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ORBITS OF DECOMPOSABLE 7-DIMENSIONAL
LIE ALGEBRAS WITH sl[(2) SUBALGEBRA

A.V. ATANOV

Abstract. The problem on complete classification of holomorphically homogeneous real
hypersurfaces in two-dimensional complex spaces was resolved by E. Cartan in 1932. A
similar description in the three-dimensional case was recently obtained by A. Loboda. In
this work we discuss a part of classification of locally holomorphic homogeneous hypersur-
faces in 4-dimensional complex space being orbits in C* by one family of 7-dimensional
Lie algebra. As it was shown in works by Beloshapka, Kossovskii, Loboda and other, the
ideas by E. Cartan allow one to obtain rather simply the descriptions of the orbits for the
algebras having Abelian ideals for rather large dimensions. In particular, the presence of a
4-dimensional Abelian ideal in 7-dimensional Lie algebra of holomorphic vector fields in €C*
often gives rise to the tubularity property for all orbits of such algebra. The Lie algebras
in the family we consider are direct sums of the algebra s[(2) and several 4-dimensional
Lie algebras and they have at most 3-dimensional Abelian subalgebras. By means of a
technique of the simultaneous «flattenings of vector field we obtain a complete description
of all Levi non-degenerate holomorphically homogeneous hypersurfaces being the orbits of
the considered algebras in C*. Many of the obtained homogeneous hypersurfaces turn out
to be tubular manifolds. At the same time, the issue on possible reduction of other hy-
persurfaces to tubes requires further studying. As an effective tool for such study, as well
as for a detailed investigation of issues on holomorphic equivalent of the obtained orbits,
the technique of Moser normal forms can serve. By means of this technique, we study the
issue on the sphericity for representatives of one of the obtained family of hypersurfaces.
However, the application of the method of normal forms for the hypersurfaces in complex
spaces of dimension 4 and higher requires a further developing of this technique.

Keywords: homogeneous hypersurface, holomorphic transformation, decomposable Lie
algebra.
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1. INTRODUCTION

The problem of local description of real hypersurfaces in complex spaces homogeneous with
respect to holomorphic transformation was completely solved in C? by E. Cartan, see [I]. A
similar classification in C? consists of two big fragments, one of which provides the description of
all Levi degenerate homogeneous hypersurfaces in C3, while the other contains the description
of non-degenerate hypersurfaces, see [3|-[8].

Since the classification of holomorphically homogeneous hypersurfaces in C? is complete, there
arises a natural interest to obtaining similar descriptions in the spaces of higher dimensions, in
particular, in C*. Apart of obvious tubes over affine homogeneous hypersurfaces in R?, see, for
instance, [9]-|11], only particular examples of holomorphically homogeneous hypersurfaces are
known in C*, see [12], [13].
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Similar to the three-dimensional case, it is reasonable to split the problem on classification
of holomorphically homogeneous hypersurfaces in C* into two pieces, namely, the description
of Levi degenerate and non-degenerate hypersurfaces. We recall that by the Levi degeneracy
(at the point 0) of a smooth hypersurface M C C* containing the origin and defined by the
equation Im z4 = F'(z1, 29, 23, Re z4), dF'(0) = 0 we mean the vanishing at the point 0 of the
determinant of the Hessian matrix (0?F/02,.0z) (k,l € {1,2,3}).

The aim of the present work is to construct a complete description of all Levi non-degenerate
homogeneous hypersurfaces being the orbits in C* of four decomposable 7-dimensional algebras

U = bk @5[(2)7
where 3-dimensional algebra s[(2) is determined by commutation relations

[e1, e2] = e1, [e1, e3] = 2ey, [ea, €3] = €3,

while the commutation relations for 4-dimensional algebras b, (k = 1,...,4) are given in the
following table (|h| < 1,p > 0) [14]:
Table 1.1
Algebras | [e1,e3] | [e1,eq] | [e2,e3] | [e2,e4] | [es,eq]

hl 261 €1 €9 € + e3

bg (h + 1)61 (&) €9 h€3

b3 2pey €1 | pex —e3 | e+ pes

b4 €1 —C€2 €2 €1

The choice of exactly such algebras for studying is explained by the fact that the maximal
dimension of their Abelian subalgebras is equal to three. It follows from works [7], [12], [15]
that the presence of an Abelian subalgebra of dimension n in the algebra of vector fields in C"
simplifies essentially the study of such algebras and often leads either to the Levi degeneracy
of these orbits or to their tubular structure. And the most interesting Levi non-degenerate
homogeneous surfaces arose while considering the algebras with Abelian subalgebras of small
dimensions, see [7], [15].

We note that among decomposable seven-dimensional Lie algebras possessing no Abelian
subalgebras of dimension 4, only eight types of such algebras are direct sums of four-dimensional
and three-dimensional terms. Four of these eight types are the algebras vy = by @ sl(2),
(k = 1,...,4), considered in the text. Extra four types are the algebras s, = by @ su(2)
(k=1,...,4) with the same four-dimensional terms b, as in the first case. The study of the
orbits of the algebras s; is not completed by the author yet.

In order to describe all Levi non-degenerate homogeneous hypersurfaces being the orbits in
C* of 7-dimensional algebras v, (k = 1,...,4), we employ the technique of realizations Lie
algebras as the algebras of holomorphic vector fields on homogeneous manifolds, see [16], and
this technique develops the ideas by E. Cartan in work [1].

The main result of the present paper is formulated in the following statement.

Theorem 1.1. Let p be a center of the germ of a real-analytic hypersurface M in C*, and
g(M) be a T-dimensional algebras of germs of holomorphic vector fields on M having a full rank
in p. If g(M) and vy are isomorphic as Lie algebras, then M is necessarily Levi degenerate.
Levi non-degenerate 7-dimensional orbits of algebras to, t3, vy are exactly the surfaces from the
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following families (up to a locally holomorphic equivalence):

o ys =ys(ys + Inys + Alnys), A€ R\ {0}, (1.1)
o, 3 : ys = Alny; —In (ygiyg), Ae R\ {0}, (1.2)
(ya£y3)y2 + 31 = Alza|, AR\ {1}, (1.3)
Ty Y2 = |21 |ys + dya| P BB (A B) € R?\ {(0,0)}, (1.4)
(r1 = yoya)” + (11 —yswu)® = (1 = A)[z]?, A<1, AFQ, (1.5)
Yiys + 21y3 = |z [P(Iny, + Aargz), A€ER, (1.6)

where 21, 22, 23, 24 are variables in C*, x, = Rezy, yp = Im 2, k=1,...,4.

