(︀
𝐾−(𝑘) −𝐾+(−𝑘)

)︀
, (3.26)

𝜕𝑏(𝑘)

𝜕𝑡
− 2𝑎(𝑘)𝐶0(−𝑘) = 𝑏(𝑘)

(︂
𝑖𝑘

𝜆
+𝐾−(𝑘) −𝐾+(𝑘)

)︂
. (3.27)

Multiplying equation (3.27) by 𝑎(𝑘) and deducting it from (3.26) multiplied by 𝑏(𝑘), we
obtain:

𝜕𝑟(𝑘, 𝑡)

𝜕𝑡
=

(︂
− 4𝑖𝑘𝜔

4𝑘2 + 1
+ (4𝑘2 + 1)

𝜋

2
𝑄(𝑘, 𝑡) −𝐾+(𝑘, 𝑡) +𝐾+(−𝑘, 𝑡)

)︂
𝑟(𝑘, 𝑡)

− 2𝐶0(−𝑘, 𝑡), Im 𝑘 = 0.

(3.28)

It can be shown that the functions 𝐾+(𝑘), 𝐾−(𝑘) can be analytically continued with respect
to 𝑘 in the upper half-plane Im 𝑘 > 0. It is obvious that as Im 𝑘 > 0, the identities hold:

𝐾+(𝑘) = −𝑖𝜔𝜆
∞∫︁

−∞

(︂
𝛼(𝜂)𝛿(𝜂)

𝜂 − 𝑘
− 𝛽(𝜂)𝛿(𝜂)

𝜂 + 𝑘

)︂
𝑑𝜂,

𝐾−(𝑘) = −𝑖𝜔𝜆
∞∫︁

−∞

(︂
𝑝(𝜂)𝑠(𝜂)

𝜂 + 𝑘
− 𝑞(𝜂)𝑙(𝜂)

𝜂 − 𝑘

)︂
𝑑𝜂.

4. Evolution of spectral characteristics associated with discrete spectrum

We introduce a notation

𝐺𝑛(𝑥) = 𝜗1(𝑥, 𝑖𝑘𝑛) − 𝑏𝑛𝜗2(𝑥, 𝑖𝑘𝑛), 𝑛 = 1, 2, . . . , 𝑁, (4.1)

and in the case of the continuous spectrum we obtain:

𝜗1(𝑥, 𝑖𝑘𝑛) = 𝜙1𝑛𝑡 −
(︂

1

2𝜆𝑛
− 𝑢

)︂
𝜙1𝑛𝑥 −

𝑢𝑥
2
𝜙1𝑛 − 𝛾1𝜙1𝑛 − 𝜆𝑛

∞∫︁
−∞

𝑓(𝑥, 𝜂)𝐹−(𝑥, 𝑖𝑘𝑛, 𝜂)𝑑𝜂, (4.2)

𝜗2(𝑥, 𝑖𝑘𝑛) = 𝜓2𝑛𝑡 −
(︂

1

2𝜆𝑛
− 𝑢

)︂
𝜓2𝑛𝑥 −

𝑢𝑥
2
𝜓2𝑛 − 𝛾1𝜓2𝑛 − 𝜆𝑛

∞∫︁
−∞

𝑓(𝑥, 𝜂)𝐹+(𝑥, 𝑖𝑘𝑛, 𝜂)𝑑𝑘, (4.3)

where

𝜆𝑛 = 𝜆(𝑖𝑘𝑛) = − 1

𝜔

(︂
−𝑘2𝑛 +

1

4

)︂
, 𝑛 = 1, 2, . . . , 𝑁,

𝐹−(𝑥, 𝑖𝑘𝑛, 𝜂) =

𝑥∫︁
−∞

(𝑚(𝑧) + 𝜔)𝜙1𝑛(𝑧)𝑔(𝑧, 𝜂)𝑑𝑧, (4.4)

𝐹+(𝑥, 𝑖𝑘𝑛, 𝜂) = −
∞∫︁
𝑥

(𝑚(𝑧) + 𝜔)𝜓2𝑛(𝑧)𝑔(𝑧, 𝜂)𝑑𝑧. (4.5)

Substituting expansions (4.2), (4.3) into (4.1), according to the identity 𝜙1𝑛(𝑥) = 𝑏𝑛𝜓2𝑛(𝑥) and
in view of formulae (4.4) and (4.5) and Lemma 3 from work [11], we obtain:

𝐺𝑛(𝑥) =
𝜕𝑏𝑛
𝜕𝑡

𝜓2𝑛 − 𝜆𝑛𝑏𝑛

∞∫︁
−∞

𝑓(𝑥, 𝜂)
1

𝜆𝑛 − 𝜉
𝑊 {𝑔, 𝜓2𝑛}

⃒⃒∞
−∞ 𝑑𝜂 =

𝜕𝑏𝑛
𝜕𝑡

𝜓2𝑛. (4.6)



INTEGRATION OF CAMASSA-HOLM EQUATION. . . 85

On the other hand, according to identities (3.24) with 𝑘 = 𝑖𝑘𝑛, identities (4.1) can be rewritten
as

𝐺𝑛(𝑥) = 𝐾−(𝑖𝑘𝑛)𝜙1𝑛 − 𝑏𝑛

(︂
𝑘𝑛
𝜆𝑛

+𝐾+(𝑖𝑘𝑛)

)︂
𝜓2𝑛 = 𝑏𝑛

(︂
𝐾−(𝑖𝑘𝑛) − 𝑘𝑛

𝜆𝑛
−𝐾+(𝑖𝑘𝑛)

