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AVERAGING OF RANDOM ORTHOGONAL

TRANSFORMATIONS OF DOMAIN OF FUNCTIONS

K.Yu. ZAMANA

Abstract. We consider and study the notions of a random operator, random operator-
valued function and a random semigroup defined on a Hilbert space as well as their aver-
agings. We obtain conditions under which the averaging of a random strongly continuous
function is also strongly continuous. In particular, we show that each random strongly
continuous contractive operator-valued function possesses a strongly continuous contractive
averaging.

We consider two particular random semigroups: a matrix semigroup of random orthogo-
nal transformations of Euclidean space and a semigroup of operators defined on the Hilbert
space of functions square integrable on the sphere in the Euclidean space such that these
operators describe random orthogonal transformations of the domain these functions. The
latter semigroup is called a random rotation semigroup; it can be interpreted as a random
walk on the sphere. We prove the existence of the averaging for both random semigroups.

We study an operator-valued function obtained by replacing the time variable 𝑡 by
√
𝑡 in

averaging of the random rotation semigroup. By means of Chernoff theorem, under some
conditions, we prove the convergence of the sequence of Feynman–Chernoff iterations of this
function to a strongly continuous semigroup describing the diffusion on the sphere in the
Euclidean space. In order to do this, we first find and study the derivative of this operator-
valued function at zero being at the same time the generator of the limiting semigroup.
We obtain a simple divergence form of this generator. By means of this form we obtain
conditions ensuring that this generator is a second order elliptic operator; under these
conditions we prove that it is essentially self-adjoint.

Keywords: random linear operator, random operator-valued function, averaging,
Feynman–Chernoff iterations.
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1. Introduction

A problem on constructing and studying averaging of random linear operators and operator-
valued functions is of interest both from the point of view of mathematics and of various
applications in problems of statistical physics and quantum mechanics. Here we can mention
works [1]–[3], in which analogues of law of large numbers and central limit theorem were es-
tablished for the products of independent random matrices. In work [4] there were studied
limiting characteristics of compositions of random linear transformations. An application of
random transformations to describing solutions of evolutionary partial differential equations
was provided in work [5]. Averaging of random transformations and application of Chernoff
theorem to studying of the limit of the compositions of random semigroups were considered in
works [6]–[8].
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This paper continues studies initiated in work [9], which was devoted to studying the com-
positions of independent random semigroups S(𝑡) with values in the group of unitary transfor-
mations in the space 𝐿2(𝐷) (here 𝐷 is a spherical layer in the space R𝑑) generated by random
orthogonal transformations of the space R𝑑 by the formula S(𝑡)𝑢(𝑥) = 𝑢(𝑒𝑡A𝑥), where A is
a random skew-symmetric matrix. Assuming that this matrix is uniformly bounded on the
probability space and that the averaging of this matrix is zero, in [9] we showed that a sequence
of averagings of compositions of independent random operator-valued functions of form S(

√
𝑡)

converged to a semigroup resolving some initial boundary value problem for an evolutionary
second order partial differential equation being an analogue of diffusion equation.
In [9], an inaccuracy was made while studying the differential operator being a generator of

this limiting semigroup. The matter is that this operator is not uniformly elliptic if we consider
it on the space of the functions defined on the spherical layer. This is due to the fact that the
spheres are invariant manifolds for random orthogonal transformations and this is why thee
are also invariant for the averaging. As a result, a degeneracy of the operator occurs along the
radial direction and this breaks the ellipticity condition. However, as it we show in Theorem 4.4
of the present paper, if we consider this operator on a space of functions defined on a sphere,
then the ellipticity can be recovered. Thus, this inaccuracy can be easily corrected and it makes
no influence on the results and conclusions made in [9].
The aim of the present work is to make a passage to the limit for a sequence of Feynman-

Chernoff iterations of operator-valued functions arisen in averaging an operator-valued function
S(

√
𝑡) under the assumption that the random matrixA is not necessarily bounded but possesses

a finite second moment. This passage to the limit is made by using the Chernoff theorem.
Because of this, in the present paper we justify the applicability of Chernoff theorem to the
considered sequence of iterations.
The scheme of studies presented in this paper is as follows. First we recall some needed no-

tions, namely, the notion of random operator and random operator-valued function, the notion
on their averaging and list their main properties, see Statements 2.1, 2.2, 2.3 and Corollar-
ies 2.1, 2.2. We obtain sufficient conditions ensuring a strong continuity of the averaging of
a random operator-valued function, the values of which are operators defined on a separable
Hilbert space, see Statement 2.4. Then we provide some auxiliary estimates and results con-
cerning a random matrix exponent 𝑒𝑡A, see Statement 3.1, Corollary 3.1 and Theorem 3.1. In
Theorem 4.1 and Corollary 4.1 we justify the existence of a strong continuous averaging of a
random operator-valued function S(

√
𝑡) acting on the spaces 𝐿2(R

𝑑) and 𝐿2(S𝑑−1) and per-
forming random orthogonal transformations in the space R𝑑. Finally, in Theorems 4.2 and 4.3,
we obtain a derivative of this averaging at zero under the assumption that the second moment
of the random matrix A is finite, while in Theorem 4.4 and its Corollary 4.2 we establish the
convergence of the Feynman-Chernoff iterations of this averaging in the space 𝐿2(S𝑑−1) to the
semigroup generated by the derivative.
Thus, in the paper we propose a method of constructing averagings for random orthogonal

transformations of the domain of a function leading us to constructing semigroups describing
the diffusion on a sphere.

2. Preliminaries and terminology

Let ℋ be a Hilbert space (finite- or infinite-dimensional) over the field R or C with a scalar
product ⟨ · , · ⟩ and the induced norm ‖ · ‖ℋ, 𝐵(ℋ) be a normed space of linear bounded
operators 𝐴 : ℋ → ℋ with the operator norm ‖ · ‖𝐵(ℋ) and the identity mapping 𝐼, (Ω,ℱ ,P)
be a probability space.
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Definition 2.1. A mapping A : Ω → 𝐵(ℋ) with values A𝜔 ∈ 𝐵(ℋ), where 𝜔 ∈ Ω, is called
a random operator on ℋ if the functions 𝜉(·) = ⟨A(·)𝑢, 𝑣⟩ are (Ω,ℱ)-measurable, that is, are
random variables, for all 𝑢 ∈ ℋ and 𝑣 ∈ ℋ.

If A : Ω → 𝐵(ℋ) is a random operator, then each vector 𝑢 ∈ ℋ induces a mapping
A(·)𝑢 : Ω → ℋ, which we shortly denote A𝑢. In the same way, for all vectors 𝑢 ∈ ℋ and
𝑣 ∈ ℋ the random variable ⟨A(·)𝑢, 𝑣⟩ is denoted as ⟨A𝑢, 𝑣⟩. A sequence of random operators
indexed by natural numbers is denoted by (A)𝑛 in order to distinguish it from the writing A𝜔.
A random operator in Definition 2.1 is a mapping measurable with respect to a standard

base of the weak operator topology, that is, the pre-image of each element in the standard base
of the weak operator topology in the space 𝐵(ℋ) under the mapping A belongs to ℱ . For each
𝑢 ∈ ℋ, the mapping A𝑢 induced by this random operator is measurable with respect to the
standard base of the weak topology of the space ℋ.
We mention some properties of random operator, which will be used in our work:
1. If A and B are random operators, then for all scalars 𝛼 and 𝛽 the mapping 𝛼A + 𝛽B is

also a random operator.
2. Let a sequence of random operators {(A)𝑛}∞𝑛=1 converge to the mapping A : Ω → 𝐵(ℋ)

in the weak operator topology of the space 𝐵(ℋ) almost everywhere on Ω. Then A is also a
random operator.
3. Let ℋ be a Hilbert space, 𝒟 be an everywhere dense subspace in ℋ. Let a mapping

A : Ω → 𝐵(ℋ) be such that for all 𝑢 and 𝑣 in 𝒟 the function ⟨A𝑢, 𝑣⟩ is a random variable.
Then A is a random operator on ℋ.
The latter property allows us to check the measurability of the mapping A only on a dense

subspace.

Definition 2.2. An averaging (or expectation, or integral over Ω) of a random operator
A : Ω → 𝐵(ℋ) is an operator MA ∈ 𝐵(ℋ) such that

⟨(MA)𝑢, 𝑣⟩ = M⟨A𝑢, 𝑣⟩ ∀𝑢 ∈ ℋ ∀𝑣 ∈ ℋ, (2.1)

where M in the right hand side of identity (2.1) denotes the expectation, that is, the integral
over the probability space (Ω,ℱ ,P).

The averaging possesses the following properties:
1. If it exists, then the averaging of a random operator is unique.
2. If random operators A and B possess averagings, then for all scalars 𝛼 and 𝛽 the random

operator 𝛼A + 𝛽B also possesses the averaging and

M(𝛼A + 𝛽B) = 𝛼MA + 𝛽MB.

We shall also need the following sufficient condition for the existence of the averaging of a
random operator.

Statement 2.1 ([9]). Let A be a random operator on the Hilbert space ℋ such that
‖A‖𝐵(ℋ) 6 𝜉, where 𝜉 : Ω → [0; +∞) is a random variable with a finite expectation. Then
A possesses an averaging MA ∈ 𝐵(ℋ) and

‖MA‖𝐵(ℋ) 6 M𝜉.

In particular, if the function ‖A‖𝐵(ℋ) is a random variable with a finite expectation, then A
possesses an averaging and

‖MA‖𝐵(ℋ) 6 M‖A‖𝐵(ℋ).

We recall that an operator 𝐴 ∈ 𝐵(ℋ) is called contractive if ‖𝐴‖𝐵(ℋ) 6 1; a random operator
is called a random contractive operator if all its values are contractive operator. Applying
Statement 2.1 to such random operator, we immediately obtain the following statement.
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Corollary 2.1. Each random contractive operator on a Hilbert space possesses an averaging,
which is also a contractive operator.

