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DUAL SPACES FOR WEIGHTED SPACES OF

LOCALLY INTEGRABLE FUNCTIONS

R.S. YULMUKHAMETOV

Abstract. In this work we consider weighted 𝐿2 spaces on convex domains in R𝑛 and we
study the problem on describing the dual space in terms of the Laplace-Fourier transform.

Let 𝐷 be a bounded convex domain in R𝑛 and 𝜙 be a convex function on this domain.
By 𝐿2(𝐷,𝜙) we denote the space of locally integrable functions 𝐷 with a finite norm

‖𝑓‖2 :=
∫︁
𝐷

|𝑓(𝑡)|2𝑒−2𝜙(𝑡)𝑑𝑡.

Under some restrictions for the weight 𝜙 we prove that an entire function 𝐹 is represented
as the Fourier – Laplace transform of a function in 𝐿2(𝐷,𝜙), that is,

𝐹 (𝜆) =

∫︁
𝐷

𝑒𝑡𝜆−2𝜙(𝑡)𝑓(𝑡)𝑑𝑡, 𝑓 ∈ 𝐿2(𝐷,𝜙),

for some function 𝑓 ∈ 𝐿2(𝐷,𝜙) if and only if

‖𝐹‖2 :=
∫︁

|𝐹 (𝑧)|2

𝐾(𝑧)
det𝐺(̃︀𝜙, 𝑥)𝑑𝑦𝑑𝑥 < ∞,

where 𝐺(̃︀𝜙, 𝑥) is the Hessian matrix of the function ̃︀𝜙,
𝐾(𝜆) := ‖𝛿𝜆‖2, 𝜆 ∈ C𝑛.

As an example we show that for the case, when 𝐷 is the unit circle
and 𝜙(𝑡) = (1− |𝑡|)𝛼, the space of Fourier-Laplace transforms is isomorphic to the space of
entire functions 𝐹 (𝑧), 𝑧 = 𝑥+ 𝑖𝑦 ∈ C2, for which

‖𝐹‖2 :=
∫︁

|𝐹 (𝑥+ 𝑖𝑦)|2𝑒−2|𝑥|−2(𝑎𝛽)
1

𝛽+1 (𝑎+1)|𝑥|
𝛽

𝛽+1
(1 + |𝑥|)

𝛼−3
2 𝑑𝑥𝑑𝑦 < ∞,

where 𝛼 = 𝛽
𝛽+1 .
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1. Introduction

Let 𝐷 be a bounded convex domain in R𝑛 and 𝜙 be a convex function on this domain. By
𝐿2(𝐷,𝜙) we denote the space of locally integrable functions on 𝐷 with a finite norm

‖𝑓‖2 :=

∫︁
𝐷

|𝑓(𝑡)|2𝑒−2𝜙(𝑡)𝑑𝑡.
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A system of functions 𝑒𝑡𝜆, where 𝑡 = (𝑡1, . . . , 𝑡𝑛), 𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ C𝑛 and 𝑡𝜆 =
∑︀𝑛

𝑘=1 𝑡𝑘𝜆𝑘, is
complete in the Hilbert space 𝐿2(𝐷,𝜙) and this is why the Fourier-Laplace transform

ℒ : 𝑆 → 𝑆(𝑒𝑡𝜆), 𝜆 ∈ C𝑛,

maps the dual space 𝐿*
2(𝐷,𝜙) onto some space ̂︀𝐿2(𝐷,𝜙) of the functions defined on C𝑛. Since

a Hilbert space coincides with its dual, the space ̂︀𝐿2(𝐷,𝜙) consists of the functions of form

̂︀𝑓(𝜆) =

∫︁
𝐷

𝑒𝑡𝜆−2𝜙(𝑡)𝑓(𝑡)𝑑𝑡, 𝑓 ∈ 𝐿2(𝐷,𝜙),

in particular, ̂︀𝐿2(𝐷,𝜙) is a subspace of the space of entire functions. The space ̂︀𝐿2(𝐷,𝜙) is a

Hilbert one with respect to the induced scalar product ( ̂︀𝑓, ̂︀𝑔) = (𝑓, 𝑔).

We note that the point functionals 𝛿𝜆 : 𝐹 → 𝐹 (𝜆) are continuous in the space ̂︀𝐿2(𝐷,𝜙) for
each 𝜆 ∈ C𝑛. The function

𝐾(𝜆) := ‖𝛿𝜆‖2, 𝜆 ∈ C𝑛,

is called Bergman function.
In this paper we consider the issue on a weighted descriptions of the induced norm in this

space. In the one-dimensional case this question was completely solved in work [2] and in a
final formulation in work [1] the answer reads as follows.
Let 𝐷 be an interval in the real axis and 𝜙 be a convex function on this interval. Then the

space ̂︀𝐿2(𝐷,𝜙) is isomorphic to the space of entire functions 𝐹 satisfying the conditions

|𝐹 (𝑧)| 6 𝐶𝐾(𝑧), 𝑧 ∈ C, ‖𝐹‖2 :=

∫︁
|𝐹 (𝑧)|2

𝐾(𝑧)
𝑑𝑦𝑑̃︀𝑢′+(𝑥) <∞.

We shall assume that 𝜙 ∈ 𝐶2 and that this function is strictly convex.

2. Convex functions

In this section we introduce a regularity notion and expose some of its properties.
Let 𝐾 be a convex domain, 𝜓 ∈ 𝐶2(𝐾) be a strictly convex function and

∇𝜓(𝑡) =

(︂
𝜕𝜓

𝜕𝑡1
(𝑡), . . . ,

𝜕𝜓

𝜕𝑡𝑛
(𝑡)

)︂
be a gradient vector, and

𝐺(𝜓, 𝑡) =

(︂
𝜕2𝜓

𝜕𝑡𝑖𝜕𝑡𝑗
(𝑡)

)︂𝑛

𝑖,𝑗=1

be the Hessian matrix of the function 𝜓 at a point 𝑡 ∈ 𝐾.
The strict convexity of the function 𝜓 is equivalent to the positive definiteness of its Hessian

matrix:

(𝜔,𝐺(𝜓, 𝑡)𝜔) > 0, 𝜔 ∈ R𝑛, ‖𝜔‖ = 1, 𝑡 ∈ 𝐷.