Remark 1.1. Equations and wn the above list are associated simultaneously with
two families of algebras to, t3. Such writing means that each family of hypersurfaces defined by
equations and 1s an orbit of both vy and v3. The coincidence of the orbits of two Lie
algebras is a rather ordinary phenomenon, in the case when these algebras are subalgebras of a
complete algebra g(M) for the original orbit, see, for instance, [7|. Ezactly this is the case for
surfaces and (1.5), for each of these surfaces the dimension g(M) turns out to exceed 7,

which 1s the dimension of each algebra of the families vq, t3.

We note that the hypersurfaces defined by equations , are tubular manifolds, while
(L.4) is reduced to such manifold. The surfaces in the families (1.3), (L.5)), (L.6), are likely to
be reduced to the tubes only for particular values of the parameters. However, in general, the
issue of such reduction is rather difficult and requires an independent study. An important
property of these hypersurfaces is their sphericity, that is, their local equivalence to a sphere or
its analogues. An example of studying the sphericity of the hypersurfaces in one of the obtained
families is given in the last section.

Remark 1.2. The issue on possible equivalence of hypersurfaces f for particular
values of the parameters A and B requires a special study and in the present work we do not
consider it.

2. HOLOMORPHIC REALIZATION OF LIE ALGEBRAS

There are several known approaches to constructing classification of holomorphically homo-
geneous hypersurfaces. For instance, homogeneous hypersurfaces can be described by means of
normal (canonical) Moser equations, see [17], that is, by means of finite sets of Taylor coefficients
from the equations defining these hypersurfaces. For instance, this was the way for obtaining
some of the aforementioned pieces of the classification in C* ([3], [4]). Another approach for
describing hypersurfaces is related with employing groups acting on them and associated Lie
algebras. In work [16] there was demonstrated a technique for obtaining holomorphically ho-
mogeneous hypersurfaces in C? on the base of constructing holomorphic realizations of abstract
Lie algebras. By means of this approach, an essential part of the results on classification of
holomorphically homogeneous hypersurfaces in the space C?, see [6], [7], [I5]. It should be
noted that sometimes it is useful to apply simultaneously both aforementioned approaches, see,
for instance, [18].

Let us consider in more details the technique of constructing holomorphic realizations of Lie
algebras, which will be used later for the proving Theorem [I.1]

Definition 2.1. A real hypersurface M C C* is called holomorphically homogeneous at a
point p € M if there exists the Lie algebra of holomorphic vector fields tangential to M and
having rank 7 in the vicinity of the point p.



4 A.V. ATANOV

We choose some real seven-dimensional Lie algebra defined by its commutations relations.
With the chosen seven-dimensional Lie algebra, we associate the set of seven germs, centered
at some point p € C*, of holomorphic vector fields
0
er =ak(21, 22, 23, 24) 57— + br(21, 20, 23, 24) 75—
821 a22
5 (2.1)
4+ cp(z1, 29, 23, 24) =— + di(21, 22, 23, 24)—, k=1,...,7,
k( 1, %2, <3 4)823 k( 1, <2, <3, 4)8247 )

linearly independent over R. A brief writing is
ek:(ak’abkack’adk)v k:]-v"'77a

where ay, b, ¢k, dy are the germs of holomorphic (at the point p) functions of complex variables
21, %9, 23, Z4. In what follows, the real and imaginary parts of the variables z; will be denoted
respectively by z; and y;, j = 1,...,4.

Definition 2.2. A Lie algebra g of holomorphic vector fields in C* is called a holomorphic
realization of an abstract Lie algebra g if the commutation relations of these algebras coincide.

The commutator of two fields [ey, e;] is calculated in the following well-known way:

[ek,ej]=< %—i—bk%—i-ck%-i-dk%)—( 86k+b%+0jaek—l—d‘%).
)

R L R ) Yoz T 0z Tz,

Employing holomorphic transformations, the functional coefficients of fields related
with a Lie algebra can be changed and reduced to a simpler form. Here by a simpler field we
can mean a field, one or more coefficients of which vanish or depend on less variables after a
transformation. In particular, the following statement holds true, see, for instance, [12].

Lemma 2.1. If on a Levi non-degenerate hypersurface M C C* there is a pair of germs of
commuting holomorphic vector fields e; and ey, linearly independent over R, then this pair can
be flattened, that is, to be reduced to the form

e;j =(0,0,0,1), ex=(0,0,1,0).

The simplification of even two fields to the form given in Lemma leads to an essential
simplification of other fields due to the commutation relations between the fields. Considering if
necessary a series of subcases corresponding to vanishing or non-vanishing of several components
of several vector fields, we finally reduce the basis of the considered Lie algebra to a form
convenient for further integration, that is, for obtaining the equation of the surfaces via the
algebra of holomorphic tangential vector fields. Here we should also take into consideration
that the rank of the system of vector fields should be seven that reduces essentially the number
of the subcases to be considered.

The algebras of vector fields possess also the following property being a generalization of the
statements given in [16], [19] for C*.

Lemma 2.2. Assume that the algebra of holomorphic vector fields in C* possesses a quadru-
ple of linearly independent vector fields, three of which read as

e; = (0,0,0,1), e2=(0,0,1,0), e3=1(0,1,0,0).

