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ON COEFFICIENT MULTIPLIERS

FOR AREA PRIVALOV CLASSES

E.G. RODIKOVA

Abstract. The problem of describing the Taylor coefficients of functions analytic in a
disk was first resolved for the Nevanlinna class by an outstanding Soviet mathematician
S.N. Mergelyan in the beginning of 20th century. Later, the studies devoted to obtaining
similar estimates in various classes of analytic functions were made by known Russian
and foreign specialists in the complex analysis: G. Hardy, J. Littlewood, A.A. Friedman,
N. Yanagihara, M. Stoll, S.V. Shvedenko and others.

In the paper we introduce a area Privalov class Π̃𝑞, (𝑞 > 0), being a generalization of
a known area Nevanlinna class. In the first part of the paper we obtain a sharp estimate
for the growth of an arbitrary function in the area Privalov class, we describe the Taylor
coefficients for this function. In the second part of the work, on the base of the obtained
estimates we describe completely the coefficient multipliers from area Privalov classes into
the Hardy classes. In a simplified form this problem can be formulated as follows: by what
factors the Taylor coefficients of a function in a given class Π̃𝑞, 𝑞 > 0, should be multiplied
in order to get the Taylor coefficients of a function in a Hardy class.
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1. Introduction

Let C be the complex plane, 𝐷 be the unit disk in C and 𝐻(𝐷) be the set of all functions
analytic in 𝐷. For all 0 < 𝑞 < +∞ we define a Privalov class Π𝑞:

Π𝑞 =

{︂
𝑓 ∈ 𝐻(𝐷) : sup

0<𝑟<1

1

2𝜋

∫︁ 𝜋

−𝜋

(︀
ln+ |𝑓(𝑟𝑒𝑖𝜃)|

)︀𝑞
𝑑𝜃 < +∞

}︂
,

where ln+ 𝑎 = max(ln 𝑎, 0) for each 𝑎 > 0.
First the classes Π𝑞 were considered by I.I. Privalov in [4]. As 𝑞 = 1, the Privalov class

coincides with a well-known in a scientific literature class of functions of bounded type or the
Nevanlinna class 𝑁 [2]. Employing Hölder inequality, it is easy to prove the chain of inclusions:

Π𝑞 (𝑞 > 1) ⊂ 𝑁 ⊂ Π𝑞 (0 < 𝑞 < 1).

For 𝑞 > 1 the class Π𝑞 was studied by foreign mathematicians M. Stoll, M. Pavlović, M. Jevtić.
R. Meštrović and Russian specialists on the theory of functions V.I. Gavrilov, A.V. Subbotin,
D.A. Efimov, see [1] and the references therein. The case 0 < 𝑞 < 1 was studied in the works
by the author of the present paper and also by F.A. Shamoyan and his co-authors, see [8]–[10],
[14], [16], [23]–[25].
For all 0 < 𝑞 < +∞ we introduce one more class

Π̃𝑞 =

⎧⎨⎩𝑓 ∈ 𝐻(𝐷) :

1∫︁
0

𝜋∫︁
−𝜋

(︀
ln+ |𝑓(𝑟𝑒𝑖𝜃)|

)︀𝑞
𝑑𝜃𝑑𝑟 < +∞

⎫⎬⎭ .
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We call it a area Privalov class or Privalov class by area. As 𝑞 = 1, the area Privalov class
coincides with a well-known area Nevanlinna class

N =

⎧⎨⎩𝑓 ∈ 𝐻(𝐷) :

1∫︁
0

𝜋∫︁
−𝜋

ln+ |𝑓(𝑟𝑒𝑖𝜃)|𝑑𝜃𝑑𝑟 < +∞

⎫⎬⎭
or

N =

{︂
𝑓 ∈ 𝐻(𝐷) :

∫︁ ∫︁
𝐷

ln+ |𝑓(𝑧)|𝑑𝑥𝑑𝑦 < +∞
}︂
. 𝑧 = 𝑥 + 𝑖𝑦,

The area Nevanlinna class is involved in the scale of the Nevanlinna-Djrbashian classes 𝑁𝛼:

𝑁𝛼 =

⎧⎨⎩𝑓 ∈ 𝐻(𝐷) :

1∫︁
0

(1 − 𝑟)𝛼𝑇 (𝑟, 𝑓)𝑑𝑟 < +∞

⎫⎬⎭ , 𝛼 > −1,

where 𝑇 (𝑟, 𝑓) is the Nevanlinna characteristics of the function 𝑓 ∈ 𝐻(𝐷), see [2]:

𝑇 (𝑟, 𝑓) =
1

2𝜋

𝜋∫︁
−𝜋

ln+ |𝑓(𝑟𝑒𝑖𝜃)|𝑑𝜃, 0 < 𝑟 < 1.