In the case when the space ℋ is separable, the measurability of a random operator in the
weak operator topology implies the measurability in the strong and uniform operator topology.

Statement 2.2. Let ℋ be a separable Hilbert space, A : Ω → 𝐵(ℋ) be a random operator.
Then

a) ‖A𝑢‖ℋ is a random variable for each 𝑢 ∈ ℋ;
b) ‖A‖𝐵(ℋ) is a random variable.
If A possesses the averaging MA, then ‖(MA)𝑢‖ℋ 6 M‖A𝑢‖ℋ for each 𝑢 ∈ ℋ and

‖MA‖𝐵(ℋ) 6 M‖A‖𝐵(ℋ); at that M‖A𝑢‖ℋ and M‖A‖𝐵(ℋ) can be infinite.

Proof. Let {𝑣𝑛}∞𝑛=1 ⊂ ℋ be a countable everywhere dense in ℋ set of vectors. Without loss of
generality we can assume that these vectors are non-zero. Then the vectors 𝑒𝑛 = 𝑣𝑛

‖𝑣𝑛‖ℋ
form a

countable subset of a unit sphere in the space ℋ dense on this sphere. Therefore,

‖A𝑢‖ℋ = sup
𝑛∈N

|⟨A𝑢, 𝑒𝑛⟩|

for each 𝑢 ∈ ℋ
Since A is a random operator, then all functions |⟨A𝑢, 𝑒𝑛⟩| are measurable and this is why

‖A𝑢‖ℋ is measurable as a point-wise supremum of a countable set of measurable functions.
In the same way, in view of the just proven fact, the measurability of ‖A‖𝐵(ℋ) is implied by

the identity
‖A‖𝐵(ℋ) = sup

𝑛∈N
‖A𝑒𝑛‖ℋ.

Suppose now that A has an averaging MA. In view of the just proven fact we get

‖(MA)𝑢‖ℋ = sup
‖𝑣‖ℋ=1

|⟨(MA)𝑢, 𝑣⟩| = sup
‖𝑣‖ℋ=1

|M⟨A𝑢, 𝑣⟩|

6 sup
‖𝑣‖ℋ=1

M|⟨A𝑢, 𝑣⟩| 6 sup
‖𝑣‖ℋ=1

M‖A𝑢‖ℋ‖𝑣‖ℋ = M‖A𝑢‖ℋ,

and similarly, again by the just proven fact,

‖MA‖𝐵(ℋ) = sup
‖𝑢‖ℋ=1

‖(MA)𝑢‖ℋ 6 sup
‖𝑢‖ℋ=1

M‖A𝑢‖ℋ 6 sup
‖𝑢‖ℋ=1

M‖A‖𝐵(ℋ)‖𝑢‖ℋ = M‖A‖𝐵(ℋ).

This completes the proof.

Remark 2.1. Statement 2.2 remains true also in the case when the Hilbert space ℋ is not
separable but if at the same time the probability space (Ω,ℱ ,P) is discrete. Indeed, the sepa-
rability condition in Statement 2.2 is needed only to establish the measurability of ‖A𝑢‖ℋ and
‖A‖𝐵(ℋ) and this holds immediately for a discrete probability space.

For the averaging operation we can formulate an analogue of Lebesgue’s dominated conver-
gence theorem.

Statement 2.3. Let a sequence of random operators {(A)𝑛}∞𝑛=1 converge to a random op-
erator A in the weak operator topology of the space 𝐵(ℋ) almost everywhere on Ω, and
‖(A)𝑛‖𝐵(ℋ) 6 𝜉 for all 𝑛 ∈ N, where 𝜉 : Ω → [0; +∞) is a random variable with a finite
expectation. Then the random operators (A)𝑛 and A have averagings and M(A)𝑛 converge to
MA in the weak operator topology of the space 𝐵(ℋ).

Proof. By inequality ‖(A)𝑛‖𝐵(ℋ) 6 𝜉, Statement 2.1 implies that the random operators (A)𝑛
possess averagings. The same inequality implies that

|⟨(A)𝑛𝑢, 𝑣⟩| 6 𝜉‖𝑢‖ℋ‖𝑣‖ℋ ∀𝑢 ∈ ℋ ∀𝑣 ∈ ℋ. (2.2)
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Passing in (2.2) to the limit as 𝑛 → ∞ and employing the convergence of {(A)𝑛}∞𝑛=1 to A in the
weak operator topology, we obtain that |⟨A𝑢, 𝑣⟩| 6 𝜉‖𝑢‖ℋ‖𝑣‖ℋ almost everywhere. Taking the
supremum in this inequality with respect to ‖𝑣‖ℋ = 1 and ‖𝑢‖ℋ = 1, we obtain ‖A‖𝐵(ℋ) 6 𝜉
almost everywhere and by Statement 2.1 this implies the existence of the averaging of A. For
fixed 𝑢 ∈ ℋ and 𝑣 ∈ ℋ a sequence of random variables ⟨(A)𝑛𝑢, 𝑣⟩ converges to ⟨A𝑢, 𝑣⟩ almost
everywhere by (2.2), satisfies all assumptions of the Lebesgue’s dominated convergence theorem
and this is why

lim
𝑛→∞

⟨M(A)𝑛𝑢, 𝑣⟩ = lim
𝑛→∞

M⟨(A)𝑛𝑢, 𝑣⟩ = M⟨A𝑢, 𝑣⟩ = ⟨(MA)𝑢, 𝑣⟩.

This completes the proof.

Remark 2.2. For a case of a separable ℋ or a discrete (Ω,ℱ ,P), analogues of Statement 2.3
hold true, in which the weak topology is replaced by the strong or uniform one.

The set of all mappings 𝐹 : R+ → 𝐵(ℋ), where R+ = [0; +∞), is traditionally denoted by
𝐵(ℋ)R+ and each its element is called an operator-valued function; in what follows we shall
often omit the adjective “operator-valed” in the cases, when this does not lead to misunderstand-
ing. Let 𝐶𝑠(R+, 𝐵(ℋ)) be a topological vector space consisting of operator-valued functions
𝐹 : R+ → 𝐵(ℋ) continuous with respect to a strong operator topology of the space 𝐵(ℋ) (such
functions are called strongly continuous); a topology 𝜏𝑠 in 𝐶𝑠(R+, 𝐵(ℋ)) is induced by a family
of semi-norms Φ𝑇,𝑢(𝐹 ) = sup

𝑡∈[0;𝑇 ]

‖𝐹 (𝑡)𝑢‖ℋ for all 𝑇 > 0 and 𝑢 ∈ ℋ. We note that if 𝐹 is an

operator-valued function and 𝐹𝑛 ∈ 𝐶𝑠(R+, 𝐵(ℋ)) for each 𝑛 ∈ N, then

𝐹 ∈ 𝐶𝑠(R+, 𝐵(ℋ)) ⇔ lim
𝑡→𝑡0

‖𝐹 (𝑡)𝑢− 𝐹 (𝑡0)𝑢‖ℋ = 0 ∀𝑡0 > 0 ∀𝑢 ∈ ℋ,

𝐹𝑛
𝜏𝑠−→ 𝐹 ⇔ lim

𝑛→∞
sup

𝑡∈[0;𝑇 ]

‖𝐹𝑛(𝑡)𝑢− 𝐹 (𝑡)𝑢‖ℋ = 0 ∀𝑇 > 0 ∀𝑢 ∈ ℋ.

An operator-valued function 𝑆 : R+ → 𝐵(ℋ) is called an operator semigroup (or simply
semigroup) if

𝑆(0) = 𝐼, 𝑆(𝑡1 + 𝑡2) = 𝑆(𝑡1)𝑆(𝑡2) ∀𝑡1, 𝑡2 ∈ [0; +∞).

Definition 2.3. A mapping F : Ω → 𝐵(ℋ)R+ with values F𝜔 : R+ → 𝐵(ℋ), where 𝜔 ∈ Ω,
is called a random operator-valued function (or simply random function) if F(·)(𝑡) is a random
operator for each 𝑡 > 0. If at the same time F𝜔 is an operator semigroup for each 𝜔 ∈ Ω, then
the mapping F is also called a random operator semigroup or simply a random semigroup).

Let us make some important remarks about the notations related with the random function
F:

— the value of the random function F on an event 𝜔 ∈ Ω is denoted by F𝜔 and this is an
operator-valued function;

— for each 𝑡 > 0 the mapping F(·)(𝑡) : Ω → 𝐵(ℋ), being a random operator by Definition 2.3,
is denoted by F(𝑡); such notation should not lead to a misunderstanding since according
to the previous item, the value of the random function F on an event 𝜔 ∈ Ω is denoted
by F𝜔 instead of F(𝜔);

— the value of a random operator F(𝑡) on an event 𝜔 ∈ Ω, being an operator, is denoted by
F𝜔(𝑡);

— the remark after Definition 2.1 concerns also the random operator F(𝑡), that is, for each
𝑢 ∈ ℋ the mapping F(·)(𝑡)𝑢 is denoted by F(𝑡)𝑢.

If all values of a random operator-valued function are strongly continuous functions, then
such random function is called a random strongly continuous operator-valued function.
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Definition 2.4. An averaging of a random operator-valued function F is a function
MF : R+ → 𝐵(ℋ) such that (MF)(𝑡) is an averaging of a random operator F(𝑡) for each
𝑡 > 0, that is, (MF)(𝑡) = M (F(𝑡)).

In order to prove the existence of averagings of random operator-valued functions, we use
Statement 2.1 and its Corollary 2.1. However, an averaging of a random strongly continuous
function is not necessary a strongly continuous function. This is why it is useful to consider
the following modification of Statement 2.1 allowing us to guarantee a strong continuity of the
averaging.