If the components of the fourth field, up to the terms g(z1), (k = 1,2,3,4), are linear functions
of other variables, then a holomorphic change of variables removes all py(z1) from this field.
At the same time, the flattened form of the first triple of the fields and the linear components
of the field e4 are preserved.
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We recall that in this work we are interesting in only Levi non-degenerate holomorphic
homogeneous hypersurfaces. In view of this let us provide two statements, which in some cases
allow us to conclude on the degeneracy of the corresponding hypersurfaces by the form of vector
fields; these statements are easily extended to the case C* from the case C? and this is why we
provide them without proving, see [7].

Lemma 2.3. Assume that we are given a germ, centered at a point p, of a real analytic
hypersurface M C C* and a 7-dimensional algebra g(M) of germs of holomorphic vector fields
tangential to M and having rank 7 at the point p. If six basis holomorphic fields of the men-
tioned algebra have a zero coefficient at the same operator %, then the hypersurface M 1is Levi
degenerate.

Lemma 2.4. Assume that we are given a germ, centered at a point p, of a real analytic
hypersurface M C C* and a 7-dimensional algebra g(M) of germs of holomorphic vector fields
tangential to M and having rank 7 at the point p. If a quadruple of basis holomorphic fields of
the mentioned algebra reads as

€; = (0707Cj(Zh22723724)7dj(21;752723a24))7 j=1,....,4,

up to re-denoting the variables and renumerating the fields, then the hypersurface M s Levi
degenerate.

3. HOLOMORPHIC REALIZATIONS OF DECOMPOSABLE 7-DIMENSIONAL LIE ALGEBRAS
WITH s[(2)-SUBALGEBRA

While employing the above described technique of holomorphic realizations for constructing
the classification of holomorphically homogeneous hypersurfaces in C*, one has to consider in
particular all 7-dimensional Lie algebras. However, opposite to the case C3, where 5-dimensional
algebras considered, there is no complete list of algebras having dimension 7. At present, the
descriptions of Lie algebras of dimension up to 6 are known [20], and while there are just several
tens of 5-dimensional algebras, see [20], [21], the list of 6-dimensional algebras contains already
hundreds of representatives. The classification of 7-dimensional Lie algebras is obviously much
more bulky. In view of this, it is natural to study particular classes of 7-dimensional Lie algebras
having in mind the experience of describing holomorphically homogeneous hypersurfaces in C3.

In order to prove Theorem [I.Ij we shall construct holomorphic realizations of four 7-
dimensional decomposable Lie algebras being direct sums of the 3-dimensional algebra sl(2)
and several 4-dimensional algebras defined by the following commutation relations:

Table 3.1
le1, ea] | [er,es] | [ea,e3] | e, ee] | [easeq] |les es] | les,eq] | [es,er]
3] el 2e9 €3 2eq ea es es + eg
Ty e1 2¢e9 es3 (h+1)ey €4 es heg
t3 | e 2e9 €3 2pey €y | pes — € | €5 + peg
Ty el 2es es €4 —es es ey

In this table |h| <1, p > 0.
We note that the maximal dimension of the Abelian subalgebras for all algebras ty, ..

equal to three.
We construct the holomorphic realizations for each of the mentioned algebras assuming that
their basis field are of the form

6j — (aj<zla 29, 23, 24)7 bj(Zl, 224 %3, Z4>7 Cj(Zh 29, 23, 24)7 dj(zl7 294 %3, Z4)) )

The study of commutation relations for the algebras ty,..

liminary simplification of vector fields similar for all algebras in the list.

.,y s

i=1,...,T.

.,t4 allow us to make some pre-
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Lemma 3.1. Each holomorphic realization of the algebras ty,...,ty possessing Levi non-
degeberate integral hypersurfaces in C* is reduced, up to a local holomorphic equivalence, to
algebras with bases of the following forms:

er = (0,1,0,0),
ea = (az(21), 22 + ba(21), c2(21), d2(21)),
€3 = (2&2(21)22 -+ Clg(Zl), 2’22 + 2b2(21>22 + 63(21),
262(21)22 + 03(21), 2d2(21)22 + dg(Zl)),
e, = (0,0,0,1),
€5 = (0707 170)7
es = (ag(21,23,24),b6(21, 23, 24), C6(21, 23, 24), d6(21, 23, 24)),
ey = (a7(21,23,Z4>,b7(21,23,24),07(21723724),d7(21,23724)).

(3.1)

Proof. According to Lemma[2.1] two commuting vector fields among seven fields can be flattened
for each algebra. We suppose in what follows that

es = (0,0,0,1), e5=(0,0,1,0).
The relations [e1, eq] = 0, [ea, e4] = 0, [e3, 4] = 0 lead us to the identities

8aj (%J 8cj 8d] .
— —J ) =(0.0.0.0 =123
( 0zy 0z 0zy 0z 0,0,0,0), 3 T

which imply that the functional coefficients of the fields ey, e5, e3 are independent of the variable
Z4.
Employing the identities [e1, e5] = 0, [e2, e5] = 0, [e3, e5] = 0, in the same way we get:
8aj ij 8cj 8d]

( 8237 82’3’ 823’ 823) ( ) Y )7 ] ) Y

Therefore, the functional coefficients of the fields eq, es, e3 are also independent of the variable
zZ3.

According to Lemma for Levi non-degeberate integral hypersurfaces, at some point at
least one of the following two inequalities hold true:

(ak(ZhZQ)a bk(Zl, 2’2)) * (an) (k =1, 2)~

Without loss of generality we assume that (a1(z1, 22), b1(21, 22)) #Z (0,0). Then the field e; can
be reduced to the form:
€1 = (07 1, O, 0)
In view of the simplified form of the field ey, the relations [e1, eg] = 0, [e1, e7] = 0 lead us to
the identities:
(‘3@6 ab(; 866 ad(;
He %6 7% 76— (0,0,0,0
(8227822’8227822 ( T )’
8a7 867 607 6d7
— —,—,— | =(0,0,0,0).
(822’62278227822 ( T )

This implies that the functional coefficients of the fields eg, e; are independent of the variable
z9.
Moreover, since [eq, es] = e, then

8zQ ’ 8227 822’ 822
and this gives the following form of the field es:
ez = (az(21), 22 + b2(21), ca(21), da(21)).