In particular, the mapping ∇𝜓(𝑡) is injective for each 𝑡 ∈ 𝐾. The functioñ︀𝜓(𝜏) = sup
𝑡∈𝐾

(𝑡𝜏 − 𝜓(𝑡))

is called a Young transform. In the general case the Young transform ̃︀𝜓 is a convex function
in some convex domain ̃︀𝐾. If the supremum is attained at an internal point of the domain 𝐾,

then it follows from the inverse function theorem that the function ̃︀𝜓 is differentiable at a point

𝜏 and ∇ ̃︀𝜓(∇𝜓(𝜏)) ≡ 𝜏 . Differentiating this identity, we see that the Hessian matrices satisfy
the identity

𝐺( ̃︀𝜓,∇𝜓(𝑡))𝐺(𝜓, 𝑡) = 𝐸, 𝑡 ∈ 𝐷,
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where 𝐸 is the unit matrix. We shall the domain

𝐸(𝜓, 𝑡0, 𝑝) = {𝑡 ∈ 𝐷 : (𝑡− 𝑡0)𝐺(𝜓, 𝑡0)(𝑡− 𝑡0) < 𝑝}
an 𝑝-ellipsoid of the function 𝜓 at a point 𝑡0.
In the vicinity of each point 𝑡0 ∈ 𝐾 the function 𝜓 ∈ 𝐶2 is represented by the Taylor formula

𝜓(𝑡) = 𝜙(𝑡0) + ∇𝜙(𝑡0)(𝑡− 𝑡0) +
1

2
(𝑡− 𝑡0)𝐺(𝜙, 𝑡0)(𝑡− 𝑡0) + 𝛼(𝑡0, 𝑡− 𝑡0)|𝑡− 𝑡0|2,

where 𝛼(𝑡0, 𝜀) → 0 as 𝜀→ 0. For a positive 𝑝 we let

Ω(𝜓, 𝑡0, 𝑝) =
{︀
𝑡 ∈ 𝐷 : 𝜓(𝑡) − 𝜓(𝑡0) −∇𝜓(𝑡0)(𝑡− 𝑡0) < 𝑝

}︀
,

then Ω(𝜓, 𝑡0, 𝑝) is some convex neighbourhood of the point 𝑡0.
We introduce a condition: there exist numbers 𝑞 > 1, 𝑝 > 0 such that

1

2𝑞
(𝑡− 𝑡0)𝐺(𝜓, 𝑡0)(𝑡− 𝑡0) 6 |𝜓(𝑡) − 𝜓(𝑡0) −∇𝜓(𝑡0)(𝑡− 𝑡0)|

6
𝑞

2
(𝑡− 𝑡0)𝐺(𝜓, 𝑡0)(𝑡− 𝑡0), 𝑡 ∈ 𝐸(𝜓, 𝑡0, 𝑝).

(2.1)

Lemma 2.1. Let 𝜙 ∈ 𝐶2 be a strictly convex function in a bounded convex domain 𝐷 and

|𝜙(𝑡)| → +∞ as dist(𝑡) → 0. If ̃︀𝜙 satisfies condition (2.1) at a point 𝑥 ∈ R𝑛, then

𝐸(̃︀𝜙, 𝑥, 𝑝
𝑞

) ⊂ Ω(̃︀𝜙, 𝑥, 𝑝) ⊂ 𝐸(̃︀𝜙, 𝑥, 4𝑞2𝑝),
and

𝑐𝑛

(︂
𝑝

𝑞

)︂𝑛
2 1√︀

det𝐺(̃︀𝜙, 𝑥)
6 |Ω(̃︀𝜙, 𝑥, 𝑝)| 6 𝑐𝑛

(4𝑝𝑞2)
𝑛
2√︀

det𝐺(̃︀𝜙, 𝑥)
,

where the symbol |𝐴| stands for the volume of the set 𝐴, the symbol dist(𝑡) denotes the distance

from a point 𝑡 ∈ 𝐷 to the boundary of 𝐷, while 𝑐𝑛 is the volume of the unit ball in R𝑛.

Proof. Let us prove that Ω(̃︀𝜙, 𝑥, 𝑝) ⊂ 𝐸(̃︀𝜙, 𝑥, 4𝑞2𝑝). Without loss of generality we assume that
𝑥 = 0. We take 𝜏 ′′ ∈ 𝜕Ω(̃︀𝜙, 0, 𝑝): ̃︀𝜙(𝜏 ′′) − ̃︀𝜙(0) −∇̃︀𝜙(0)𝜏 ′′ = 𝑝.

If 𝜏 ′′ /∈ 𝐸(̃︀𝜙, 0, 𝑝), then the segment connecting the point 𝜏 ′′ with the point 0 intersects the
boundary of the ellipsoid 𝐸(̃︀𝜙, 0, 𝑝) at some point 𝜏 ′ ∈ Ω(̃︀𝜙, 0, 𝑝):

𝜏 ′𝐺(̃︀𝜙, 0)𝜏 ′ = 𝑝.

By condition (2.1), ̃︀𝜙(𝜏 ′) − ̃︀𝜙(0) −∇̃︀𝜙(0)𝜏 ′ >
1

2𝑞
𝜏 ′𝐺(̃︀𝜙, 0)𝜏 ′ =

𝑝

2𝑞
.

The function ̃︀𝜙(𝑡) − ̃︀𝜙(0) −∇̃︀𝜙(0)𝑡 is convex in 𝑡 and this is why

𝑝 = ̃︀𝜙(𝜏 ′′) − ̃︀𝜙(0) −∇̃︀𝜙(0)𝜏 ′′ >
̃︀𝜙(𝜏 ′) − ̃︀𝜙(0) −∇̃︀𝜙(0)𝜏 ′

|𝜏 ′|
|𝜏 ′′| > 𝑝

2𝑞

|𝜏 ′′|
|𝜏 ′|

.