Statement 2.4. Let ℋ be a separable Hilbert space, F : Ω → 𝐶𝑠(R+, 𝐵(ℋ)) be a random
strongly continuous operator-valued function, which satisfies the following condition: for each
𝑇 > 0 there exists a random variable 𝜉𝑇 with a finite expectation such that ‖F(𝑡)‖𝐵(ℋ) 6 𝜉𝑇 on
[0;𝑇 ]. Then F has a strongly continuous averaging MF ∈ 𝐶𝑠(R+, 𝐵(ℋ)) and ‖(MF)(𝑡)‖𝐵(ℋ) 6
M𝜉𝑇 on each segment [0;𝑇 ].

Proof. The existence of averaging MF ∈ 𝐵(ℋ)R+ and the estimate for it are implied immedi-
ately by Statement 2.1. We just need to prove the strong continuity.
According to Statement 2.2, for each 𝑢 ∈ ℋ we have

‖(MF)(𝑡)𝑢− (MF)(𝑡0)𝑢‖ℋ =
⃦⃦

M
(︀
F(𝑡) − F(𝑡0)

)︀
𝑢
⃦⃦
ℋ 6 M‖F(𝑡)𝑢− F(𝑡0)𝑢‖ℋ. (2.3)

Since F is a random strongly continuous function, then ‖F(𝑡)𝑢 − F(𝑡0)𝑢‖ℋ converges to zero
as 𝑡 → 𝑡0 point-wise on Ω. At that, if 𝑡 ∈ [𝑡0 − 1; 𝑡0 + 1] ∩R+, then

‖F(𝑡)𝑢− F(𝑡0)𝑢‖ℋ 6
(︀
‖F(𝑡)‖𝐵(ℋ) + ‖F(𝑡0)‖𝐵(ℋ)

)︀
‖𝑢‖ℋ 6 2‖𝑢‖ℋ · 𝜉𝑡0+1,

that is, ‖F(𝑡)𝑢 − F(𝑡0)𝑢‖ℋ is majorized by an integrable random variable 2‖𝑢‖ℋ · 𝜉𝑡0+1 in the
vicinity of 𝑡0. Therefore, by the Lebesgue’s dominated convergence theorem, the right hand
side of the inequality in (2.3) tends to zero as 𝑡 → 𝑡0 and this is why the left-hand side in (2.3)
tends to zero as well. The proof is complete.

Remark 2.3. As with Statement 2.2, the condition of the separability of ℋ in Statement 2.4
can be replaced by the condition of discreteness of the probability space (Ω,ℱ ,P).

If all values of the operator-valued functions are contractive operators, we call such function
contractive; if all values of a random operator-valued function are contractive functions, we call
such random function a random contractive function. By Statement 2.4 we immediately obtain
the following corollary.

Corollary 2.2. Each random strongly continuous contractive operator-valued function act-
ing on a separable Hilbert space possesses an averaging, which itself is a strongly continuous
contractive operator-valued function.

Definition 2.5. A function 𝐹 ∈ 𝐶𝑠(R+, 𝐵(ℋ)) is Chernoff equivalent to an operator semi-
group 𝑈 ∈ 𝐶𝑠(R+, 𝐵(ℋ)) if the sequence of Feynman-Chernoff iterations (𝐹 (𝑡/𝑛))𝑛 of the
function 𝐹 converges to the semigroup 𝑈 in the topology of the space 𝐶𝑠(R+, 𝐵(ℋ)).

The following theorem provides sufficient conditions of the Chernoff equivalence to an oper-
ator semigroup, see [10] and [11].

Theorem (Chernoff). Let a function 𝐹 ∈ 𝐶𝑠(R+, 𝐵(ℋ)) be such that 𝐹 (0) = 𝐼
and ‖𝐹 (𝑡)‖𝐵(ℋ) 6 𝑒𝛼𝑡 for some 𝛼 > 0. If the closure of the operator 𝐹 ′(0) is a generator
of the semigroup 𝑈 ∈ 𝐶𝑠(R+, 𝐵(ℋ)), then the function 𝐹 is Chernoff equivalent of the semi-
group 𝑈 .
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The checking of the assumptions of this theorem for the averaging of a random operator-
valued function T(𝑡)𝑢 = 𝑢(𝑒

√
𝑡A𝑥) takes an essential part of the calculations in the present

paper.

3. Properties of averagings of random matrices and matrix semigroups

In this section we obtain certain auxiliary results related with random matrices and their
averagings.
If we take R𝑑 as ℋ, where 𝑑 ∈ N, then 𝐵(R𝑑) can be considered as a normed space ℳ𝑑(R)

of square matrices of order 𝑑 with the spectral norm. Moreover, there exists an isomorphism
between the spaces 𝐵(R𝑑) and ℳ𝑑(R), which maps each linear operator into its matrix in the
standard basis of the space R𝑑. In view of this, a random operator A : Ω → 𝐵(R𝑑) is called a

random matrix, and its values are identified with the corresponding matrices. An entry a𝑖𝑗 of
a random matrix A is a random variable (A𝑒𝑗, 𝑒𝑖), where {𝑒𝑖}𝑑𝑖=1 is the standard basis in the
space R𝑑. In the case ℋ = C𝑑 we proceed in the same way.
Hereinafter the scalar product in the space R𝑑 is denoted by the round brackets ( · , · ), the

Euclidean norm of a vector 𝑥 ∈ R𝑑 is denoted by the symbol |𝑥|, while the spectral norm of
the matrix 𝐴 ∈ 𝐵(R𝑑), being also its operator norm, is denoted by ‖𝐴‖ without indicating the
subscript 𝐵(R𝑑).

A finite-dimensional property of the spaces R𝑑 and 𝐵(R𝑑) allows us to make stronger conclu-
sions on the measurability and averagings of random matrices in comparison with Statement 2.2:
1. The mapping A : Ω → 𝐵(R𝑑) is a random matrix if and only if its entries are random

variables.
2. If A is a random matrix, then for each 𝑥 ∈ R𝑑 the mapping A𝑥 : Ω → R𝑑 is a random

vector.
3. The random matrix A possesses an averaging if and only if the random variable ‖A‖ has

a finite expectation. At that, the entries of the matrix MA are expectations of corresponding
entries of A.
By the product of random matrices A and B we mean the mapping AB : Ω → 𝐵(R𝑑), which

maps each 𝜔 ∈ Ω into the matrix A𝜔B𝜔. The product of random matrices is also a random
matrix.
Let A be a random matrix. We consider a matrix exponent:

𝑒𝑡A =
∞∑︁
𝑘=0

𝑡𝑘A𝑘

𝑘!
∀𝑡 ∈ R+. (3.1)

We observe that 𝑒𝑡A is a random continuous matrix semigroup. And vice versa, if S : Ω →
𝐶𝑠(R+, 𝐵(R𝑑)) is a random continuous matrix semigroup, then there exists a random matrix
A such that S(𝑡) = 𝑒𝑡A. We call this random matrix a random generator (or simply generator)
of the random semigroup S.
For the purposes in the next section we are interested in a random continuous matrix semi-

group performing random orthogonal transformations (rotations) in the space R𝑑. Such random
semigroup is called orthogonal. In view of the facts said above, it is easy to observe that the
generator of each random continuous orthogonal matrix semigroup is a random skew-symmetric
matrix. And vice versa, each random skew-symmetric matrix generates a random continuous
orthogonal matrix semigroup.
Applying Corollary 2.2 to a random continuous orthogonal matrix function, we arrive at the

following statement.

Corollary 3.1. Each random continuous orthogonal matrix function possesses an averaging,
which is a continuous contractive matrix function.
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We shall also need some properties of the spectral norm of a skew-symmetric matrix 𝐴:
1) ‖𝐴𝑛‖ = ‖𝐴‖𝑛;
2) ‖𝐴𝑘‖ 6 ‖𝐴𝑛‖ + 1 for all 𝑘 from 1 to 𝑛.
This implies the following properties of a random skew-symmetrix matrix A:
1. A random matrix A𝑛 possesses an averaging if and only if the random variable ‖A‖𝑛

possesses a finite expectation.
2. If A𝑛 possesses an averaging, then random matrices A𝑘 for all 𝑘 from 1 to 𝑛 possess

averagings.
Finally we obtain some useful estimates for the remainder of series (3.1) in the case when

the matrix 𝐴 is skew-symmetric.

Statement 3.1. Let 𝐴 be a skew-symmetric matrix, 𝑛 ∈ N∪{0}, 𝑡 > 0. Then the following
inequalities hold:

a)

⃦⃦⃦⃦
⃦𝑒𝑡𝐴 −

𝑛∑︁
𝑘=0

𝑡𝑘𝐴𝑘

𝑘!

⃦⃦⃦⃦
⃦ 6

𝑡𝑛+1‖𝐴𝑛+1‖
(𝑛 + 1)!

; b)

⃦⃦⃦⃦
⃦𝑒𝑡𝐴 −

𝑛∑︁
𝑘=0

𝑡𝑘𝐴𝑘

𝑘!

⃦⃦⃦⃦
⃦ 6

2𝑡𝑛‖𝐴𝑛‖
𝑛!

.

Proof. Inequality a) is implied by the Taylor formula of order 𝑛 at the point 𝑡 = 0 with the

remainder in the Lagrange form [12] applied to the matrix function 𝑒𝑡𝐴. Indeed,
(︀
𝑒𝑡𝐴
)︀(𝑘)

(0) = 𝐴𝑘

for all 𝑘 from 0 to 𝑛 and since the matrix 𝑒𝑡𝐴 is orthogonal, then⃦⃦⃦(︀
𝑒𝑡𝐴
)︀(𝑛+1)

⃦⃦⃦
= ‖𝐴𝑛+1𝑒𝑡𝐴‖ 6 ‖𝐴𝑛+1‖ · ‖𝑒𝑡𝐴‖ = ‖𝐴𝑛+1‖.