) =(0,1,0,0),
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Taking into consideration the obtained simplifications, the relation [e;, e3] = 2ey gives the
identity
aag abg 803 adg
— —,—,— | = (2 2 2b 2 2d
(8227 02 02 D7 (2a2(21), 222 + 2b2(21), 2¢2(21), 2da(21)),

which allows us to transform the field e3 to the form given in the formulation of the lemma.
Let us show now that the case (a,b;) = (0,0) gives rise to a contradiction.
Let (ai(z1,22),b1(21,22)) = (0,0) at some point of the surface. As it has been mentioned
above, in this case the inequality (a2(z1, 22), b2(21, 22)) # (0,0) is necessarily satisfied. There-
fore, the field e; can be reduced to the form

€o = (07 1, O, 0)
Thus, the fields e, e; and e3 are written as follows:
er = (0,0, c1(21, 22), d1(21, 22)) ,

€2 = (07 17070)7
es = (asz(21, 22), b3(21, 22), c3(21, 22), d3(21, 22)) -
According to the commutation relations of the algebra, the identity [e;,e3] = 2es should

hold. However, the first two components in the commutation [e;, e3] are zero, while the first
two components of the field e, read as (0,2). Therefore, the case (ay,b;) = (0,0) is impossible.

The proof is complete. O
Thus, we suppose that the set of seven fields for each of the algebras ty,...,t, is originally
of form (3.1)).

Remark 3.1. Hereafter, while writing the coefficients of the vectors fields, by the symbols
Ay, Bg, Cy, Dy (k=1,...,7) we denote complex constants.

3.1. Holomorphic realizations of algebra t;. By commutation relations [es,e5] = 0,
e, 7] = 2e4, [e5, e6] = eu, [e5,e7] = €5 we get:
8a6 8b6 866 @dﬁ
— —,—,— | =1(0,0,0,0
(824’6,24’824’824 (0.0,0,0),
8&7 067 607 8617
— —,—,— | =(0,0,0,2
(824’824’8z4’8z4 (0,0,0,2),
6&6 866 806 ad(;
—, —,—,— | =(0,0,0,1
(02’3’823’823’823) ( T )’
%’%’%7% — (0,0,1,0).
823 823 823 823
These identities allow us to reduce the fields eg and e; to the form
es = (ag(21), b6(21), c6(21), 23 + ds(21)),
€7 = (CL7(21), b7(21), Z3 + C7(21), 224 -+ d7(21)).

A further constructing of holomorphic realizations of the algebra v; requires a consideration
of a series of cases.
Case 1. Let as(z1) # 0. Then the field ey in set (3.1) can be reduced to

€9y = (1, 29, 0, O) .
By identities [eq, €5] = 0, [e2, e7] = 0 we get the relations:
(ag(21), b5(21) = bo(21), c6(21), dg(21)) = (0,0,0,0),
(

6
a;(21)7b,7(21) - b7(zl)>cl7(zl)>d/7(zl)) = (0707070)'
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Hence,
ag(z1) = As, bs(21) = Bee™, c6(21) = Cs,  ds(21) = D,
ar(z1) = A7, br(21) = Bre™, ci(21) = Cr,  dy(21) = Dr.
By identity [eg, 7] = €5 + e we get
(0, 621 (AGB7 — A7Bﬁ), C@, zZ3 — 07 + 2D6) = (A6, B@'@Zl, 1 + 067 Z3 + Db)
Comparing the third components in the left hand side and the right hand side, we arrive at the
identity
06 =1 + 06~
Thus, case 1 leads to a contradiction.
Case 2. Let as(z1) =0, ag(z1) # 0. Then, in view of simplified fields eg, e7, in the set (3.1)
we can get:
eg = (0,22 + ba(21), c2(21), d2(21)) ,
=(1,0,0, 23) .
By identity [ea, ] = 0 we obtain
(0, =by(z1), —c5(21), —dy(21) + e2(21)) = (0,0,0,0).
This yields
ba(z1) = By, ca(21) = Co,  da(21) = Cazy + Ds.
The relation [es, e7] = 0 leads us to the following identity:
(O, —b7(21), CQ, —CL7<21)CQ + 20221 + 2D2> = (O, O, 0, 0)
We then get Cy = 0, Dy = 0. Thus, the fields e; and e; become
€1 = (07 17070) )
= (Oa 22 + BQa 07 0) )

which is impossible for a non-degenerate hypersurface.
Case 3. Let as(z1) =0, ag(z1) =0, ay(z1) #Z 0. Then the field e can be reduced to the form

er = (1,0,2’37 2254) .

The relation [es, e3] = e3 allows to conclude immediately on the degeneracy of the hypersur-
faces in this case. Indeed, the first component of the commutator [es, e3] vanishes, while the
first component of the field e3 equals to as(z;). Thus, as(z;) = 0, and all first components of
the fields ey, ..., eg vanish, which gives the degeneracy according to Lemma

Thus, we conclude that the algebra v; has no non-degenerate holomorphic realizations.

3.2. Holomorphic realization of algebra t,. Here the commutation relations are [e4, eg] =
0, [es,e7] = (b + 1)ey, [es,e6] = ea, [e5,e7] = e5. Similarly to the previous case, they give rise
to a simplified form of the fields eg and e5:

es = (ag(21), b6(21), c6(21), 23 + ds(21))
er = (a7(z1),b7(21), 23 + c7(21), (h + 1)z4 + d7(21)) .
Case 1. Let ay(z1) # 0. Then the field e, can be reduced to the form
es = (1,22,0,0).
By identities [es, e6] = 0, [e2, e7] = 0 we obtain:
(ag(21), b6(21) — bo(21), c6(21), dg(21)) = (0,0,0,0),
(a7(21), b5 (21) = br(21), 5 (21), d7(21)) = (0,0,0,0),

a

a

g9~ o~
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and this yields that

ag(21) = Ag, bs(21) = Bge™, cs(21) = Cg, ds(21) = D,
a7(21) = Ay, 57(21) = Bre™, C?(Zl) = (Cr, d7(z1) = Dy

The relation [es, e3] = e3 gives rise to the identity
(a5(21) + 220, 25 — bs(21) + b3(21), &5(21), d5(21)) = (222 4 as(z1), 25 + bs(21), es(z1), ds(z1)),
which yields a simplified form of the field ej:
az(z1) = Aze™, b3(z1) = B3e®™', c3(z1) = Cze™,  ds(z) = Dze™.