Therefore, |𝜏 ′′| 6 2𝑞|𝜏 ′| and

𝜏 ′′𝐺(̃︀𝜙, 0)𝜏 ′′ =
|𝜏 ′′|2

|𝜏 ′|2
𝜏 ′𝐺(̃︀𝜙, 0)𝜏 ′ 6 4𝑞2𝑝,

that is, 𝜏 ′′ ∈ 𝐸(̃︀𝜙, 0, 4𝑞2𝑝) and this leads us to the needed inclusion.
Let us prove the inclusion 𝐸(̃︀𝜙, 0, 𝑝

𝑞
) ⊂ Ω(̃︀𝜙, 0, 𝑝). Let 𝜏 ′′ ∈ 𝜕𝐸(̃︀𝜙, 0, 𝑝

𝑞
):

𝜏 ′′𝐺(̃︀𝜙, 0)𝜏 ′′ =
𝑝

𝑞
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and suppose that 𝜏 ′′ /∈ Ω(̃︀𝜙, 0, 𝑝):̃︀𝜙(𝜏 ′′) − ̃︀𝜙(0) −∇̃︀𝜙(0)𝜏 ′′ > 𝑝.

The segment connecting the point 𝜏 ′′ with the point 0 intersects the boundary of Ω(̃︀𝜙, 0, 𝑝) at
some point 𝜏 ′: ̃︀𝜙(𝜏 ′) − ̃︀𝜙(0) −∇̃︀𝜙(0)𝜏 ′ = 𝑝.

By condition (2.1),

𝜏 ′𝐺(̃︀𝜙, 0)𝜏 ′ >
2

𝑞
(̃︀𝜙(𝜏 ′) − ̃︀𝜙(0) −∇̃︀𝜙(0)𝜏 ′) =

2𝑝

𝑞
,

and therefore,
𝑝

𝑞
= 𝜏 ′′𝐺(̃︀𝜙, 0)𝜏 ′′ =

|𝜏 ′′|2

|𝜏 ′|2
𝜏 ′𝐺(̃︀𝜙, 0)𝜏 ′ >

|𝜏 ′′|2

|𝜏 ′|2
2𝑝

𝑞
,

that is, |𝜏 ′′| < |𝜏 ′| and 𝜏 ′′ ∈ Ω(̃︀𝜙, 0, 𝑝). We have obtained a contradiction, which proves the
inclusion 𝐸(̃︀𝜙, 𝑥, 𝑝

𝑞
) ⊂ Ω(̃︀𝜙, 𝑥, 𝑝).

The proven inclusions imply that⃒⃒⃒⃒
𝐸

(︂̃︀𝜙, 𝑥, 𝑝
𝑞

)︂⃒⃒⃒⃒
6 |Ω(̃︀𝜙, 𝑥, 𝑝)| 6 |𝐸(̃︀𝜙, 𝑥, 4𝑝𝑞2)|.

If 𝐴 is a positive definite matrix, then the principal axes of the ellipse 𝑥𝐴𝑥 6 𝑝 are equal

to
√︁

𝑝
𝜆𝑘
, where 𝜆𝑘 are the eigenvalues of the matrix 𝐴. The volume of the ellipse is equal to

𝑐𝑛
𝑝
𝑛
2√

𝜆1...𝜆𝑛
, where 𝑐𝑛 is the volume of the unit ball in R𝑛 and det𝐴 = 𝜆1 . . . 𝜆𝑛. Thus,

𝑐𝑛

(︂
𝑝

𝑞

)︂𝑛
2 1√︀

det𝐺(̃︀𝜙, 𝑥)
6 |Ω(̃︀𝜙, 𝑥, 𝑝)| 6 𝑐𝑛

(4𝑝𝑞2)
𝑛
2√︀

det𝐺(̃︀𝜙, 𝑥)
.

The proof is complete.

In work [1], the notion of the volume distance was introduced. It is defined by the induction
in the dimension of the space as follows. Let 𝐸 be some convex domain in R𝑛, 𝑥 ∈ 𝐸. If 𝑛 = 1,
then we let

vd(𝑥,𝐸) = inf{|𝑥− 𝑦| : 𝑦 /∈ 𝐸}
the volume distance to be the usual distance from a point 𝑥 ∈ 𝐸 to the boundary 𝐸. Suppose
that the quantity vd(𝑥,𝐸) is defined in the space R𝑛 and 𝐸 ⊂ R𝑛+1. We take a point 𝑥0 ∈ 𝜕𝐸
such that

inf{|𝑥− 𝑦| : 𝑦 /∈ 𝐸} = |𝑥− 𝑥0|.
If the number of such points is greater than one, we take an arbitrary of them. The point 𝑥0 is
passed by a unique support hyperplane orthogonal to the segment connecting the points 𝑥 and
𝑥0. Let 𝑃 be a hyperplane parallel to this support hyperplane and passing through the point
𝑥. The dimension of the convex set 𝐸1 = 𝑃

⋂︀
𝐸 is equal to 𝑛 and 𝑥 ∈ 𝐸1. By the induction

assumption, the quantity vd(𝑥,𝐸1) is already defined. We let

vd(𝑥,𝐸) = vd(𝑥,𝐸1)|𝑥− 𝑥0|.
For instance, for an ellipsoid 𝐸 in R𝑛 with principal axes 𝑎1, . . . , 𝑎𝑛, which is centered at the
origin, we see easily that vd(0, 𝐸) = 𝑎1 . . . 𝑎𝑛.