Inequality b) is implied by inequality a):⃦⃦⃦⃦
⃦𝑒𝑡𝐴 −

𝑛∑︁
𝑘=0

𝑡𝑘𝐴𝑘

𝑘!

⃦⃦⃦⃦
⃦ 6

⃦⃦⃦⃦
⃦𝑒𝑡𝐴 −

𝑛−1∑︁
𝑘=0

𝑡𝑘𝐴𝑘

𝑘!

⃦⃦⃦⃦
⃦+

⃦⃦⃦⃦
𝑡𝑛𝐴𝑛

𝑛!

⃦⃦⃦⃦
6

2𝑡𝑛‖𝐴𝑛‖
𝑛!

.

Theorem 3.1. Let A be a random skew-symmetric matrix such that A𝑛 possesses an aver-
aging for some 𝑛 ∈ N. Then

lim
𝑡→0+

1

𝑡𝑛

⃦⃦⃦⃦
⃦M(𝑒𝑡A) −

𝑛∑︁
𝑘=0

𝑡𝑘M(A𝑘)

𝑘!

⃦⃦⃦⃦
⃦ = 0.

In particular, if M(A𝑘) = 0 for all 𝑘 from 1 to 𝑛− 1, then(︁
M
(︁
𝑒

𝑛√𝑡A
)︁)︁′

(0) =
M(A𝑛)

𝑛!
,

and the matrix function M
(︁
𝑒

𝑛√𝑡A
)︁
is Chernoff equivalent to the matrix semigroup 𝑒

𝑡M(A𝑛)
𝑛! .

Proof. For 𝑡 > 0 we denote:

B(𝑡) =
1

𝑡𝑛

(︃
𝑒𝑡A −

𝑛∑︁
𝑘=0

𝑡𝑘A𝑘

𝑘!

)︃
.

The random matrices A𝑘 for 𝑘 from 1 to 𝑛 as well as a random continuous orthogonal matrix
semigroup 𝑒𝑡A possess averagings and this is why B(𝑡) is a random matrix for each 𝑡 > 0
possessing an averaging:

(MB)(𝑡) =
1

𝑡𝑛

(︃
M(𝑒𝑡A) −

𝑛∑︁
𝑘=0

𝑡𝑘M(A𝑘)

𝑘!

)︃
.
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Applying inequality a) from Statement 3.1, we obtain:

‖B(𝑡)‖ 6
𝑡‖A𝑛+1‖
(𝑛 + 1)!

𝑡→0+−−−→ 0,

that is, a random matrix B(𝑡) converges to the zero matrix as 𝑡 → 0+ pointwise on Ω. On the
other hand, according to inequality b) of Statement 3.1

‖B(𝑡)‖ 6
2‖A𝑛‖
𝑛!

,

and by our assumptions the random variable ‖A𝑛‖ possesses a finite expectation, that is, the
norm ofB(𝑡) is majorized by an integrable random variable in a right neighbourhood of the zero.
Then by Statement 2.3, (MB)(𝑡) converges to the zero matrix as 𝑡 → 0+ and this completes
the proof.

4. Averaging of random rotation operators

Let ℋ = 𝐿2(R
𝑑) be a Hilbert space of functions 𝑢 : R𝑑 → C square integrable with respect

to the standard Lebesgue measure 𝜇 on R𝑑. Let A : Ω → 𝐵(R𝑑) be a random skew-symmetric
matrix of order 𝑑.
In this section we consider random operators S(𝑡)𝑢(𝑥) = 𝑢

(︀
𝑒𝑡A𝑥

)︀
and T(𝑡) = S(

√
𝑡) perform-

ing random orthogonal transformations (rotations) of the domain of a function 𝑢 ∈ ℋ and we
study their averagings. A central result of this section is the proof of the Chernoff equivalence
of the averaging MT to some operator semigroup describing a diffusion on a (𝑑−1)-dimensional
sphere S𝑑−1 under the assumptions MA = 0 and M(A2) ∈ 𝐵(R𝑑).

4.1. Well-definiteness and existence of averaging. For each 𝜔 ∈ Ω and 𝑡 > 0 we consider
an operator S𝜔(𝑡) ∈ 𝐵(ℋ), which maps each function 𝑢 ∈ ℋ into the function 𝑢

(︀
𝑒𝑡A𝜔(·)

)︀
.

Statement 4.1. Let 𝑈 ∈ 𝐵(R𝑑) be an orthogonal matrix.

a) if 𝑢 and 𝑣 are equivalent Lebesgue measurable on R𝑑 functions, then 𝑢(𝑈(·)) and 𝑣(𝑈(·))
are also equivalent Lebesgue measurable functions;

b) if 𝑢 ∈ 𝐿2(R
𝑑), then 𝑢(𝑈(·)) ∈ 𝐿2(R

𝑑) and ‖𝑢(𝑈(·))‖𝐿2 = ‖𝑢‖𝐿2;

c) if 𝑢, 𝑣 ∈ 𝐿2(R
𝑑), then ⟨𝑢(𝑈(·)), 𝑣(𝑈(·))⟩ = ⟨𝑢, 𝑣⟩.

Proof. a) The measurability of the function 𝑢 implies the measurability of the function 𝑢(𝑈(·)).
Indeed, if 𝐺 is an arbitrary open subset of the space C, then the measurability of 𝑢 implies the
Lebesgue measurability of the set 𝑢−1(𝐺) ⊂ R𝑑. Since the family of Lebesgue measurable sets
in the space R𝑑 is invariant with respect to the orthogonal transformations of this space, then
the set 𝐴−1(𝑢−1(𝐺)) is also measurable.
Let 𝑁 ⊂ R𝑑 be a zero measure set, on which equivalent measurable functions 𝑢 and 𝑣 differ.

Then the functions 𝑢 (𝑈(·)) and 𝑣 (𝑈(·)) are Lebesgue measurable by the above proven facts
and differ on the set 𝑈−1(𝑁). Since the Lebesgue measure is invariant with respect to ortogonal
transformations, the latter set is also of zero measure. Therefore, the functions 𝑢 (𝑈(·)) and
𝑣 (𝑈(·)) are equivalent.
b) Let 𝑢 ∈ 𝐿2(R

𝑑). Then there exists a finite integral ‖𝑢‖2𝐿2
=
∫︀
R𝑑 |𝑢(𝑥)|2 𝑑𝑥. Making

an orthogonal change of variables 𝑥 = 𝑈𝑦 in this integral and taking into consideration that
| det𝑈 | = 1, we arrive at the needed statement, see [13]. Statement c) can be proved in the
same way. The proof is complete.

The proven statement implies that S𝜔(𝑡) is a well-defined unitary operator in 𝐵(ℋ).
In order to present further results, we shall need the space 𝐶0(R

𝑑) ⊂ ℋ of compactly sup-
ported continuous on R𝑑 functions. It is known that this space is everywhere dense in ℋ, see
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[13], and this is why each function in ℋ is a limit of the functions from 𝐶0(R
𝑑) in the sense of

mean-square convergence.

Lemma 4.1. Let 𝑢 ∈ 𝐶0(R
𝑑). Then for all 𝑡 > 0 and 𝑥 ∈ R𝑑 the function 𝑢

(︀
𝑒𝑡A𝑥

)︀
is a

random variable with a finite expectation and M𝑢
(︀
𝑒𝑡A(·)

)︀
∈ 𝐶0(R

𝑑) for all 𝑡 > 0.

Proof. Let 𝑡 > 0. For each 𝑥 ∈ R𝑑 the function 𝑢
(︀
𝑒𝑡A𝑥

)︀
is a random variable as a composition

of a continuous function 𝑢 and a measurable mapping 𝑒𝑡A𝑥. Moreover, 𝑢
(︀
𝑒𝑡A𝑥

)︀
is bounded on

Ω since 𝑢 is bounded on R𝑑. Therefore, M𝑢
(︀
𝑒𝑡A𝑥

)︀
is well-defined for each 𝑥 ∈ R𝑑.

For all 𝑥 and 𝑥0 in R
𝑑 we have⃒⃒

M𝑢
(︀
𝑒𝑡A𝑥

)︀
− M𝑢

(︀
𝑒𝑡A𝑥0

)︀⃒⃒
=
⃒⃒⃒
M
(︁
𝑢
(︀
𝑒𝑡A𝑥

)︀
− 𝑢

(︀
𝑒𝑡A𝑥0

)︀)︁⃒⃒⃒
6 M

⃒⃒⃒
𝑢
(︀
𝑒𝑡A𝑥

)︀
− 𝑢

(︀
𝑒𝑡A𝑥0

)︀⃒⃒⃒
. (4.1)

For each 𝜔 ∈ Ω the function 𝑢
(︀
𝑒𝑡A𝜔(·)

)︀
is continuous on R𝑑 as a composition of continuous

mappings 𝑢 and 𝑒𝑡A𝜔 . Hence,
⃒⃒
𝑢
(︀
𝑒𝑡A𝑥

)︀
− 𝑢

(︀
𝑒𝑡A𝑥0

)︀⃒⃒
converges to zero as 𝑥 → 𝑥0 pointwise on

Ω. At that,
⃒⃒
𝑢
(︀
𝑒𝑡A𝜔𝑥

)︀
− 𝑢

(︀
𝑒𝑡A𝜔𝑥0

)︀⃒⃒
6 2𝐶 for all 𝜔 ∈ Ω and 𝑥 ∈ R𝑑, where the constant 𝐶

majorizes 𝑢 on R𝑑. Therefore, by the Lebesgue’s dominated convergence theorem, the right
hand side in inequality in (4.1) tends to zero as 𝑥 → 𝑥0, and this is why the same holds for the
left hand side in the same inequality. This yields the continuity of the function M𝑢

(︀
𝑒𝑡A(·)

)︀
on

R𝑑.
Finally, if 𝐵 is a closed ball centered at the zero vector and containing the support of the

function 𝑢, then the supports of the functions 𝑢
(︀
𝑒𝑡A𝜔(·)

)︀
are contained in 𝐵 for all 𝜔 ∈ Ω.