)︂
𝜓2𝑛, (4.7)

where 𝜆𝑛 = 𝜆(𝑖𝑘𝑛), 𝑛 = 1, 2, . . . , 𝑁. Therefore, comparing identities (4.6) and (4.7), we obtain
evolution equations for 𝑏𝑛:

𝑑𝑏𝑛(𝑡)

𝑑𝑡
=

(︂
4𝜔𝑘𝑛

1 − 4𝑘2𝑛
+𝐾−(𝑖𝑘𝑛, 𝑡) −𝐾+(𝑖𝑘𝑛, 𝑡)

)︂
𝑏𝑛(𝑡), 𝑛 = 1, 2, . . . , 𝑁. (4.8)

By Lemma 3 in work [11] we easily obtain:

𝑑𝑘𝑛(𝑡)

𝑑𝑡
= 0, 𝑛 = 1, 2, . . . , 𝑁. (4.9)

Thus, identities (3.28), (4.8) and (4.9) can be summarized in the following theorem.

Theorem 4.1. If the functions 𝑢(𝑥, 𝑡), 𝑔(𝑥, 𝑡, 𝑘), 𝑓(𝑥, 𝑡, 𝑘) solve problem (1.1)–(1.4), then
the scattering data for equation (2.1) with the function 𝑢(𝑥, 𝑡) vary in 𝑡 as follows:

𝑑𝑟(𝑘, 𝑡)

𝑑𝑡
=

(︂
− 4𝑖𝑘𝜔

4𝑘2 + 1
+ (4𝑘2 + 1)

𝜋

2
𝑄(𝑘, 𝑡) −𝐾+(𝑘, 𝑡) +𝐾+(−𝑘, 𝑡)

)︂
𝑟(𝑘, 𝑡)

− 2𝐶0(−𝑘, 𝑡), Im 𝑘 = 0,

𝑑𝑏𝑛(𝑡)

𝑑𝑡
=

(︂
4𝜔𝑘𝑛

1 − 4𝑘2𝑛
+𝐾−(𝑖𝑘𝑛, 𝑡) −𝐾+(𝑖𝑘𝑛, 𝑡)

)︂
𝑏𝑛(𝑡),

𝑑𝑘𝑛(𝑡)

𝑑𝑡
=0, 𝑛 = 1, 2, . . . , 𝑁,

where

𝐾+(𝑘, 𝑡) =𝑖

(︂
𝑘2 +

1

4

)︂ ∞∫︁
−∞

(︂
𝛼(𝜂, 𝑡)𝛿(𝜂, 𝑡)

𝜂 − 𝑘
− 𝛽(𝜂, 𝑡)𝛾(𝜂, 𝑡)

𝜂 + 𝑘

)︂
𝑑𝜂

−
(︂
𝑘2 +

1

4

)︂
𝜋 (𝛼(𝑘, 𝑡)𝛿(𝑘, 𝑡) + 𝛾(−𝑘, 𝑡)𝛽(−𝑘, 𝑡)) ,

𝐾−(𝑘, 𝑡) =𝑖

(︂
𝑘2 +

1

4

)︂ ∞∫︁
−∞

(︂
𝑝(𝜂, 𝑡)𝑠(𝜂, 𝑡)

𝜂 + 𝑘
− 𝑞(𝜂, 𝑡)𝑙(𝜂, 𝑡)

𝜂 − 𝑘

)︂
𝑑𝜂

+

(︂
𝑘2 +

1

4

)︂
𝜋 (𝑙(𝑘, 𝑡)𝑞(𝑘, 𝑡) + 𝑠(−𝑘, 𝑡)𝑝(−𝑘, 𝑡)) ,

𝑝(𝑘, 𝑡) = 𝛼(𝑘, 𝑡)𝑎(𝑘, 𝑡) − 𝛽(𝑘, 𝑡)𝑏(𝑘, 𝑡), 𝑞(𝑘, 𝑡) = −𝛼(𝑘, 𝑡)𝑏(−𝑘, 𝑡) + 𝛽(𝑘, 𝑡)𝑎(−𝑘, 𝑡),
𝑙(𝑘, 𝑡) = 𝛾(𝑘, 𝑡)𝑎(𝑘, 𝑡) − 𝛿(𝑘, 𝑡)𝑏(𝑘, 𝑡), 𝑠(𝑘, 𝑡) = −𝛾(𝑘, 𝑡)𝑏(−𝑘, 𝑡) + 𝛿(𝑘, 𝑡)𝑎(−𝑘, 𝑡),
𝑄(𝑘, 𝑡) = 𝛽(𝑘, 𝑡)𝛾(𝑘, 𝑡) + 𝛼(−𝑘, 𝑡)𝛿(−𝑘, 𝑡),

𝐶0(−𝑘, 𝑡) =

(︂
𝑘2 +

1

4

)︂
𝜋 (𝛼(𝑘, 𝑡)𝛾(𝑘, 𝑡) + 𝛽(−𝑘, 𝑡)𝛿(−𝑘, 𝑡)) .

The obtained identities determine completely the evolution of the scattering data and this
allows us to apply the inverse scattering data for solving problem (1.1)–(1.4).
We also mention work [11], where a problem on integrating the Camassa-Holm equation with

a self-consistent source was considered in the case of moving eigenvalues. In the case of the
sine-Gordon equation and the Toda chain such problems were considered in works [12], [13].
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