Lemma 2.2. Let 𝜙 ∈ 𝐶2 be a strictly convex function in a bounded convex domain 𝐷 and

|𝜙(𝑡)| → +∞ as dist(𝑡) → 0. If ̃︀𝜙 satisfies condition (2.1) at the point 𝑥 ∈ R𝑛, then(︂
𝑝

2𝑞𝑛

)︂𝑛

(det𝐺(̃︀𝜙, 𝑥))−
1
2 6 vd(𝑥,Ω(̃︀𝜙, 𝑥, 𝑝)) 6 (4𝑞2𝑝)𝑛(det𝐺(̃︀𝜙, 𝑥))−

1
2 .
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Proof. It was shown in [1, Lm. 7] that if 𝐶 is a convex set containing the origin and 𝐻(𝑥) is a
support function of this set, then

1

vd(0, 𝐶)
6

∫︁
𝑒−𝐻(𝑥)𝑑𝑥 6

(2𝑛)𝑛

vd(0, 𝐶)
.

By Lemma 2.1,

𝐸

(︂̃︀𝜙, 𝑥, 𝑝
𝑞

)︂
⊂ Ω(̃︀𝜙, 𝑥, 𝑝) ⊂ 𝐸(̃︀𝜙, 𝑥, 4𝑝𝑞2). (2.2)

Without loss of generality we suppose that 𝑥 = 0. Let 𝐻(𝑦) be a support function of the domain
Ω = Ω(̃︀𝜙, 0, 𝑝), 𝐻−, 𝐻+ be the support function of respectively the ellipsoids 𝐸− = 𝐸(̃︀𝜙, 0, 𝑝

𝑞
)

and 𝐸+ = 𝐸(̃︀𝜙, 0, 4𝑝𝑞2). By two latter relations we have

(2𝑛)−𝑛 vd(0, 𝐸−) 6 vd(0,Ω) 6 vd(0, 𝐸+).

As it has been mentioned above, vd
(︁

0, 𝐸
(︁̃︀𝜙, 0, 𝑝

𝑞

)︁)︁
is equal to the product of the principal

axes, that is,
(︀
𝑝
𝑞

)︀𝑛
(𝜆1 . . . 𝜆𝑛)−

1
2 , where 𝜆1, . . . , 𝜆𝑛 are the eigenvalues of the Hessian matrix

𝐺(̃︀𝜙, 𝑥) and at that,

det𝐺(̃︀𝜙, 𝑥) = 𝜆1 . . . 𝜆𝑛.

The proof is complete.

Theorem 2.1. Let 𝜙 ∈ 𝐶2 be a strictly convex function and |𝜙(𝑡)| → +∞ as dist(𝑡) → 0.
If ̃︀𝜙 satisfies condition (2.1) at a point 𝑥 ∈ R𝑛 with 𝑝 = 1, then

(4𝑞2)−𝑛

𝑒(1 + 𝑛!)

√︀
det𝐺(̃︀𝜙, 𝑥)𝑒2̃︀𝜙(𝑥) 6 𝐾(𝜆) 6 𝑒2(4𝑛2𝑞)𝑛(1 + 𝑛!)

√︀
det𝐺(̃︀𝜙, 𝑥)𝑒2̃︀𝜙(𝑥).

for 𝜆 ∈ C𝑛, 𝑥 = Re𝜆.

Proof. By the Cauchy inequality for 𝐹 = ̂︀𝑓 ∈ ̂︀𝐿2(𝐷,𝜙) we have:

|𝛿𝜆(𝐹 )|2 =

⃒⃒⃒⃒
⃒⃒∫︁
𝐷

𝑒𝜆𝑡−2𝜙(𝑡)𝑓(𝑡)𝑑𝑡

⃒⃒⃒⃒
⃒⃒
2

6 ‖𝑓‖2
∫︁
𝐷

𝑒2𝑥𝑡−2𝜙(𝑡)𝑑𝑡, 𝑥 = Re𝜆,

and this inequality becomes the identity at the function ℰ𝜆(𝑡) = 𝑒𝜆𝑡. Thus,

𝐾(𝜆) =

∫︁
𝐷

𝑒2Re𝜆𝑡−2𝜙(𝑡)𝑑𝑡, 𝜆 ∈ C𝑛.

It was shown in [1, Thm. 2] that

1

𝑒(1 + 𝑛!) vd(Ω(̃︀𝜙, 𝑥, 1))
𝑒2̃︀𝜙(𝑥) 6

∫︁
𝐷

𝑒2𝑥𝑡−2𝜙(𝑡)𝑑𝑡 6
𝑒2(1 + 𝑛!)(2𝑛)𝑛

vd(Ω(̃︀𝜙, 𝑥, 1))
𝑒2̃︀𝜙(𝑥), 𝑥 ∈ R𝑛.

It remains to employ Lemma 2.2 to complete the proof.

Lemma 2.3. Let 𝜙 ∈ 𝐶2 be a strictly convex function in a convex domain and |𝜙(𝑡)| → +∞
as dist(𝑡) → 0. Then Young adjoint function ̃︀𝜙 satisfies the Lipschitz condition:

|̃︀𝜙(𝑥) − ̃︀𝜙(𝑦)| 6 sup
𝑡∈𝐷

|𝑡| · |𝑥− 𝑦|, 𝑥, 𝑦 ∈ R𝑛.

If ̃︀𝜙 satisfies condition (2.1) at the point 𝑥 ∈ R𝑛 with 𝑝 = 1, then

det𝐺(̃︀𝜙, 𝑥) 6 (16𝑞2𝑑2)𝑛, 𝑥 ∈ R𝑛,

where 𝑑 = sup𝑡∈𝐷 |𝑡|.
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Proof. Let ̃︀𝜙(𝑥) = 𝑥𝑡𝑥 − 𝜙(𝑡𝑥),

then ̃︀𝜙(𝑥) − ̃︀𝜙(𝑦) 6 𝑥𝑡𝑥 − 𝜙(𝑡𝑥) − (𝑦𝑡𝑥 − 𝜙(𝑡𝑥)) = (𝑥− 𝑦)𝑡𝑥 6 𝑑|𝑥− 𝑦|.
Swapping 𝑥 and 𝑦, we arrive at the first statement of the lemma.
It follows from the Lipschitz property that for each 𝑥 ∈ R𝑛 the set Ω(̃︀𝜙, 𝑥, 1) contains a ball

of radius 1
2𝑑

centered at 𝑥. Indeed, if |𝑥− 𝑦| 6 1
2𝑑
, then since ∇̃︀𝜙(𝑥) ∈ 𝐷 we havẽ︀𝜙(𝑦) − 𝜙(𝑥) −∇̃︀𝜙(𝑥)(𝑦 − 𝑥) 6 2𝑑|𝑥− 𝑦| 6 1.