In their turn, the classes 𝑁𝛼 are involved the scale of classes 𝑆𝑞
𝛼:

𝑆𝑞
𝛼 =

⎧⎨⎩
1∫︁

0

(1 − 𝑟)𝛼𝑇 𝑞(𝑟, 𝑓)𝑑𝑟 < +∞

⎫⎬⎭ , 𝛼 > −1, 0 < 𝑞 < +∞.

The classes 𝑆𝑞
𝛼 were introduced and studied in [12] by F.A. Shamoyan.

Employing Hölder inequality, it is easy to show that

Π̃𝑞 ⊂ 𝑆𝑞
0 as 𝑞 > 1, Π̃𝑞 ⊃ 𝑆𝑞

0 as 0 < 𝑞 < 1.

We note that the classes Π̃𝑞 naturally arise in studying integro-differential operators in the
Privalov space. In a recent joint work [25], the author of the present and F.A. Shamoyan paper
proved that the Privalov class is not invariant with respect to the differentiation operator for
all 𝑞 > 0, that is, the Bloch-Nevanlinna conjecture fails in the Privalov spaces. It was also
established in [25] that the derivative of an arbitrary function with no zeroes from the Privalov
class Π𝑞 belongs to the Privalov class Π̃𝑞 by area.
In the present work we obtain sharp estimates for the maximum of the absolute value and

the Taylor coefficients of the functions in the classes Π̃𝑞, 𝑞 > 0, see Section 2, and on this base

in Section 3 we describe coefficient multipliers from the are Privalov classes Π̃𝑞, 𝑞 > 0, into the
Hardy classes 𝐻𝑝, 0 < 𝑝 6 +∞.
We note that the problem on describing the Taylor coefficients of the functions analytic in a

disk was first resolved by an outstanding Soviet mathematician S.N. Mergelyan in the beginning
of 20th century, see [5]. An analog of Mergelyan’s result in the Hardy classes in a disk was
proved by G. Hardy and J. Littlewood, A. Friedman [28], in the area Nevanlinna classes by
S.V. Shvedenko [18], in the area Privalov classes Π𝑞 for all 𝑞 > 1 sharp estimates for the growth
of a function and its Taylor coefficients were established by M. Stoll in [26] and for 0 < 𝑞 < 1
this was done by the author of the present paper in [23].
Estimating of the Taylor coefficient is closely related with describing the coefficient multipliers

in the Privalov classes. As it was mentioned in [1], in a simplified form the problem is formulated
as follows: by which multipliers one should multiply the Taylor coefficients of the functions in a
given class in order them to acquire prescribed properties, for instance, to make them bounded
or to form an absolutely converging series. Postulating the obtained products to be the Taylor
coefficients of the functions in some other class, we arrive at a general definition of the coefficient
multiplier.
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Definition 1.1. Let 𝑋 and 𝑌 be some classes of the functions analytic in the unit disk

𝐷. A sequence of complex numbers Λ = {𝜆𝑘}+∞
𝑘=1 is called a coefficient multiplier from the

class 𝑋 into the class 𝑌 if for an arbitrary function 𝑓 ∈ 𝑋, 𝑓(𝑧) =
+∞∑︀
𝑘=0

𝑎𝑘𝑧
𝑘, the function

Λ(𝑓)(𝑧) =
+∞∑︀
𝑘=0

𝜆𝑘𝑎𝑘𝑧
𝑘 belongs to 𝑌 . This situation is shortly denoted by 𝐶𝑀(𝑋, 𝑌 ).

Many works by Russian and foreing mathematicians were devoted to describing the multi-
pliers in various classes of holomorphic functions; we mention some of them [1], [3], [15], [17],
[23], [27].

2. Estimate for growth and Taylor coefficients of

functions from area Privalov classes

Throughout the paper, unless else is stated, we suppose that 𝑞 > 0. By 𝑐, 𝑐1, . . . , 𝑐𝑛(𝛼, 𝛽, . . .)
we denote positive constants independent of 𝛼, 𝛽, . . .
The following statement holds true.