Hence, the support of the function M𝑢
(︀
𝑒𝑡A(·)

)︀
is also contained in 𝐵. Thus, M𝑢

(︀
𝑒𝑡A(·)

)︀
is a

continuous compactly supported in R𝑑 function, that is, M𝑢
(︀
𝑒𝑡A(·)

)︀
∈ 𝐶0(R

𝑑).

Theorem 4.1. The mapping S : Ω → 𝐵(ℋ)R+ with values S𝜔 : R+ → 𝐵(ℋ) defined by the
formulae

S𝜔(𝑡)𝑢(·) = 𝑢
(︀
𝑒𝑡A𝜔(·)

)︀
∀𝑡 > 0 ∀𝜔 ∈ Ω ∀𝑢 ∈ ℋ,

where A : Ω → 𝐵(R𝑑) is a random skew-symmetric matrix, is a random strongly continuous
unitary operator semigroup and its averaging MS is a strongly continuous contractive operator-
valued function with (MS)(0) = 𝐼. At that, if 𝑢 ∈ 𝐶0(R

𝑑), then (MS)(𝑡)𝑢(·) = M𝑢
(︀
𝑒𝑡A(·)

)︀
∈

𝐶0(R
𝑑) for all 𝑡 > 0.

Proof. I. Let us check first that S𝜔 ∈ 𝐶𝑠(R+, 𝐵(ℋ)) for all 𝜔 ∈ Ω. It is obvious that S𝜔

is a unitary operator semigroup and hence, according to [10], it is sufficient to confirm that

‖S𝜔(𝑡)𝑢− 𝑢‖ℋ
𝑡→0+−−−→ 0 for all 𝑢 from a dense subspace 𝐶0(R

𝑑).
We take 𝑢 ∈ 𝐶0(R

𝑑). Let 𝐵 ⊂ R𝑑 be a closed ball centered at the zero vector and containing
the support of the function 𝑢 and let |𝑢(𝑥)| 6 𝐶 on 𝐵. Then for each 𝑡 > 0 and each 𝜔 ∈ Ω
the support of the function 𝑢

(︀
𝑒𝑡A𝜔(·)

)︀
is also contained in 𝐵 since the ball 𝐵 is invariant with

respect to the orthogonal transformation 𝑒𝑡A𝜔 mapping bijectively the support of the function

𝑢
(︀
𝑒𝑡A𝜔(·)

)︀
into the support of the function 𝑢. This implies that

⃒⃒
𝑢
(︀
𝑒𝑡A𝜔𝑥

)︀
− 𝑢(𝑥)

⃒⃒2
6 4𝐶2 on

𝐵 and
⃒⃒
𝑢
(︀
𝑒𝑡A𝜔𝑥

)︀
− 𝑢(𝑥)

⃒⃒2
= 0 on R𝑑 ∖ 𝐵. Moreover, by the continuity of the function 𝑢 and

the matrix exponent 𝑒𝑡A𝜔 as a function of the variable 𝑡, the function 𝑢
(︀
𝑒𝑡A𝜔(·)

)︀
converges to

𝑢 as 𝑡 → 0+ pointwise on R𝑑. Then by the Lebesgue theorem on the dominated convergence
we get:

‖S𝜔(𝑡)𝑢− 𝑢‖2ℋ =

∫︁
𝐵

⃒⃒
𝑢
(︀
𝑒𝑡A𝜔𝑥

)︀
− 𝑢(𝑥)

⃒⃒2
𝑑𝑥

𝑡→0+−−−→ 0 ∀𝑢 ∈ 𝐶0(R
𝑑)

and this gives the desired statement.
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II. Now we are going to show that S(𝑡) is a random operator for each 𝑡 > 0. In order to
do this, it is sufficient to show the measurability of ⟨S(𝑡)𝑢, 𝑣⟩ for all 𝑢 ∈ 𝐶0(R

𝑑) and 𝑣 ∈ ℋ.
Moreover, we shall show that M⟨S(𝑡)𝑢, 𝑣⟩ ∈ C is well-defined for such 𝑢 and 𝑣 and

M⟨S(𝑡)𝑢, 𝑣⟩ =
⟨︀
M𝑢

(︀
𝑒𝑡A(·)

)︀
, 𝑣
⟩︀
.

Let 𝑡 > 0, 𝑢 ∈ 𝐶0(R
𝑑) and 𝑣 ∈ ℋ. We consider a vector function

𝑓𝑡 : (𝜔, 𝑥) ↦→ 𝑒𝑡A𝜔𝑥

on a measurable space Ω × R𝑑. The entries of a random matrix 𝑒𝑡A are random variables on
Ω and this is why the components of the vector function 𝑓𝑡 are measurable on Ω ×R𝑑 as finite
sums of the products of measurable functions. Therefore, 𝑓𝑡 is a measurable mapping from
Ω×R𝑑 into R𝑑. At the same time, 𝑢 is continuous on R𝑑, while 𝑣 is measurable on R𝑑. Hence,
the function

(𝑢 ∘ 𝑓𝑡) · 𝑣 : (𝜔, 𝑥) ↦→ 𝑢
(︀
𝑒𝑡A𝜔𝑥

)︀
𝑣(𝑥)

is also measurable on Ω ×R𝑑.
Since

M

⎛⎝∫︁
R𝑑

⃒⃒
𝑢
(︀
𝑒𝑡A𝑥

)︀⃒⃒
|𝑣(𝑥)| 𝑑𝑥

⎞⎠ 6 M
⃦⃦(︀

𝑢
(︀
𝑒𝑡A𝑥

)︀)︀⃦⃦
ℋ · ‖𝑣‖ℋ = ‖𝑢‖ℋ‖𝑣‖ℋ < ∞,

by the Tonelli theorem the function (𝑢∘𝑓𝑡) ·𝑣 is integrable on Ω×R𝑑. Therefore, by the Fubini
theorem, the function ∫︁

R𝑑

𝑢
(︀
𝑓𝑡( · , 𝑥)

)︀
𝑣(𝑥) 𝑑𝑥 = ⟨S(𝑡)𝑢, 𝑣⟩

is measurable on Ω and there exists M⟨S(𝑡)𝑢, 𝑣⟩. Taking into consideration that, by Lemma 4.1,
M𝑢

(︀
𝑒𝑡A(·)

)︀
∈ 𝐶0(R

𝑑), again by Fubini theorem we obtain:

M⟨S(𝑡)𝑢, 𝑣⟩ =
⟨︀
M𝑢

(︀
𝑒𝑡A(·)

)︀
, 𝑣
⟩︀

and this is exactly the needed statement.

It remains to summarize and make final conclusions. According to the facts proven in Items I
and II, S is a random strongly continuous unitary operator semigroup. Then by Corollary 2.2,
S possesses averaging MS being a strongly continuous contractive operator-valued function;
(MS)(0) = 𝐼 since S𝜔(0) = 𝐼 for all 𝜔 ∈ Ω. And by the facts proved in Item II,

⟨(MS)(𝑡)𝑢, 𝑣⟩ = M⟨S(𝑡)𝑢, 𝑣⟩ =
⟨︀
M𝑢

(︀
𝑒𝑡A(·)

)︀
, 𝑣
⟩︀

∀𝑡 > 0 ∀𝑢 ∈ 𝐶0(R
𝑑) ∀𝑣 ∈ ℋ.

Since this identity holds for all 𝑣 ∈ ℋ, then

(MS)(𝑡)𝑢 = M𝑢
(︀
𝑒𝑡A(·)

)︀
∀𝑡 > 0 ∀𝑢 ∈ 𝐶0(R

𝑑),

this completes the proof of Theorem 4.1.

Since the function 𝑡 ↦→
√
𝑡 is continuous on R+, the strong continuity of S𝜔 implies a strong

continuity of T𝜔 : 𝑡 ↦→ S𝜔(
√
𝑡). Then by Theorem 4.1 we obtain the following corollary.

Corollary 4.1. The mapping T : Ω → 𝐵(ℋ)R+ with values T𝜔 : R+ → 𝐵(ℋ) defined by the
formulae

T𝜔(𝑡)𝑢(·) = 𝑢
(︁
𝑒
√
𝑡A𝜔(·)

)︁
∀𝑡 > 0 ∀𝜔 ∈ Ω ∀𝑢 ∈ ℋ,

where A : Ω → 𝐵(R𝑑) is a random skew-symmetric matrix is a random strongly continuous
unitary operator-valued function and its averaging MT is a strongly continuous contractive
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operator-valued function with (MT)(0) = 𝐼. At that, if 𝑢 ∈ 𝐶0(R
𝑑), then (MT)(𝑡)𝑢(·) =

M𝑢
(︁
𝑒
√
𝑡A(·)

)︁
∈ 𝐶0(R

𝑑) for all 𝑡 > 0.

4.2. Derivative of averaging at zero. Now we are going to study a strong derivative of the
averagings MS and MT at zero. In order to do this, we shall make use of the space 𝐶𝑘

0 (R𝑑) ⊂ ℋ
of 𝑘 times continuously differentiable compactly supported on R𝑑 functions. As 𝐶0(R

𝑑), this
space is everywhere dense in ℋ, see [13].