Therefore,

|Ω(̃︀𝜙, 𝑥, 1)| > 𝑐𝑛(2𝑑)−𝑛, 𝑥 ∈ R𝑛.

By Lemma 2.1 this implies the second statement. The proof is complete.

We take an arbitrary 𝜀 > 0 and we let

𝑝(𝑥, 𝜀) = max(1, (det𝐺(̃︀𝜙, 𝑥)−𝜀).

Theorem 2.2. Let 𝜙 ∈ 𝐶2 be a strictly convex function in a bounded domain 𝐷, |𝜙(𝑡)| →
+∞ as dist(𝑡) → 0 and ̃︀𝜙 satisfies condition (2.1) at each point 𝑥 ∈ R𝑛 with some 𝑞 independent
of 𝑥 and 𝑝 = 𝑝(𝑥, 𝜀). Moreover, a condition holds:

1

𝑞1
6

det𝐺(̃︀𝜙, 𝑦)

det𝐺(̃︀𝜙, 𝑥)
6 𝑞1 as 𝑦 ∈ 𝐸(̃︀𝜙, 𝑥, 𝑝(𝑥)), 𝑥 ∈ R𝑛. (2.3)

for some 𝑞1 > 1. Then ∫︁
R𝑛

𝑒2𝑦𝑡

𝐾(𝑦)
det𝐺(̃︀𝜙, 𝑦)𝑑𝑦 ≍ 𝑒2𝜙(𝑡), 𝑡 ∈ 𝐷.

Proof. By Theorem 2.1,∫︁
R𝑛

𝑒2𝑦𝑡

𝐾(𝑦)
det𝐺(̃︀𝜙, 𝑦)𝑑𝑦 ≍

∫︁
R𝑛

𝑒2𝑦𝑡−2̃︀𝜙(𝑦)√︀det𝐺(̃︀𝜙, 𝑦)𝑑𝑦, 𝑡 ∈ 𝐷,

and hence, for 𝑥 = ∇𝜙(𝑡),∫︁
R𝑛

𝑒2𝑦𝑡

𝐾(𝑦)
det𝐺(̃︀𝜙, 𝑦)𝑑𝑦 ≻

∫︁
𝐸(̃︀𝜙,𝑥,1)

𝑒2𝑦𝑡−2̃︀𝜙(𝑦)√︀det𝐺(̃︀𝜙, 𝑦)𝑑𝑦, 𝑡 = ∇̃︀𝜙(𝑥) ∈ 𝐷,

and by condition (2.3) we get∫︁
R𝑛

𝑒2𝑦𝑡

𝐾(𝑦)
det𝐺(̃︀𝜙, 𝑦)𝑑𝑦 ≻

√︀
det𝐺(̃︀𝜙, 𝑥)

∫︁
𝐸(̃︀𝜙,𝑥,1)

𝑒2𝑦𝑡−2̃︀𝜙(𝑦)𝑑𝑦, 𝑡 = ∇̃︀𝜙(𝑥) ∈ 𝐷.

Since

𝑦𝑡− ̃︀𝜙(𝑦) − 𝜙(𝑡) = −(̃︀𝜙(𝑦) − ̃︀𝜙(𝑥) −∇̃︀𝜙(𝑥)(𝑦 − 𝑥)) > −1, 𝑦 ∈ Ω(̃︀𝜙, 𝑥, 1), (2.4)

and due to (2.2) the same is true for 𝑦 ∈ 𝐸
(︁̃︀𝜙, 𝑥, 1

𝑞

)︁
. Then∫︁

R𝑛

𝑒2𝑦𝑡−2𝜙(𝑡)

𝐾(𝑦)
det𝐺(̃︀𝜙, 𝑦)𝑑𝑦 ≻

√︀
det𝐺(̃︀𝜙, 𝑥)

⃒⃒⃒⃒
𝐸

(︂̃︀𝜙, 𝑥, 1

𝑞

)︂⃒⃒⃒⃒
, 𝑡 = ∇̃︀𝜙(𝑥) ∈ 𝐷,
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and by Lemma 2.1, ∫︁
R𝑛

𝑒2𝑦𝑡−2𝜙(𝑡)

𝐾(𝑦)
det𝐺(̃︀𝜙, 𝑦)𝑑𝑦 ≻ 1, 𝑡 ∈ 𝐷.

We proceed to upper bounds. We let 𝑥 = ∇𝜙(𝑡) and 𝐸(̃︀𝜙, 𝑥, 𝑝(𝑥)) = 𝐸(𝑥) and let us estimate
the integral over the set 𝐸(𝑥). By Theorem 2.1 and by Condition (2.3),∫︁

𝐸(𝑥)

𝑒2𝑦𝑡

𝐾(𝑦)
det𝐺(̃︀𝜙, 𝑦)𝑑𝑦 ≺

√︀
det𝐺(̃︀𝜙, 𝑥)

∫︁
𝐸(𝑥)

𝑒2𝑦𝑡−2̃︀𝜙(𝑦)𝑑𝑦, 𝑡 ∈ 𝐷. (2.5)

The representation in (2.4) and Condition (2.1) imply∫︁
𝐸(𝑥)

𝑒2𝑦𝑡−2̃︀𝜙(𝑦)−2𝜙(𝑡)𝑑𝑦 ≺
∫︁

𝐸(𝑥)

𝑒−
1
2𝑞

(𝑦−𝑥)𝐺(̃︀𝜙,𝑥)(𝑦−𝑥)𝑑𝑦 ≺
∫︁
R𝑛

𝑒−
1
2𝑞

(𝑦−𝑥)𝐺(̃︀𝜙,𝑥)(𝑦−𝑥)𝑑𝑦.