Theorem 2.1. If 𝑓 ∈ Π̃𝑞, then

ln+ 𝑀(𝑟, 𝑓) = 𝑜((1 − 𝑟)−
2
𝑞 ), 𝑟 → 1 − 0, (2.1)

where 𝑀(𝑟, 𝑓) = max
|𝑧|=𝑟

|𝑓(𝑧)|.

Proof. We choose an arbitrary point 𝑧0 ∈ 𝐷 and we denote

𝐾𝑧0 = {𝜁 ∈ 𝐷 : |𝜁 − 𝑧0| <
1

2
(1 − |𝑧0|)},

where 𝑑𝑚2 is the area Lebesgue measure. By estimate [22, Thm. 9.1.1, Est. (9.3)]

(ln+ |𝑓(𝑧0)|)𝑞 6
𝑐(𝑞)

(1 − |𝑧0|)2

∫︁
𝐾𝑧0

(ln+ |𝑓(𝜁)|)𝑞𝑑𝑚2(𝜁)

we obtain:

(ln+ |𝑓(𝑧0)|)𝑞 6
𝑐(𝑞)

(1 − |𝑧0|)2

𝜋∫︁
−𝜋

|𝑧0|+ 1−|𝑧0|
2∫︁

|𝑧0|− 1−|𝑧0|
2

(ln+ |𝑓(𝜌𝑒𝑖𝜃)|)𝑞𝑑𝜌𝑑𝜃,

and this yields:

(ln+ |𝑓(𝑧0)|)𝑞 6
𝑐(𝑞)

(1 − |𝑧0|)2

𝜋∫︁
−𝜋

1∫︁
0

(ln+ |𝑓(𝜌𝑒𝑖𝜃)|)𝑞𝑑𝜌𝑑𝜃.

The latter inequality implies estimate (2.1). The proof is complete.

Theorem 2.2. If 𝑓(𝑧) =
+∞∑︀
𝑘=0

𝑎𝑘𝑧
𝑘 is the Taylor series of the function 𝑓 ∈ Π̃𝑞, then

ln+ |𝑎𝑘| = 𝑜
(︁
𝑘

2
2+𝑞

)︁
, 𝑘 → +∞. (2.2)

Proof. It follows from the Cauchy inequality and estimate (2.1) in Theorem 2.1 that for an
arbitrary small 𝜀 > 0 there exists 𝑟𝜀 ∈ (0, 1) such that

|𝑎𝑘| 6 𝑟−𝑘 exp
(︁
𝜀(1 − 𝑟)−

2
𝑞

)︁
, 𝑟𝜀 < 𝑟 < 1, 𝑘 = 0, 1, . . . , (2.3)

which is equivalent to

ln+ |𝑎𝑘| 6 𝜀(1 − 𝑟)−
2
𝑞 − 𝑘 ln 𝑟, 𝑟𝜀 < 𝑟 < 1, 𝑘 = 0, 1, . . . . (2.4)
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We introduce a function

𝜑(𝑟) = 𝜀(1 − 𝑟)−
2
𝑞 − 𝑘 ln 𝑟.

Let us find its infimum. We calculate its derivative:

𝜑′(𝑟) =
2𝜀

𝑞

1

(1 − 𝑟)
2
𝑞
+1

− 𝑘

𝑟
.

We find the minimum of the function 𝜑(𝑟) by solving the equation 𝜑′(𝑟) = 0:

2𝜀

𝑞

𝑟

(1 − 𝑟)
2
𝑞
+1

= 𝑘. (2.5)

Since the function in the left hand side of this identity increases and is injective, then this
equation is uniquely solvable in the interval (0, 1). We denote the point of the minimum of the
function 𝜑(𝑟) by 𝑟𝑘.
Let us consider the case 0 < 𝑞 < 1. For the sake of convenience we introduce the following

notations:

𝑡𝑘 =
1

𝛿
√
𝑟𝑘
, 𝑠𝑘 =

1 − 𝑟𝑘
𝛿
√
𝑟𝑘

,

where 𝛿 > 1.
We can suppose that 𝑠𝑘 < 𝑡𝑘 6 1. Indeed, the inequality 𝑠𝑘 < 𝑡𝑘 is obvious. Then 𝑡𝑘 6 1 is

equivalent to
√
𝑟𝑘 >

1

𝛿
, (2.6)

𝑠𝑘 < 1 is equivalent to

√
𝑟𝑘 >

√
𝛿2 + 4 − 𝛿

2
, (2.7)

and (2.6) implies (2.7).
In terms of new notations equation (2.5) becomes

2𝜀

𝑞𝛿2
1

𝑠2𝑘

(︂
𝑡𝑘
𝑠𝑘

)︂ 2
𝑞
−1

= 𝑘

or

𝑠
2
𝑞
+1

𝑘

𝑡
2
𝑞
−1

𝑘

=
2𝜀

𝑘𝑞𝛿2
.