The consideration of remaining relations [es, eg] = 0, [es, e7] = 0, [eg, e7] = heg allow us to
obtain the following system of equations relating the coefficients of the fields and the parameter
h of the algebra:

AsAg+2Bg =0, AsBg—246B; =0, AgCs=0, AgDs— Cy=0,
AsAy + 2By =0, AyB; —2A;B; =0, Cy(A;—1) =0,
Dy(A7—h—1)=0, hAg=0, AgBy— AyBs— Bgh=0,
Cs(h—1) =0, Dg—Cs=0.

(3.2)

This system has eight solutions but only three of them give the bases of the algebra of the
holomorphic vector fields corresponding to non-degenerate hypersurfaces. These solutions are
as follows.

a) A solution of system (3.2)) is

1 1 1
B3 = —ZA§> Bg = —§A3A6, Br; = —§A3A7,
C3=0, Cg=0, Cr=Dg, D3=0, h=0.
The bases of the algebras of holomorphic vectors fields are

€1 = (07 17()’ 0)7
€y = (172:2707 0)7

1
eg = (ng + Age™, 22 — ZAgeQZI, 0, O) ,

€4 = (070707 1)7

(3.3)
€5 = (0707 1a 0) )

1
6 = (A67 _§A3A6€Z17 0,25 + D6> ;
1
er = (A7, —§A3A7621, z3 + D67 24+ D7> .
b) A solution of system (3.2)) is

1
Ag =0, A;=2, B3:—ZA§, Bs=0, B;=-A;, C3=0, C;=Ds h=1.
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The bases of the algebras of holomorphic vectors fields are
€1 = (07 17070) )
€o = (]-7 22, 07 0) )

1
€3 = <2Z2 + A3621a Z% - ZA§e221a 07 D3621) )

es = (0,0,0,1),
€5 = (0707 170)7
€6 — (070706723 + DG) )
er = (2, —Aze™, 23 + D¢, 224 + Dr) .
¢) A solution of system (3.2)) is
1 1
Ag =0, B3= —ZAg, Bs =0, B;= —§A3A7, C3=0, Cr=Ds, D3=0, h=1.
The bases of the algebras of holomorphic vectors fields are

€1 = (071707())7
€2 = (17227070)7

1
es = <222 + Age™, 25 — ZAgeQZl, 0, 0) ,

er = (0,0,0,1), (3.5)
€5 = (0707 ]'70) 9
€ — (0, 0, Cﬁ, 23 + D6) s

1
er = <A7, —§A3A7621, z3 + DG, 224 + D7) .

Case 2. Let ay(z;1) =0, ag(z1) #Z 0. Then the field eg can be transformed to the form
es = (1,0,0, 23) .
By the relations [eg, eg] = 0, [e3, €6] = 0, [eq, €7] = heg we obtain the identities
(0, =b5(21), —ch(21), —d5(21) + e2(21)) = (0,0,0,0),
(—a5(21), —b3(21), —c5(21), —ds(21) + e3(=21)) = (0,0,0,0),
(a%(21),b5(21), 5 (21), 23h — ¢7(21) + di(21)) = (R, 0,0, hzg).
The solutions of these equations allow us to simplify the form of the fields ey, e3 and e7:
es = (0,29 + By, Oy, Cazy + Ds)
€3 = (Ag, 22 +2B2z + B3, 2Cy2 + Cs3,2(Coz1 + Dy)zo + Cszy + D3) ,
er = (hzy + A7, By, 23+ C7, (h+ 1)z + Crz1 + Dr) .
The commutation relation [es, e7] = 0 for the transformed fields gives the identity
(0, =B, Cy, Coz1 + Dyh + Dy — 4;Cy) = (0,0,0,0),

which implies that
B7:0, 02 :O, Dg(h+1) :0
As Cy = 0, the field e; becomes ey = (0, 20 + Bs, 0, Dy) and we assume that Dy = 0, we get a
field of form ey = (0, 22 + B»,0,0), which under the presence e; = (0,1,0,0) gives a degeneracy
of the hypersurface. This is why the case Dy = 0 is impossible and the identity h = —1 should
hold true.
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We write the relation [e3, e7] = 0 in an expanded form:
(—A3,0,Cs, A3C7 — C3A7 + C321) = (0,0,0,0).

We then get that A3 = 0 and C5 = 0. Thus, all first and third components in the fields eq, ..., ey
vanish and according to Lemma this means a degeneracy of the hypersurface.

Case 3. Let as(z1) =0, ag(21) = 0 and ar(z1) # 0. Then the field e; can be reduced to the
form

€7 = (17 07 23, (h + ]->Z4)
The first component in the commutation [es, e3] is obviously zero and at the same time, the
identity [es,e3] = es should be satisfied. Since the first component of the field ez is equal

as(z1), then we necessarily have az(z1) = 0. However in this case all first components of the
fields ey, ..., es vanish and this means the degeneracy of the hypersurface by Lemma [2.3

3.3. Holomorphic realization of algebra v3. Here by the commutation relations [ey, e5] =
0, [es, e7] = 2pey, [es, e6] = 4 We get:

es = (ag(21),be(21), c6(21), 23 + ds(21)) ,
er = (ar(21, 23), b7(21, 23), c7(21, 23), 2p24 + d7 (21, 23)) -
We write in an expanded form the relation [e5, e7] = pes — eg:

Oa; Ob; Ocy Od
(8_;’ 8_z;’ 8_2;:’ 3_22) = (—ag(21), —bs(21), p — c6(21), —23 — dg(21)).