A positive definite form 𝐺 can be reduced to the diagonal form by means of the rotations in
the space. After appropriate changes we get:∫︁

𝐸(𝑥)

𝑒2𝑦𝑡−2̃︀𝜙(𝑦)−2𝜙(𝑡)𝑑𝑦 ≺ (2𝑞)
𝑛
2√︀

det𝐺(̃︀𝜙, 𝑥)

∫︁
R𝑛

𝑒−|𝑡|2𝑑𝑡.

By (2.5) this yields the estimate∫︁
𝐸(𝑥)

𝑒2𝑦𝑡−2𝜙(𝑡)

𝐾(𝑦)
det𝐺(̃︀𝜙, 𝑦)𝑑𝑦 ≺ 1, 𝑡 ∈ 𝐷. (2.6)

In order to estimate the integral over R𝑛 ∖ 𝐸(𝑥) we employ the boundedness of det𝐺(̃︀𝜙, 𝑥)
proved in Lemma 2.3 and by Theorem 2.1:∫︁

R𝑛∖𝐸(𝑥)

𝑒2𝑦𝑡−2𝜙(𝑡)

𝐾(𝑦)
det𝐺(̃︀𝜙, 𝑦)𝑑𝑦 ≺

∫︁
R𝑛∖𝐸(𝑥)

𝑒2(𝑦𝑡−̃︀𝜙(𝑦)−𝜙(𝑡))
√︀

det𝐺(̃︀𝜙, 𝑦)𝑑𝑦

≺
∫︁

R𝑛∖𝐸(𝑥)

𝑒2(𝑦𝑡−̃︀𝜙(𝑦)−𝜙(𝑡))𝑑𝑦, 𝑡 ∈ 𝐷.

(2.7)

Let 𝑦 ∈ 𝜕𝐸(𝑥), then by condition (2.1) we have

̃︀𝜙(𝑦) − 𝜙(𝑡) − 𝑥𝑡 = ̃︀𝜙(𝑦) − ̃︀𝜙(𝑥) −∇̃︀𝜙(𝑥)(𝑦 − 𝑥) >
1

2𝑞
(𝑦 − 𝑥)𝐺(̃︀𝜙, 𝑥)(𝑦 − 𝑥) =

𝑝

2𝑞
.

Hence, ̃︀𝜙(𝑦) − 𝜙(𝑡) − 𝑥𝑡 >
𝑝

2𝑞
, 𝑦 /∈ 𝐸(𝑥),

and thus, R𝑛 ∖ 𝐸(𝑥) ⊂ R𝑛 ∖ Ω(̃︀𝜙, 𝑥, 𝑝
2𝑞

). Therefore, it follows from (2.7) that∫︁
R𝑛∖𝐸(𝑥)

𝑒2𝑦𝑡−2𝜙(𝑡)

𝐾(𝑦)
det𝐺(̃︀𝜙, 𝑦)𝑑𝑦 ≺

∫︁
R𝑛∖Ω(̃︀𝜙,𝑥, 𝑝

2𝑞
)

𝑒2(𝑦𝑡−̃︀𝜙(𝑦)−𝜙(𝑡))𝑑𝑦, 𝑡 ∈ 𝐷. (2.8)

By the representation ∫︁
R𝑛∖Ω(̃︀𝜙,𝑥, 𝑝

2𝑞
)

𝑒2(𝑦𝑡−̃︀𝜙(𝑦)−𝜙(𝑡))𝑑𝑦 =

∞∫︁
𝑝(𝑥)
2𝑞

𝑒−2𝑡𝑑𝛼(𝑡)
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we get ∫︁
R𝑛∖Ω(̃︀𝜙,𝑥, 𝑝

2𝑞
)

𝑒2(𝑦𝑡−̃︀𝜙(𝑦)−𝜙(𝑡))𝑑𝑦 = 𝛼

(︂
𝑝(𝑥)

2𝑞

)︂
𝑒−

𝑝(𝑥)
𝑞 + 2

∞∫︁
𝑝(𝑥)
2𝑞

𝛼(𝑡)𝑒−2𝑡𝑑𝑝. (2.9)

By Lemma 2.1,

𝛼

(︂
𝑝(𝑥)

2𝑞

)︂
𝑒−

𝑝(𝑥)
𝑞 6 (2𝑞)𝑛

𝑐𝑛√︀
det𝐺(̃︀𝜙, 𝑥)

(𝑝(𝑥))
𝑛
2 𝑒−

𝑝(𝑥)
𝑞

6 (2𝑞)𝑛 sup
𝑝
𝑝

𝑛
2
+ 1

𝜀 𝑒−
𝑝
𝑞 := (2𝑞)𝑛 ·𝑀.

(2.10)

Owing to Minkowski inequality for mixed volumes, the function (𝛼(𝑡))
1
𝑛 is concave on R+ and

this is why

(𝛼(𝑡))
1
𝑛 6

(︂
𝛼

(︂
𝑝(𝑥)

2𝑞

)︂)︂ 1
𝑛 2𝑞

𝑝(𝑥)
𝑡

or

𝛼(𝑡) 6 𝛼

(︂
𝑝(𝑥)

2𝑞

)︂(︂
2𝑞

𝑝(𝑥)

)︂𝑛

𝑡𝑛.

By Lemma 2.1 and by the definition of 𝑝(𝑥) (𝑝(𝑥) > 1)

𝛼(𝑡) 6 (2𝑞)2𝑛(𝑝(𝑥))−
𝑛
2
+ 1

𝜀 𝑡𝑛 6 (2𝑞)2𝑛𝑡𝑛 as − 𝑛

2
+

1

𝜀
6 0.

If −𝑛
2

+ 1
𝜀
> 0, then for 𝑡 > 𝑝(𝑥)

2𝑞
we have

𝛼(𝑡) 6 (2𝑞)2𝑛(𝑝(𝑥))−
𝑛
2
+ 1

𝜀 𝑡𝑛 6 (2𝑞)
3𝑛
2
+ 1

𝜀 𝑡
𝑛
2
+ 1

𝜀 .