Since 𝑡𝑘 6 1, the latter identity implies the estimate

𝑠𝑘 6

(︂
2𝜀

𝑘𝑞𝛿2

)︂ 1
2
𝑞+1

. (2.8)

By the same identity we obtain: (︂
𝑡𝑘
𝑠𝑘

)︂ 2
𝑞

=

(︂
𝑘𝑠2𝑘𝑞𝛿

2

2𝜀

)︂ 2
2−𝑞

.

Taking into consideration estimate (2.8), we obtain:(︂
𝑡𝑘
𝑠𝑘

)︂ 2
𝑞

6

(︂
𝑞𝛿2

2𝜀

)︂ 2
2+𝑞

𝑘
2

2+𝑞 . (2.9)

Employing established estimates (2.8), (2.9), we estimate the value of the function 𝜑(𝑟) at the
point 𝑟 = 𝑟𝑘 of its strict minimum:

𝜑(𝑟𝑘) = 𝜀(1 − 𝑟𝑘)−
2
𝑞 − 𝑘 ln 𝑟𝑘.
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Taking into consideration estimate (2.9), we now get:

𝜑(𝑟𝑘) 6 𝜀

(︂
𝑞𝛿2

2𝜀

)︂ 2
2+𝑞

𝑘
2

2+𝑞 − 𝑘 ln 𝑟𝑘.

In order to estimate the latter term, we observe that

(𝑟𝑘)−
1
2 − 𝑟

1
2
𝑘

2
=

exp
(︀
−1

2
ln 𝑟𝑘

)︀
− exp

(︀
1
2

ln 𝑟𝑘
)︀

2
= − sinh

(︂
1

2
ln 𝑟𝑘

)︂
= sinh

(︂
−1

2
ln 𝑟𝑘

)︂
=

𝑠𝑘𝛿

2
,

and this implies

− ln 𝑟𝑘 = 2 arcsinh
𝑠𝑘𝛿

2
6 2

𝑠𝑘𝛿

2
, −𝑘 ln 𝑟𝑘 6 𝑘𝑠𝑘𝛿.

Thus, we have:

𝜑(𝑟𝑘) 6 𝑘
2

2+𝑞 𝜀
𝑞

2+𝑞
(︀
𝑞𝛿2
)︀ 2

2+𝑞 ·
(︂

2 +
1

𝑞𝛿

)︂
. (2.10)

This implies needed estimate (2.2).
We proceed to the case 𝑞 > 1. Here for the sake of convenience we introduce the following

notations:

𝑡𝑘 =
1

√
𝑟𝑘
, 𝑠𝑘 =

1 − 𝑟𝑘√
𝑟𝑘

.

In this case 𝑠𝑘 6 1 6 𝑡𝑘.
In terms of new notations equation (2.5) becomes:

2𝜀

𝑞
· 1

𝑡2𝑘
·
(︂
𝑡𝑘
𝑠𝑘

)︂ 2
𝑞
+1

= 𝑘,

which is equivalent to

𝑠
2
𝑞
+1

𝑘 =
2𝜀

𝑞𝑘

𝑡𝑘

𝑡
2(1− 1

𝑞
)

𝑘

.

This yields:

𝑠𝑘 6
2𝜀

𝑞𝑘
𝑡𝑘 6

2𝜀

𝑞𝑘

√︁
𝑠2𝑘 + 2.

We finally obtain the following estimate for 𝑠𝑘:

𝑠𝑘 6

(︃
2
√

3𝜀

𝑘𝑞

)︃ 1
2
𝑞+1

. (2.11)

Further arguing follow the same lines as in the case 0 < 𝑞 < 1. The proof is complete.