Theorem 4.2. Let MS be the operator-valued function from Theorem 4.1 and let MA ∈
𝐵(R𝑑) be well-defined. Then for each 𝑢 ∈ 𝐶1

0(R𝑑) there exists

(MS)′(0)𝑢 = lim
𝑡→0+

(MS)(𝑡)𝑢− 𝑢

𝑡
=
(︀
∇𝑢, (MA)𝑥

)︀
,

where the limit is treated in the sense of the convergence in ℋ.

Proof. Let as above 𝐵 ⊂ R𝑑 be a closed ball centered at the zero vector and containing the
support of the function 𝑢. Since this function is continuously differentiable and compactly
supported, there exists 𝑀1 = max

𝑥∈𝐵
|∇𝑢(𝑥)|. By the Taylor formula, for all points 𝑥 and 𝑦 in the

ball 𝐵 the identity

𝑢(𝑦) = 𝑢(𝑥) + (∇𝑢(𝑥), 𝑦 − 𝑥) + 𝑟1(𝑥, 𝑦) · |𝑦 − 𝑥| (4.2)

holds, where 𝑟1(𝑥, 𝑦) satisfies the conditions

|𝑟1(𝑥, 𝑦)| 6 2𝑀1 ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵, (4.3)

lim
𝑦→𝑥

𝑟1(𝑥, 𝑦) = 0 ∀𝑥 ∈ 𝐵. (4.4)

Substituting 𝑦 = 𝑒𝑡A𝜔𝑥 ∈ 𝐵 into identity (4.2), for each 𝜔 ∈ Ω and 𝑡 > 0 we obtain:

𝑢
(︀
𝑒𝑡A𝜔𝑥

)︀
− 𝑢(𝑥) =

(︀
∇𝑢(𝑥), 𝑒𝑡A𝜔𝑥− 𝑥

)︀
+ 𝑟1

(︀
𝑥, 𝑒𝑡A𝜔𝑥

)︀
· |𝑒𝑡A𝜔𝑥− 𝑥|. (4.5)

According to Theorem 4.1, there exists M𝑢
(︀
𝑒𝑡A(·)

)︀
= (MS)(𝑡)𝑢 ∈ 𝐶0(R

𝑑) for all 𝑡 > 0. More-
over, a random matrix 𝑒𝑡A also possesses an averaging M(𝑒𝑡A). Then the remainder term in the
right hand side of identity (4.5) also possesses an averaging, which for each 𝑡 > 0 is a function
from the space 𝐶0(R

𝑑). Dividing identity (4.5) by 𝑡 and passing to the expectation, we obtain:

(MS)(𝑡)𝑢(𝑥) − 𝑢(𝑥)

𝑡
=

(︂
∇𝑢(𝑥),

M(𝑒𝑡A)𝑥− 𝑥

𝑡

)︂
+ M

(︂
𝑟1
(︀
𝑥, 𝑒𝑡A𝑥

)︀
·
⃒⃒⃒⃒
𝑒𝑡A𝑥− 𝑥

𝑡

⃒⃒⃒⃒)︂
. (4.6)

Let us show that the last term in the right hand side of identity (4.6) tends to zero in ℋ
as 𝑡 → 0+. Taking into consideration (4.3) and the estimate ‖𝑒𝑡A − 𝐼‖ 6 𝑡‖A‖ proved in
Statement 3.1, we obtain: ⃒⃒

𝑟1
(︀
𝑥, 𝑒𝑡A𝑥

)︀⃒⃒
·
⃒⃒⃒⃒
𝑒𝑡A𝑥− 𝑥

𝑡

⃒⃒⃒⃒
6 2𝑀1𝑟𝐵‖A‖, (4.7)

where 𝑟𝐵 is the radius of the ball 𝐵. The existence of MA implies the existence M‖A‖ and
this is why for each 𝑥 ∈ 𝐵 the left hand side of inequality (4.7) is majorized by an integrable
random variable. Moreover, by (4.4) the function 𝑟1

(︀
𝑥, 𝑒𝑡A𝑥

)︀
tends to zero as 𝑡 → 0+ pointwise

on Ω for each 𝑥 ∈ 𝐵, while 𝑒𝑡A𝑥−𝑥
𝑡

tends to A𝑥. This is why the left hand side of inequality
(4.7) tends to zero as 𝑡 → 0+ point-wise on Ω for each 𝑥 ∈ 𝐵. Hence, by the Lebesgue’s
dominated convergence theorem, the last term in the right hand side of identity (4.6) tends to
zero as 𝑡 → 0+ point-wise on 𝐵. At that, it follows from estimate (4.7) that⃒⃒⃒⃒

M

(︂
𝑟1
(︀
𝑥, 𝑒𝑡A𝑥

)︀
·
⃒⃒⃒⃒
𝑒𝑡A𝑥− 𝑥

𝑡

⃒⃒⃒⃒)︂⃒⃒⃒⃒
6 2𝑀1𝑟𝐵M‖A‖ < ∞,
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and this is why by the Lebesgue theorem on majorized convergence the last term in the right
hand side of identity (4.6) tends to zero as 𝑡 → 0+ also in the space ℋ; outside the ball 𝐵 this
term is identically zero.
It remains to find the limit of the first term in the right hand side of (4.6). In order to do

this, we note that by Theorem 3.1⃒⃒⃒⃒(︂
∇𝑢(𝑥),

M(𝑒𝑡A)𝑥− 𝑥

𝑡

)︂
−
(︀
∇𝑢(𝑥), (MA)𝑥

)︀⃒⃒⃒⃒
=

⃒⃒⃒⃒(︂
∇𝑢(𝑥),

M(𝑒𝑡A) − 𝐼 − 𝑡MA

𝑡
𝑥

)︂⃒⃒⃒⃒
6 |∇𝑢| · |𝑥| ·

⃦⃦⃦⃦
M(𝑒𝑡A) − 𝐼 − 𝑡MA

𝑡

⃦⃦⃦⃦
6 𝑀1𝑟𝐵

⃦⃦⃦⃦
M(𝑒𝑡A) − 𝐼 − 𝑡MA

𝑡

⃦⃦⃦⃦
𝑡→0+−−−→ 0,

which implies the uniform on 𝐵 convergence of this term to
(︀
∇𝑢, (MA)𝑥

)︀
and hence, the same

convergence in ℋ. The proof is complete.

Theorem 4.3. Let MT be an operator-valued function in Corollary 4.1 and let there exist
M(A2) ∈ 𝐵(R𝑑) and MA = 0. Then for each 𝑢 ∈ 𝐶2

0(R𝑑) there exists

(MT)′(0)𝑢 = lim
𝑡→0+

(MT)(𝑡)𝑢− 𝑢

𝑡
=

1

2

(︀
∇𝑢,M(A2)𝑥

)︀
− 1

2

(︀
𝑥,M(A𝐻𝑢A)𝑥

)︀
, (4.8)

wherew 𝐻𝑢 is the matrix of the second derivatives of the functions 𝑢 (Hessian matrix). The
limit is treated in the sense of the convergence in ℋ.

Proof. Similar to the proof of Theorem 4.2, we consider a closed ball 𝐵 ⊂ R𝑑 centered at the zero
vector and containing the support of the function 𝑢. Let 𝑀1 = max

𝑥∈𝐵
|∇𝑢|, 𝑀2 = max

𝑥∈𝐵
‖𝐻𝑢(𝑥)‖.

We expand 𝑢 in the ball 𝐵 by the Taylor formula

𝑢(𝑦) = 𝑢(𝑥) +
(︀
∇𝑢(𝑥), 𝑦 − 𝑥

)︀
+

1

2

(︀
𝑦 − 𝑥,𝐻𝑢(𝑥)(𝑦 − 𝑥)

)︀
+ 𝑟2(𝑥, 𝑦) · |𝑦 − 𝑥|2, (4.9)

where 𝑟2(𝑥, 𝑦) satisfies the conditions

|𝑟2(𝑥, 𝑦)| 6 𝑀2 ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵, (4.10)

lim
𝑦→𝑥

𝑟2(𝑥, 𝑦) = 0 ∀𝑥 ∈ 𝐵. (4.11)

Substituting 𝑦 = 𝑒
√
𝑡A𝜔𝑥 ∈ 𝐵 into identity (4.9), for each 𝜔 ∈ Ω and 𝑡 > 0 we obtain:

𝑢
(︁
𝑒
√
𝑡A𝜔𝑥

)︁
− 𝑢(𝑥) =

(︁
∇𝑢(𝑥), 𝑒

√
𝑡A𝜔𝑥− 𝑥

)︁
+

1

2

(︁
𝑒
√
𝑡A𝜔𝑥− 𝑥,𝐻𝑢(𝑥)(𝑒

√
𝑡A𝜔𝑥− 𝑥)

)︁
+ 𝑟2

(︁
𝑥, 𝑒

√
𝑡A𝜔𝑥

)︁
·
⃒⃒⃒
𝑒
√
𝑡A𝜔𝑥− 𝑥

⃒⃒⃒2
.