We get the following form of the field e;:

€7 = ( — ag(21)23 + ar(z1), —be(21) 23 + br(21)

1
pz3 — co(21)23 + c7(21), 2p2zg — —232, —dg(2z1)23 + d7(21)) .

2
Case 1. Let ay(z;) # 0, then the field es can be reduced to the form
€9 = (1, 29, 0, O) .

By relation [ey, eg] = 0 we get the identity
(ag(21), U (21) — be(21), c5(21). dg (1)) = (0,0,0,0),

which allows us to simplify the form of the fields eg and e7:

eg = (Ag, Bee™, Cs, 23 + Dg) ,

er = ( — Apzz + ar(21), —Bse™ 23 + br(21)

1
pzs — Cgzz + c7(21), 2pzy — —z§ — Dgzz + d7(z1)) .

2

As a result, the relation [eq, e7] = 0 gives rise to the identity

(a7(21), b7 (21) — br(21), ¢4 (21), d7(21)) = (0,0,0,0),
by which we find the coefficients of the field e;. We finally obtain:

er = ( — Agzz + A7, —Bge™ z3 + Bre*t |

1
pz3 — Cozs + C7, 2pzg — 5232, — Dgz3 + D7> )
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We now employ relation [eq, €3] = es:

(a5(21) + 22, 25 — bs(z1) + Uy(21), ¢5(21), di(21)) = (220 + as(z1), 25 + bs(z1), cs3(z1), ds(z1)) -

This gives:
es = (222 + Age™, 23 + Bye*™, Cye™, Dgezl) )

The remaining identities [es, eg] = 0, [es, e7] = 0, [es, e7] = e5 + peg lead us to a system of
equations similar to (3.2)). Some of the solutions to this system, as in case (3.2)), are associated
to the algebras having only degenerate orbits. Here we provide only solutions which generate
only more interesting for us algebras admitting Levi non-degenerate orbits.

a) Ag =0, By=—1A3, Bs=0, B;=—1A34;, C3=0, Cs==+i, Cr= Ds(pFi),
D3 = 0. The bases of the algebras of holomorphic vectors fields are

€1 = (07 1707 0) )
€y = (17 22, Oa 0) )

1
€3 = (222 + Agezl, 222 — ZA§€QZI, 0, O) s

e = (0,0,0,1), (3.6)
€5 = (0707 17 O) )
€ — (0, 0, :i:’L, Z3 + DG) s

1 _ 1
er = (A7, —§A3A7€Z1, (2'3 -+ D6)<p + Z), 2p24 — 5232’ — D623 + D7> .

b) A@ = 0, A7 = 2])7 B3 = _%LA:%’ B6 = O, B7 = —pAg, 03 = 07 06 = :i:Z,
C7 = Dg(p Fi). The bases of the algebras of holomorphic vectors fields are
e; =(0,1,0,0),
€y = (17 22, Oa O) )

1
€3 = (222 + Agezl, Zg — ZA%GQZl, 0, D3€Zl> >

es = (0,0,0,1), (3.7)
€5 = (0707 170) 9
€g — (0, 0, :|:Z, z3 + DG) s

) 1
er = (219, —pAge™, (23 + Ds)(p F 1), 2pz4 — §Z§ — Dgz3 + D?) -

Case 2. Let as(z1) =0, ag(z1) Z 0. Then the field eg can be reduced to the form
eg = (1,0,0, 23) .
We write in an expanded form the relations [eq, e5] = 0, [eg, e7] = e5 + peg:
(0, =b3(z1), —c4(21), —dy(21) + e2(21)) = (0,0,0,0),
(a7(21), 07(21), ¢7(21), d7(21) — er(21) + pzs) = (p, 0,1, pz3).
Solving the written equations, we obtain a simplified form of the fields ey and ey:
ey = (0,20 + By, Cy,Coz1 + Ds)

1 1
er = (pzl — 23 + A7, B7,p23 +z1 + 07, 2]?24 — 5232) + EZ% + 0721 + D7) .

Employing the relation [es, e7] = 0, we get
(=Ca, =By, pCa, pCoz1 — A7Csy + 2pD3) = (0,0,0,0),
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and this implies
02:07 B7:0a pDQZO

If we assume that Dy = 0, then we get es = (0,29 + B,0,0), and under the presence of
the field e; = (0,1,0,0) this is possible only if the hypersurface is degenerate. Hence, we can
assume that Dy # 0 and therefore, p = 0.

By relation [e3, eg] = 0 we obtain the identity

(—az(z1), =b5(21), —c5(21), —d3(21) + e3(21)) = (0,0,0,0),
which allows us to get a modified form of the field es:
€3 = (Ag, 2Byz9 + Zg + B3, C3,C321 + 2Do 29 + D3) .
Employing the identity [e3, e7] = 0 written in an expanded form as
(—C3,0, A3, A3C7 + Az — C3A7) = (0,0,0,0),
we get that A3 = (5 = 0, that is,
es = (0,25 + 2Bazo + B3,0,2D525 + Dj) .

Thus, in the field eq,...,e4 all first and third components turn out to be zero and by

Lemma this means the degeneracy of the hypersurface.

Case 3. Let as(z1) =0, ag(21) =0 and ar(z1) Z 0. Then the field e; can be reduced to the
form

1
er = (1, —be(21)23, p23 — co(21)23, 2p24 — §Z§ — dg(21)23).