Hence, in each case,

2

∞∫︁
𝑝(𝑥)
2𝑞

𝛼(𝑡)𝑒−2𝑡𝑑𝑝 6𝑀1(𝑞, 𝜀).

By (2.8)–(2.10) this implies ∫︁
R𝑛∖𝐸(𝑥)

𝑒2𝑦𝑡−2𝜙(𝑡)

𝐾(𝑦)
det𝐺(̃︀𝜙, 𝑦)𝑑𝑦 ≺ 1.

In view of (2.5), (2.6) we then get the needed upper bound. The proof is complete.

3. Proof of main theorem. Space of function of finite order in circle

In this section we are going to prove the main result of the paper.

Theorem 3.1. Let 𝜙 ∈ 𝐶2 be a strictly convex function in a bounded domain 𝐷, |𝜙(𝑡)| →
+∞ as dist(𝑡) → 0 and ̃︀𝜙 satisfies condition (2.1) at each point 𝑥 ∈ R𝑛 with 𝑝 = 𝑝(𝑥) as well

as condition (2.3). Then in the space ̂︀𝐿2(𝐷,𝜙) the norm

‖𝐹‖2 =

∫︁
R𝑛

∫︁
R𝑛

|𝐹 (𝑥+ 𝑖𝑦)|2det𝐺(̃︀𝜙, 𝑥)𝑑𝑥𝑑𝑦

𝐾(𝑥)

is equivalent to the original one induced by 𝐿*
2(𝐷,𝜙).
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Proof. We take a function 𝐹 ∈ ̂︀𝐿2(𝐷,𝜙), that is, for some 𝑓 ∈ 𝐿2(𝐷,𝜙),

𝐹 (𝑥+ 𝑖𝑦) = ̂︀𝑓(𝑥+ 𝑖𝑦) =

∫︁
𝐷

𝑒𝑖𝑦𝑡
(︀
𝑒𝑥𝑡−2𝜙(𝑡)𝑓(𝑡)

)︀
𝑑𝑡.

For a fixed 𝑥 ∈ R𝑛 we let

𝑔(𝑡) = 𝑒𝑥𝑡−2𝜙(𝑡)𝑓(𝑡), 𝑡 ∈ 𝐷,

and 𝑔(𝑡) ≡ 0 as 𝑡 /∈ 𝐷. Let ̃︀𝑔 be the classical Fourier transform of the function 𝑔. Then

𝐹 (𝑥+ 𝑖𝑦) = ̃︀𝑔(−𝑦), 𝑦 ∈ R𝑛,

and by the Parseval formula∫︁
R𝑛

|𝐹 (𝑥+ 𝑖𝑦)|2𝑑𝑦 =

∫︁
𝐷

𝑒2𝑥𝑡−4𝜙(𝑡)|𝑓(𝑡)|2𝑑𝑡.

Therefore,

‖𝐹‖2 =

∫︁
R𝑛

⎛⎝∫︁
R𝑛

|𝐹 (𝑥+ 𝑖𝑦)|2𝑑𝑦

⎞⎠ det𝐺(̃︀𝜙, 𝑥)

𝐾(𝑥)
𝑑𝑥 =

∫︁
𝐷

|𝑓(𝑡)|2𝑒−4𝜙(𝑡)

⎛⎝∫︁
R𝑛

𝑒2𝑥𝑡

𝐾(𝑥)
det𝐺(̃︀𝜙, 𝑥) 𝑑𝑥

⎞⎠ 𝑑𝑡.

By Theorem 2.2,

‖𝐹‖2 ≍
∫︁
𝐷

|𝑓(𝑡)|2𝑒−2𝜙(𝑡)𝑑𝑡.

The proof is complete.

Remark 3.1. Since statement of Theorem 3.1 is of an asymptotic nature, then the following

theorem holds true as well.

Theorem 3.2. Let 𝜙 ∈ 𝐶2 be a convex function in a bounded domain 𝐷 and is strictly

convex in the vicinity of the boundary of 𝐷, |∇𝜙(𝑡)| → +∞ as dist(𝑡) → 0 and ̃︀𝜙 satisfies

condition (2.1) at the points 𝑥 ∈ R𝑛 with a sufficiently large absolute value with 𝑝 = 𝑝(𝑥) as

well as condition (2.3). Then in the space ̂︀𝐿2(𝐷,𝜙) the norm

‖𝐹‖2 =

∫︁
R𝑛

∫︁
R𝑛

|𝐹 (𝑥+ 𝑖𝑦)|2det𝐺(̃︀𝜙, 𝑥)𝑑𝑥𝑑𝑦

𝐾(𝑥)

is equivalent to the original one induced by 𝐿*
2(𝐷,𝜙).

As an example we consider the functions 𝜙(𝑡) = 𝑎(1−|𝑡|)−𝛽, 𝛽 < 0, in the unit circle 𝐵(0, 1).
By straightforward calculations we find:̃︀𝜙(𝑥) = |𝑥| − 𝑐|𝑥|𝛼, 𝑥 ∈ R𝑛,

where 𝛼 = 𝛽
𝛽+1

and 𝑐 = (𝑎𝛽)
1

𝛽+1 (𝑎 + 1). For the sake of simplicity we suppose that 𝑐 = 1 and
𝑛 = 2: ̃︀𝜙(𝑥) = |𝑥| − |𝑥|𝛼, 𝑥 ∈ R2.