(4.12)

According to Corollary 4.1, there exists M𝑢
(︁
𝑒
√
𝑡A(·)

)︁
= (MT)(𝑡)𝑢 ∈ 𝐶0(R

𝑑) as well as

M
(︀
𝑒
√
𝑡A
)︀
∈ 𝐵(R𝑑) for all 𝑡 > 0. Moreover, since by Statement 3.1⃒⃒⃒(︁

𝑒
√
𝑡A𝑥− 𝑥,𝐻𝑢(𝑥)(𝑒

√
𝑡A𝑥− 𝑥)

)︁⃒⃒⃒
6 ‖𝐻𝑢(𝑥)‖ · |𝑥|2 ·

⃦⃦⃦
𝑒
√
𝑡A − 𝐼

⃦⃦⃦2
6 𝑡‖𝐻𝑢(𝑥)‖ · |𝑥|2 · ‖A‖2

and the existence of M(A2) implies the integrability of the random variable ‖A‖2 on Ω, then
there exists an averaging of the second term in the right hand side of identity (4.12); at that,
since this term is a sum of products of the coordinates of the vector 𝑥 and of the entries of
the Hessian matrix 𝐻𝑢(𝑥), being continuous functions, with the entries of the random matrix

𝑒
√
𝑡A − 𝐼, then after averaging, for each 𝑡 > 0, it is a compactly supported continuous in 𝑥

function. The above said facts imply that there exists an averaging of the remainder term in
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identity (4.12); for each 𝑡 > 0 it is a function from the space 𝐶0(R
𝑑). We divide identity (4.12)

by 𝑡, pass to expectation and, taking into consideration that
(︀
𝑒
√
𝑡A − 𝐼

)︀*
= 𝑒−

√
𝑡A − 𝐼 by the

orthogonality of the matrix 𝑒
√
𝑡A, we obtain:

(MT)(𝑡)𝑢(𝑥) − 𝑢(𝑥)

𝑡
=

(︃
∇𝑢(𝑥),

M
(︀
𝑒
√
𝑡A
)︀
𝑥− 𝑥

𝑡

)︃

+
1

2

⎛⎝𝑥,
M
(︁

(𝑒−
√
𝑡A − 𝐼)𝐻𝑢(𝑥)(𝑒

√
𝑡A − 𝐼)

)︁
𝑥

𝑡

⎞⎠
+ M

⎛⎝𝑟2
(︀
𝑥, 𝑒

√
𝑡A𝑥
)︀
·

⃒⃒⃒⃒
⃒𝑒

√
𝑡A𝑥− 𝑥√

𝑡

⃒⃒⃒⃒
⃒
2
⎞⎠ .

(4.13)

We are going to find the limit of each term in the right hand side of (4.13) as 𝑡 → 0+. Let
𝑟𝐵 be the radius of the ball 𝐵. By Theorem 3.1 and the condition MA = 0, for the first term
we have⃒⃒⃒⃒
⃒
(︃
∇𝑢(𝑥),

M
(︀
𝑒
√
𝑡A
)︀
𝑥− 𝑥

𝑡

)︃
− 1

2

(︀
∇𝑢(𝑥),M(A2)𝑥

)︀⃒⃒⃒⃒⃒ =

⃒⃒⃒⃒
⃒
(︃
∇𝑢(𝑥),

M(𝑒
√
𝑡A) − 𝐼 − 𝑡

2
M(A2)

𝑡
𝑥

)︃⃒⃒⃒⃒
⃒

6|∇𝑢(𝑥)| · |𝑥| ·

⃦⃦⃦⃦
⃦M(𝑒

√
𝑡A) − 𝐼 − 𝑡

2
M(A2)

𝑡

⃦⃦⃦⃦
⃦

6𝑀1𝑟𝐵

⃦⃦⃦⃦
⃦M(𝑒

√
𝑡A) − 𝐼 − 𝑡

2
M(A2)

𝑡

⃦⃦⃦⃦
⃦ 𝑡→0+−−−→ 0,

which implies the uniform on 𝐵 convergence (and hence the convergence in ℋ) of this term to
1
2

(︀
∇𝑢(𝑥),M(A2)𝑥

)︀
.

For the second term we first note that in view of Statement 3.1

1

𝑡

⃦⃦⃦
(𝑒−

√
𝑡A − 𝐼)𝐻𝑢(𝑥)(𝑒

√
𝑡A − 𝐼) + 𝑡A𝐻𝑢(𝑥)A

⃦⃦⃦
6

1

𝑡

⃦⃦⃦
(𝑒−

√
𝑡A − 𝐼)𝐻𝑢(𝑥)

(︀
𝑒
√
𝑡A − 𝐼 −

√
𝑡A
)︀⃦⃦⃦

+
1

𝑡

⃦⃦⃦(︀
𝑒−

√
𝑡A − 𝐼 +

√
𝑡A
)︀
𝐻𝑢(𝑥)

√
𝑡A
⃦⃦⃦

6
1

𝑡
·
√
𝑡‖A‖ · ‖𝐻𝑢(𝑥)‖ · 2

√
𝑡‖A‖ +

1

𝑡
· 2
√
𝑡‖A‖ · ‖𝐻𝑢(𝑥)‖ ·

√
𝑡‖A‖ 6 4𝑀2 · ‖A2‖.

(4.14)

Thus, the left hand side of inequality (4.14) for each 𝑥 ∈ 𝐵 is majorized by an integrable
random variable 4𝑀2‖A2‖. On the other hand, by the same statement,

1

𝑡

⃦⃦⃦
(𝑒−

√
𝑡A − 𝐼)𝐻𝑢(𝑥)(𝑒

√
𝑡A − 𝐼) + 𝑡A𝐻𝑢(𝑥)A

⃦⃦⃦
6

1

𝑡

⃦⃦⃦
(𝑒−

√
𝑡A − 𝐼)𝐻𝑢(𝑥)

(︀
𝑒
√
𝑡A − 𝐼 −

√
𝑡A
)︀⃦⃦⃦

+
1

𝑡

⃦⃦⃦(︀
𝑒−

√
𝑡A − 𝐼 +

√
𝑡A
)︀
𝐻𝑢(𝑥)

√
𝑡A
⃦⃦⃦

6
1

𝑡
·
√
𝑡‖A‖ · ‖𝐻𝑢(𝑥)‖ · 𝑡

2
‖A2‖ +

1

𝑡
· 𝑡

2
‖A2‖ · ‖𝐻𝑢(𝑥)‖ ·

√
𝑡‖A‖

6
√
𝑡𝑀2 · ‖A3‖ 𝑡→0+−−−→ 0,

(4.15)

i.e., for each 𝑥 ∈ 𝐵 the left hand side of inequality (4.15) converges to zero as 𝑡 → 0+ point-wise
in Ω. Then by Statement 2.3

1

𝑡

⃦⃦⃦
M
(︁

(𝑒−
√
𝑡A − 𝐼)𝐻𝑢(𝑥)(𝑒

√
𝑡A − 𝐼)

)︁
+ 𝑡M(A𝐻𝑢(𝑥)A)

⃦⃦⃦
𝑡→0+−−−→ 0 ∀𝑥 ∈ 𝐵. (4.16)
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Employing now estimate (4.14), by Statement 2.2, on 𝐵 we obtain:⃒⃒⃒⃒
⃒⃒
⎛⎝𝑥,

M
(︁

(𝑒−
√
𝑡A − 𝐼)𝐻𝑢(𝑥)(𝑒

√
𝑡A − 𝐼)

)︁
𝑥

𝑡

⎞⎠+
(︀
𝑥,M(A𝐻𝑢(𝑥)A)𝑥

)︀⃒⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒(︂
𝑥,

1

𝑡
M
(︁

(𝑒−
√
𝑡A − 𝐼)𝐻𝑢(𝑥)(𝑒

√
𝑡A − 𝐼) + 𝑡A𝐻𝑢(𝑥)A

)︁
𝑥

)︂⃒⃒⃒⃒
6 |𝑥|2 ·

⃦⃦⃦⃦
1

𝑡
M
(︁

(𝑒−
√
𝑡A − 𝐼)𝐻𝑢(𝑥)(𝑒

√
𝑡A − 𝐼) + 𝑡A𝐻𝑢(𝑥)A

)︁⃦⃦⃦⃦
6 4𝑀2𝑟

2
𝐵M‖A2‖ < ∞,

and this is why the Lebesgue’s dominated convergence theorem and (4.16) imply the conver-
gence of the second term in the right hand side of identity(4.13) to −1

2

(︀
𝑥,M(A𝐻𝑢A)𝑥

)︀
in

ℋ.
Taking into consideration (4.10) and the estimate ‖𝑒𝑡A−𝐼‖ 6 𝑡‖A‖ proved in Statement 3.1,

we obtain: ⃒⃒⃒
𝑟2
(︀
𝑥, 𝑒

√
𝑡A𝑥
)︀⃒⃒⃒

·

⃒⃒⃒⃒
⃒𝑒

√
𝑡A𝑥− 𝑥√

𝑡

⃒⃒⃒⃒
⃒
2

6 𝑀2𝑟
2
𝐵‖A2‖. (4.17)

Since the random variable ‖A2‖ is integrable, for each 𝑥 ∈ 𝐵 the left hand side in (4.17)
is majorized by an integrable function. Moreover, by (4.11), for each 𝑥 ∈ 𝐵, the function

𝑟2
(︀
𝑥, 𝑒

√
𝑡A𝑥
)︀
tends to zero as 𝑡 → 0+ pointwise on Ω, while 𝑒

√
𝑡A𝑥−𝑥√

𝑡
tends to A𝑥. This is why

the left hand side in (4.17) tends to zero. Hence, by the Lebesgue’s dominated convergence
theorem the last term in the right hand side of identity (4.13) tends to zero as 𝑡 → 0+ pointwise
on 𝐵. At that, it follows from estimate (4.17) that⃒⃒⃒⃒

⃒⃒M
⎛⎝𝑟2

(︀
𝑥, 𝑒

√
𝑡A𝑥
)︀
·

⃒⃒⃒⃒
⃒𝑒

√
𝑡A𝑥− 𝑥√

𝑡

⃒⃒⃒⃒
⃒
2
⎞⎠⃒⃒⃒⃒⃒⃒ 6 𝑀2𝑟

2
𝐵M‖A2‖ < ∞

on 𝐵. This is why by the Lebesgue’s dominated convergence theorem, the last term in the right
hand side of identity (4.13) tends to zero as 𝑡 → 0+ in the space ℋ. The proof is complete.