To prove that in this case only degenerate hypersurfaces are possible, we note that the first
component in the commutator [es, e3] vanishes and the first component in the field ez is equal
to as(z1). Since the identity [es, e3] = e3, we necessarily have az(z1) = 0 but in this case all
components of the fields ey, ..., es vanish and this gives the degeneracy by Lemma [2.3]

3.4. Holomorphic realizations of algebra t,. Expanding the commutation relations
leq, €6) = €4, [es,e7] = —es, [e5,e6] = e5, [es,er] = ey, we get a simplified form of the fields
eg and er:

ee = (a6(21),b6(21), 23 + co(21), 24 + do(21)) ,

er = (az(21),br(21), =21 + e7(21), 23 + dr(21)) -

Case 1. Let ay(z1) # 0. Then, employing holomorphic change of variables, the field e; can
be reduced to the form

€9 = (1,2’2,0, 0)

The relations [es, eg] = 0, [ea, €7] = 0 give rise to the identities

(ag(21), b5(21) — bo(21), c5(21), dg(21)) = (0,0,0,0),
(a7(21), b7 (21) — br(21), &7 (21), d7(21)) = (0,0,0,0),
by which we get
e = (Ag, Bge™, z3 + Cg, 24 + Dg) ,
er = (A7, Bre™, —z4 + C7, 235+ D7) .
One more relation [eq, €3] = e, implying the identity
(ag(zl) + 229, U3(21) — ba(21) + 23, ¢4 (21), dE’,(Zl)) = (222 +as(z1), 25 + bs(z1), es(z1), d3(21)) )
give the following form for the field es:
(222 + Age™, 23 + Bye*™, Cye™, Dgezl) )
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The remaining relations [es, eg] = 0, [e3, e7] = 0, [eg, €7] = 0 here also lead to a rather bulky
system of equations for the coefficients of the fields es, eg, e;. This system has four solutions
and three of them give the bases of the algebras of holomorphic vector fields corresponding to
non-degenerate hypersurfaces.

a) Bg = _leA§7 Bﬁ - —%ASA(;, B7 = —%A3A7, 03 = O, C6 = 1)77 C7 = _DG;
D3 = 0. The bases of the algebras of holomorphic vectors fields are
€1 = (07 17070)7
€2 = (17 22, 07 O) )

1
es = (222 + Age™, 22 — ZA%ezzl, 0, 0) ,

es = (0,0,0,1), (3.9)
es = (0,0,1,0), '
1
€6 = <A67 _5143146621; 23+ D7, 24 + D6) ;
1 zZ
er = <A7, —§A3A7€ 1, —(24 + Dﬁ), Z3 -+ D7) .
b) Extra two solutions unified via the sign «=£»:
1 1
As=1, Ar==Hi, Bsy= _ZAg, Bs = —54s,
By = ?%A:s, Cs =+iD3, Cg= D7, Cr=—Ds.
The bases of the algebras of holomorphic vectors fields are
€1 = (07 170a0)7
€2 = (17 22, 07 O) )
1
es = (222 + Age™, 22 — ZAgezzl, +iDse*t, Dgezl) ,
€4 = (07 07 07 1) ) (3 9)
es = (0,0,1,0), '

1
€6 = <1, —5143621723 + Dy, 24 + D6) ;

?
er = <:]:Z, :FgAgezl, —(24 + Dﬁ), z3 + D7) .

Case 2. Let ay(21) =0, ag(z1) Z 0. Then the field eg can be reduced to the form
eg = (1,0, 23, 24) -
Employing the relations [ey, eg] = 0, [eg, e7] = 0, we obtain
(0, =bh(21), —c5(21) + c2(21), —d5(21) + da(21)) = (0,0,0,0),
(a7(21), U(21), &7 (21) = er(21), d7(21) — dr(21)) = (0,0,0,0).
Hence,

€y — (0, Z9 + Bg, 02621, Dgezl) s
er = (A7, B7, —2Z4 + C7€z1, zZ3 + D7€Z1) .
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The commutation relation [e3, eg] = 0 yields the identity
(—a5(21), =b3(21), —c5(21) + es(21), —d5(21) + ds(21)) = (0,0,0,0),
which implies the following form for the field es:
€3 = (Ag, 22 + 2By2y + Bs, (20529 + C3)e™ | (2Dy2y + DCg)BZl) )

Considering the final identities [ea, e3] = e3, [e2, €7] = 0, [es3, e7] = 0 lead us to three admissible
sets of the coefficients of the fields es, eg, e;. And only two of them, unified via the sign
«=*», give the bases of algebras of holomorphic vector fields admitting non-degenerate integral
hypersurfaces.

The values of the coefficients

A3 =0, A;=4i, B3=DB3 B;=0, Co==iDy, C3==42iByDy, Ds=2B;D,.
The bases of the algebras of holomorphic vectors fields are
€1 = (07 1a 070) )
= (0 29 + BQ, iiDgezl Dzezl)
( 29 + BQ :*:2/LD2212 + QZBQDQ) =1 2D2€Z1 (22 -+ BQ)) y
=(0,0,0,1), (3.10)
€5 = (0707 170) )
= (17 Oa 23 Z4) )
er = (:l:Z, O, CY7€Z1 — 24,23 + D7€Z1) .
Case 3. Let ay(z1) =0, ag(21) = 0 and ay(z1) Z 0. Then the field e; can be reduced to the
form

er = (1,0, —zy, 23).
By relation [e, eg] = 0 we get
(0, =bs(21), c2(21), d2(21)) = (0,0,0,0),
and this yields that
e2 = (0, 22 + b2(21),0,0).

The field es of such under the presence of the field e; = (0,1,0,0) is possible only for Levi
degenerate hypersurfaces.

4. EQUATIONS OF HYPERSURFACES

The next step after finding the holomophic realizations of the Lie algebras is the obtaining
of their orbits. A necessary condition for a real hypersurface M defined by an equation & = 0
to be an orbit of a holomorphic realization of an algebra g is the identity

Re (e (®)[5) =0, (4.1)

which should be satisfied for each basis field ej of this algebra.
Thus, finding the orbits of holomorphic realizations of algebras to, 3, t4 is reduced to solving
a system of partial differential equations. For instance, for one of realizations (3.6 we need to
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solve the system of the following form:

0D
28—23 + (Zg +D6) —> = O,

=
@D
[\)
N
[N}
_l’_
.
w
D
K
- Q
& !
_l’_
N
N
[\
|
.
wnN
(3]
R
N————
@)
b
N———
]
\‘C)

We note that it is often convenient to make some elementary changes in the coefficients of the
fields before writing the system of equations. For instance, in this case we can replace e*' by
27, which allows us to work with completely polynomial components of the fields, and at that,
in the first components of the fields an additional factor 2] appears, while other components
remain unchanged. We specify that here and in what follows after each step of multi-level
change of variables the sign «x» is omitted.