Let us confirm that the assumptions of Theorem 3.1 are satisfied. By the radial property we
consider the points at the ray 𝑥 = (𝑡, 0), 𝑡 > 0. By straightforward calculations we find the
gradient vector

∇̃︀𝜙(𝑥) = (𝑥1(|𝑥|−1 − 𝛼|𝑥|𝛼−2), 𝑥2(|𝑥|−1 − 𝛼|𝑥|𝛼−2)),
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and the Hessian matrix⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕2̃︀𝜙(𝑥)

𝜕𝑥21
= 𝑥22|𝑥|−3 − 𝛼|𝑥|𝛼−2 − 𝛼(𝛼− 2)|𝑥|𝛼−4𝑥21,

𝜕2̃︀𝜙(𝑥)

𝜕𝑥22
= 𝑥21|𝑥|−3 − 𝛼|𝑥|𝛼−2 − 𝛼(𝛼− 2)|𝑥|𝛼−4𝑥22,

𝜕2̃︀𝜙(𝑥)

𝜕𝑥1𝜕𝑥2
= −𝑥1𝑥2(|𝑥|−3 + 𝛼(𝛼− 2)|𝑥|𝛼−4).

(3.1)

At the point 𝑥0 = (𝑡, 0) we have:

∇̃︀𝜙(𝑥0) = (1 − 𝛼𝑡𝛼−1, 0),⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕2̃︀𝜙(𝑥0)

𝜕𝑥21
= 𝛼(1 − 𝛼)𝑡𝛼−2,

𝜕2̃︀𝜙(𝑥0)

𝜕𝑥22
= 𝑡−1 − 𝛼𝑡𝛼−2,

𝜕2̃︀𝜙(𝑥0)

𝜕𝑥1𝜕𝑥2
= 0.

(3.2)

At the point 𝑥0 the Hessian matrix is of the diagonal form and therefore,

𝜆1(𝑥0) = 𝛼(1 − 𝛼)𝑡𝛼−2, 𝜆2(𝑥0) = 𝑡−1 + (1 − 𝛼)𝛼𝑡𝛼−2

are the eigenvalues of the matrix 𝐺(̃︀𝜙, 𝑥0) and for 𝜀 = 𝛼
2(3−𝛼)

we get

𝑝(𝑥0) ≍ 𝑡
𝛼
2 , 𝑡→ ∞.

We proceed to checking conditions (2.1) and (2.3). We first estimate the principal axes of
the ellipse 𝐸(̃︀𝜙, 𝑥0, 𝑝(𝑥0)):

𝑎1(𝑥0) =

√︃
𝑝(𝑥0)

𝜆1(𝑥0)
≍ 𝑡1−

𝛼
4 , 𝑎2(𝑥0) =

√︃
𝑝(𝑥0)

𝜆2(𝑥0)
≍ 𝑡

1
2
+𝛼

4 ,

in particular, for 𝑥 ∈ 𝐸(̃︀𝜙, 𝑥0, 𝑝(𝑥0)),
|𝑥2| ≺ 𝑡

1
2
+𝛼

4 , |𝑥1| ≍ |𝑥0| = 𝑡, |𝑥− 𝑥0| ≍ 𝑡. (3.3)

Let 𝑥 ∈ 𝐸(̃︀𝜙, 𝑥0, 𝑝(𝑥0)) and 𝜔 = 𝑥−𝑥0

|𝑥−𝑥0| , 𝑥 = 𝑦𝜔 + 𝑥0, 𝑢(𝑦) = ̃︀𝜙(𝑦𝜔 + 𝑥0), 𝑦 > 0. By (3.3) we

obtain:
𝜕2̃︀𝜙(𝑥)

𝜕𝑥21
𝜔2
1 ≺ 𝑡𝛼−2𝜔2

1,
𝜕2̃︀𝜙(𝑥)

𝜕𝑥22
𝜔2
2 ≺ 𝑡−1𝜔2

2. (3.4)

Since 𝑥2 = |𝑥− 𝑥0|𝜔2, then ⃒⃒⃒⃒
𝜕2̃︀𝜙(𝑥)

𝜕𝑥1𝜕𝑥2
𝜔1𝜔2

⃒⃒⃒⃒
≺ 𝑡−1𝜔2

2.

By (3.2), (3.4) this implies that

𝜔𝐺(̃︀𝜙, 𝑥)𝜔 ≺ 𝜔𝐺(̃︀𝜙, 𝑥0)𝜔.
Swapping 𝑥0 and 𝑥, we get

𝜔𝐺(̃︀𝜙, 𝑥)𝜔 ≍ 𝜔𝐺(̃︀𝜙, 𝑥0)𝜔. (3.5)

By the mean value theorem,̃︀𝜙(𝑥) − ̃︀𝜙(𝑥0) −∇̃︀𝜙(𝑥0)(𝑥− 𝑥0) = (𝑥− 𝑥0)𝐺(̃︀𝜙, 𝑥*)(𝑥− 𝑥0),

where 𝑥* is a point in the segment connecting 𝑥0 with 𝑥. Relation (3.5) implies:̃︀𝜙(𝑥) − ̃︀𝜙(𝑥0) −∇̃︀𝜙(𝑥0)(𝑥− 𝑥0) ≍ (𝑥− 𝑥0)𝐺(̃︀𝜙, 𝑥*)(𝑥− 𝑥0),
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that is, condition (2.1) is satisfied.
By (3.2) det𝐺(̃︀𝜙, 𝑥) ≍ |𝑥|𝛼−3 and this is why condition (2.3) obviously holds. Thus, the

following theorem holds true.

Theorem 3.3. If 𝐷 = {𝑡 ∈ R2, |𝑡| < 1, 𝜙(𝑡) = 𝑎(1−|𝑡|)−𝛽, 𝛽 < 0}, then the space ̂︀𝐿2(𝐷,𝜙)
regarded as a normed space is isomoprhic to the space of entire functions 𝐹 (𝑧), 𝑧 = 𝑥+ 𝑖𝑦 ∈ C2

with

‖𝐹‖2 :=

∫︁
|𝐹 (𝑥+ 𝑖𝑦)|2𝑒−2|𝑥|−2(𝑎𝛽)

1
𝛽+1 (𝑎+1)|𝑥|

𝛽
𝛽+1

(1 + |𝑥|)
𝛼−3
2 𝑑𝑥𝑑𝑦 <∞,

where 𝛼 = 𝛽
𝛽+1

.
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