4.3. Divergence form of derivative. Operator (4.8) can be written in a divergence form
if for each 𝑥 ∈ R𝑑 and each 𝜔 ∈ Ω we introduce the tensor product A𝜔𝑥 ⊗ A𝜔𝑥, which is
considered as a bilinear form on C𝑑 acting on the pair of the vectors 𝜉, 𝜂 by the rule

(A𝜔𝑥⊗A𝜔𝑥) (𝜉, 𝜂) = (A𝜔𝑥, 𝜉)(A𝜔𝑥, 𝜂).

The averaging of this tensor is introduced component-wise as in the case of the operators, that
is, by M (A𝑥⊗A𝑥) we mean the tensor acting on a pair of vectors 𝜉, 𝜂 by the rule

M (A𝑥⊗A𝑥) (𝜉, 𝜂) = M
(︀
(A𝑥, 𝜉)(A𝑥, 𝜂)

)︀
.

The existence of the averaging of this tensor is implied by the existence of a finite M‖A‖2,
which is true by the assumptions of Theorem 4.3.
In what follows, it will be convenient to regard the tensor A𝑥⊗A𝑥 as an operator from C𝑑

into C𝑑, which maps each vector 𝜉 into the vector

(A𝑥⊗A𝑥) 𝜉 = (A𝑥, 𝜉)A𝑥.

We note that then the identity

∇ · (A𝑥⊗A𝑥)∇𝑢 =∇ ·
(︀
(A𝑥,∇𝑢)A𝑥

)︀
= (A2𝑥,∇𝑢) + (A𝑥,𝐻𝑢A𝑥) + (A𝑥,∇𝑢) trA

=
(︀
∇𝑢,A2𝑥

)︀
−
(︀
𝑥,A𝐻𝑢A𝑥

)︀
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holds for an arbitrary function 𝑢 ∈ 𝐶2
0(R𝑑); here in the latter identity we have taken into

consideration that trA = 0 and (A𝑥, 𝑦) = −(𝑥,A𝑦) by the skew-symmetricity of A. Applying
now averaging and employing the linearity of the operators A, ∇ and of the scalar product and
comparing with (4.8), we conclude that

(MT)′(0)𝑢 =
1

2
∇ ·
(︀
M (A𝑥⊗A𝑥)∇𝑢

)︀
∀𝑢 ∈ 𝐶2

0(R𝑑). (4.18)

4.4. Study of derivative in 𝐿2(R
𝑑). For the sake of brevity we denote operator (4.18) by

−1
2
𝐿. A sesquilinear form associated with the operator 𝐿 reads as

⟨𝐿𝑢, 𝑣⟩ = −
∫︁
R𝑑

∇ ·
(︀
M (A𝑥⊗A𝑥)∇𝑢

)︀
𝑣 𝑑𝑥 =

∫︁
R𝑑

(︁
M (A𝑥⊗A𝑥)∇𝑢,∇𝑣

)︁
𝑑𝑥

=

∫︁
R𝑑

M
(︁(︀

A𝑥,∇𝑢
)︀(︀
A𝑥,∇𝑣

)︀)︁
𝑑𝑥,

where we have integrated by parts and employed that the functions 𝑢 and 𝑣 are compactly
supported. In particular,

⟨𝐿𝑢, 𝑢⟩ =

∫︁
R𝑑

M
⃒⃒(︀
A𝑥,∇𝑢

)︀⃒⃒2
𝑑𝑥 > 0,

that is, the operator 𝐿 is non-negative on 𝐶2
0(R𝑑) and therefore, it is symmetric. However,

it is not elliptic. Indeed, let 𝑢(𝑥) = 𝑣(|𝑥|2), where 𝑣 ∈ 𝐶∞
0 (R). Then 𝑢 ∈ 𝐶∞

0 (R𝑑) and
∇𝑢 = 2𝑥𝑣′(|𝑥|2), and this is why

(A𝑥,∇𝑢
)︀

= 2𝑣′(|𝑥|2)(A𝑥, 𝑥) = 0 ∀𝜔 ∈ Ω ∀𝑥 ∈ R𝑑

by the skew-symmetricity of A. Hence, on such functions we have ⟨𝐿𝑢, 𝑢⟩ = 0.
The matter is that the operator 𝐿 degenerates along the radial direction, what can be also

seen from the definition of this operator as a derivative of MT: on functions 𝑢 depending only
on |𝑥| we have (MT)(𝑡)𝑢 = 𝑢 for each 𝑡. This arguing leads us to the conclusion that it is natural
to consider the operator 𝐿 in polar coordinates, in which it should contain no derivatives with
respect to |𝑥|. Let us check this by straightforward calculations.
We let 𝑥 = 𝑟𝜎 with 𝑟 = |𝑥| > 0, and 𝜎 = 𝑥

𝑟
∈ S𝑑−1, where S𝑑−1 is a (𝑑 − 1)-dimensional

unit sphere in the space R𝑑. Then ∇ = 𝜎 𝜕
𝜕𝑟

+ 1
𝑟
∇S𝑑−1 , where ∇S𝑑−1 is the gradient on S𝑑−1.

Substituting this into (4.18) and taking into consideration that (A𝜎, 𝜎) = 0, we successively
obtain:

M (A𝑥⊗A𝑥)∇𝑢 = 𝑟2M (A𝜎 ⊗A𝜎)

(︂
𝜎𝑢′

𝑟 +
1

𝑟
∇S𝑑−1𝑢

)︂
= 𝑟2𝑢′

𝑟M
(︀
(A𝜎, 𝜎)A𝜎

)︀
+ 𝑟M (A𝜎 ⊗A𝜎)∇S𝑑−1𝑢

= 𝑟M (A𝜎 ⊗A𝜎)∇S𝑑−1𝑢;

∇ ·
(︀
M (A𝑥⊗A𝑥)∇𝑢

)︀
=

(︂
𝜎
𝜕

𝜕𝑟
+

1

𝑟
∇S𝑑−1

)︂
·
(︀
𝑟M (A𝜎 ⊗A𝜎)∇S𝑑−1𝑢

)︀
= 𝜎 · M (A𝜎 ⊗A𝜎)

(︀
𝑟∇S𝑑−1𝑢

)︀′
𝑟

+ ∇S𝑑−1 ·
(︀
M (A𝜎 ⊗A𝜎)∇S𝑑−1𝑢

)︀
= M

(︁
(A𝜎, 𝜎)

(︁
A𝜎,

(︀
𝑟∇S𝑑−1𝑢

)︀′
𝑟

)︁)︁
+ ∇S𝑑−1 ·

(︀
M (A𝜎 ⊗A𝜎)∇S𝑑−1𝑢

)︀
= ∇S𝑑−1 ·

(︀
M (A𝜎 ⊗A𝜎)∇S𝑑−1𝑢

)︀
.

Thus,

𝐿 = −∇S𝑑−1 ·
(︀
M (A𝜎 ⊗A𝜎)∇S𝑑−1𝑢

)︀
. (4.19)
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4.5. Study of derivative in 𝐿2(S𝑑−1). We note that for each point 𝜎 ∈ S𝑑−1 the vector A𝜎
is orthogonal to 𝜎 and this is why we can suppose that A𝜎 belongs to a complexified tangent
space 𝑇𝜎S𝑑−1 to the sphere S𝑑−1 at the point 𝜎. Therefore, we can suppose that the tensor
M (A𝜎 ⊗A𝜎) acts in 𝑇𝜎S𝑑−1. At that, the spherical gradient ∇S𝑑−1 is a vector operator with
values in 𝑇𝜎S𝑑−1 at each point 𝜎 ∈ S𝑑−1. Thus, the operator 𝐿 represented by formula (4.19) is
a well-defined operator in the space 𝐿2(S𝑑−1) with the domain 𝐶2(S𝑑−1).

Theorem 4.4. Let a random matrix A satisfies the assumptions of Theorem 4.3 and there
exists a constant 𝛾 > 0 such that

M
⃒⃒(︀
A𝜎, 𝜉

)︀⃒⃒2
> 𝛾|𝜉|2 ∀𝜎 ∈ S𝑑−1 ∀𝜉 ∈ 𝑇𝜎S𝑑−1. (4.20)

Then the operator 𝐿 defined on the space 𝐿2(S𝑑−1) by formula (4.19) with the domain 𝐶2(S𝑑−1)
is essentially self-adjoint, while the domain of its closure coincides with the Sobolev space
𝑊 2

2 (S𝑑−1).

Proof. In the same way as above we establish the non-negativity and symmetricity of the
operator 𝐿, while condition (4.20) makes operator 𝐿 elliptic. Moreover, the coefficients of
the form M (A𝜎 ⊗A𝜎) are infinitely differentiable in each local coordinate system and are
bounded by the number M‖A‖2. The sphere S𝑑−1 is a compact Riemannian manifold. Thus,
𝐿 is a symmetric elliptic operator with bounded infinitely differentiable coefficients defined on
the space 𝐿2(S𝑑−1) with the domain 𝐶2(S𝑑−1). According to [14], the statement of the theorem
holds true for such operator. The proof is complete.

Theorem 4.4 is a key result of this study: it provides conditions under which the derivative of
the averaging of a random operator-valued function T(𝑡) = S(

√
𝑡) is an essentially self-adjoint

operator, and therefore, it is a generator of some strongly continuous operator semigroup. It
implies a final result of the paper.

Corollary 4.2. Let a random matrix A satisfies the assumptions of Theorems 4.3 and 4.4.
Then the operator-valued function MT is Chernoff equivalent to a contractive strongly contin-
uous semigroup generated by the closure of the operator −𝐿

2
, where 𝐿 is defined by formula

(4.19).

Proof. By Theorem 4.4, the operator 𝐿 is non-negative and essentially self-adjoint. Then the
operator −𝐿

2
= (MT)′(0) is non-positive essentially self-adjoint and this is why its closure gen-

erates a contractive strongly continuous semigroup. It remains to apply the Chernoff theorem
in order to complete the proof.
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