Under the passing to real coordinates, the first three simplest identities of system allow
us to conclude that the defining function of the hypersurface is independent of the variables
X9, T3, T4. Solving other equations by standard methods, after some simple final holomorphic
transformations we obtain an equation for the hypersurface:

ys = Alny, —In (y2 - yg) . (4.3)

Writing and solving systems similar to (4.2)), we obtain all equations in Theorem At the
same time, there can arise Levi degenerate hypersurfaces, which we do not consider.

Now we are going to discuss briefly the issues on studying certain properties of holomor-
phically homogeneous hypersurfaces using equation as an example. Here we employ the
method of Moser normal forms [17].

Employing the expansion into the Taylor series, we represent the equation of a Levi non-
degenerate real-analytic hypersurface M C C* as

ya=H(z,2)+ Z Niim(2, 2) 2], (4.4)

k,0>2,m>0

where H(z, z) is the Levi form of the hypersurface containing Hermitian terms, which are linear
in the variables z and z; here Ny, (2, Z, 4) are homogeneous polynomials of total powers k£ and
[ of the variables z and z, respectively, z = (21, 29, z3). The polynomials Naoy, N3or, N3z obey
additional restrictions called tr-conditions, see |3], [4].

In many cases the study of lower terms in normal equation allows one to justify or
disprove conjectures on holomorphic equivalence of various hypersurfaces. For instance, it is
known that a homogeneous real-analytic hypersurface in the space C" is spherical if and only
if the term Nig(z, Z) in its normal Moser equation vanishes.

Let us demonstrate a calculation procedure for checking the sphericity on the example of
equation ({4.3)).

We shift to the point (7,4,0,0) and write an expansion for the right hand side of the equation

ys=Aln(y1 +1) —In (y2 +1—43)
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into the Taylor series up to the fourth powers; according to the normalization procedure, the
terms of zero and first power can be removed:

1 1 1 1 1 1 1
Yy = —§Ayf + 51/5 + 3+ gAyi)’ - gyg — Yay5 — ZA?J% + Zyg +y3u5 + 51/:34, +..0 (45

We pass to the complex coordinates and write the Levi form for this equation:
1 1 1
H(z 3) = —ZAlst |2 4 =[2]2 4 = [2a]2]
(2, 2) 1 |21] +4|Z2| +2|Z3\

We see that as A < 0 this form is positive definite, that this, the hypersurface is strictly
pseudoconvex, and as A > 0 we get a sign-indefinite non-degenerate form. As A = 0 we get a
degenerate hypersurface.

Let consider the case A < 0. The change of variables

2
v —A
reduces the Levi form to the canonical form

21?4 [ 2] + [ 23]

After passing to complex variables and change of variables, expansion (4.5) becomes (we group
terms by the total powers of the polynomials involved in this expression):

Yg = Z Fru(z,2) = (Fyo + Fi1 + Foo) + (Fs0 + For + Fia + Foz) + . . -, (4.6)
kt1>2

2N, 2 =22, zm=+2z

Z1 =

where k, [ are the powers of the corresponding terms in the variables z and Zz respectively.

According to normalization procedure [I7], by means of holomorphic change of variables, we
can remove all terms of form Fj, Fi; from equation and also, by symmetry, all terms Fyy,
Fyj. After the mentioned changes, equation becomes:

Yg = ’Zl|2—|—‘22’2+|23‘2+H22+H32+H23+.... (47)

In order to transform the terms while passing from equation (4.6) to (4.7)), we can use the
generalization of the formulae given in works [22]. In particular,

Hyy = Foy — (fa, fa), (4.8)

where Fy is the term in equation (4.6), f> is a vector function, the components of which are
homogeneous polynomials of second order with respect to the variable z, and this function is
calculated by the formula Fy = (fs,2). Here (f,g) = fTHg, where f and g are the vector
functions and H is the matrix of the Hermitian Levi form.

For the considered equation we have:

3 55 34, 1, 1 ,, 3,5
Fy = —ﬂzfzf + 523222 + §z§z§ + 220292323 + §Z§Z§ + Zzgzga
_i\/jZQ
A A
fo=1 2(223+23) |-
iZng
R TIPS S NP AR SP RS G -
(fa, f2) = Azlzl + 23725 + 22322 + 22223 + 42333 + 22232273,
By formula (4.8]) we obtain:
1 1 1
Hy = ——lal' + Slaal* + Slasl* + 2|2 (4.9)

The polynomial Hyy belongs to a 36-dimensional space of polynomials F55, which is expanded
into the direct sum of 27-dimensional space Ny and 9-dimensional space Rao, the entries of
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which are divisible by the form |2;]? + |22|? +|23/%. At that, the projection of Hy, into the space
No, is exactly the polynomial Ny in equation (4.4)).
The mentioned expansion for polynomial (4.9)) can be written as

Hyy =Ny + Ragg
1

T10A
+3(Jz1|* = 421z + [23]*) = (Jza]* = 4]22?|25)* + |23]%))

(A= DB(la* = Alza[z2]* + |22]")

1
+ 557 (CGAFDAP + 04+ D]l + 94+ D[zP) (1] + |2 + [2]7)-

Thus,

1
Nagg :4()_A(A - 1)(3<|Zl‘4 - 4|21‘2|Zz|2 + |2’2|4)

+3(lal* = Alza*[zsl* + |2s]") — (2] — 22|25 + |2]")).

As A < 0, the polynomial Nyyg is non-zero and therefore, the hypersurface described by
equation (4.3)) is locally holomorphically non-equivalent to a sphere.

Remark 4.1. We note that as A = 1, equation can be rewritten as
Y1 = yse¥ + yoet.

This equation describes an indefinite spherical tube, see formula (7) in the main theorem in

23].

All equations written in Theorem can be studied in the same way. However, such study
is too bulky and goes beyond this paper.
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