3. Description of coefficient multipliers

from area Privalov classes into Hardy classes

For all values of the parameter 0 < 𝑝 < +∞ we introduce the Hardy classes in a disk:

𝐻𝑝 :=

⎧⎨⎩𝑓 ∈ 𝐻(𝐷) : sup
0<𝑟<1

𝜋∫︁
−𝜋

|𝑓(𝑟𝑒𝑖𝜙)|𝑝𝑑𝜙 < +∞

⎫⎬⎭ ,

where 𝐻∞ is the class of bounded analytic in 𝐷 functions.
In this section we describe coefficient multipliers acting from the area Privalov classes into

the Hardy classes. The following theorem holds true.
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Theorem 3.1. Let Λ = {𝜆𝑘}+∞
𝑘=1, 𝑞 > 0, 0 < 𝑝 6 +∞. The identity Λ = 𝐶𝑀(Π̃𝑞, 𝐻

𝑝) holds

true if and only if

|𝜆𝑘| = 𝑂
(︁

exp
(︁
−𝑐𝑘

2
2+𝑞

)︁)︁
, 𝑘 → +∞, 𝑐 > 0. (3.1)

The proof of this theorem is based on a series of auxiliary lemmata.

Lemma 3.1. [1, Lm. 9.7] Let 𝐹 and 𝐻 be linear classes of functions holomorphic in the

unit disk 𝐷 with metrics, the convergence with respect to which is not weaker than the uniform

convergence on the compact sets 𝐷. Then each coefficient multiplier from the class 𝐹 into the

class 𝐻 is linear and closed as an operator between linear and metric spaces 𝐹 and 𝐻.

In order to formulate a next lemma, in the class Π̃𝑞 we introduce a metrics by the rule:

𝜌(𝑓, 𝑔) =

1∫︁
0

𝜋∫︁
−𝜋

ln𝑞
(︀
1 + |𝑓(𝑟𝑒𝑖𝜃) − 𝑔(𝑟𝑒𝑖𝜃)|

)︀
𝑑𝜃𝑑𝑟, 0 < 𝑞 < 1,

𝜌(𝑓, 𝑔) =

⎛⎝ 1∫︁
0

𝜋∫︁
−𝜋

ln𝑞
(︀
1 + |𝑓(𝑟𝑒𝑖𝜃) − 𝑔(𝑟𝑒𝑖𝜃)|

)︀
𝑑𝜃𝑑𝑟

⎞⎠
1
𝑞

, 𝑞 > 1.

Lemma 3.2. The class Π̃𝑞 with the introduced metrics is an 𝐹 -space.

Proof. Let 0 < 𝑞 < 1, the case 𝑞 > 1 can be proved in the same way.
The proof is equivalent to checking following properties of the metrics, cf. [11].

a) 𝜌(𝑓, 𝑔) = 𝜌(𝑓 − 𝑔, 0), which is obvious;

b) Π̃𝑞 is a complete metric space.

Let {𝑓𝑛} be an arbitrary fundamental sequence in the class Π̃𝑞, that is, for each 𝜀 > 0 there
exists an index 𝑁(𝜀) > 0 such that for all 𝑛, 𝑚 > 𝑁 the inequality 𝜌(𝑓𝑛, 𝑓𝑚) < 𝜀 holds. Let us
show that it converges to some function 𝑓 ∈ Π̃𝑞. We observe that the functions ln(1 + |𝑓𝑛|) are
subharmonic in 𝐷. Employing again the estimate from [22, Thm. 9.1.1], we obtain:

ln𝑞(1 + |𝑓𝑛(𝑅𝑒𝑖𝜃) − 𝑓𝑚(𝑅𝑒𝑖𝜃)|) 6 𝑐(𝑞)

(1 −𝑅)2
· 𝜌(𝑓𝑛, 𝑓𝑚),

and hence,
|𝑓𝑛(𝑟𝑒𝑖𝜃) − 𝑓𝑚(𝑟𝑒𝑖𝜃)| → 0, 𝑛, 𝑚 → +∞,

for all 0 < 𝑟 < 𝑅 < 1, 𝜃 ∈ [−𝜋, 𝜋]. Thus, the fundamental sequence {𝑓𝑛} ∈ Π̃𝑞 converges
uniformly inside the disk 𝐷 to some function 𝑓 ∈ 𝐻(𝐷).
Let us prove that 𝑓 ∈ Π̃𝑞. We have:

1∫︁
0

𝜋∫︁
−𝜋

(ln+ |𝑓(𝑟𝑒𝑖𝜃)|)𝑞𝑑𝜃𝑑𝑟 6
1∫︁

0

𝜋∫︁
−𝜋

(ln(1 + |𝑓(𝑟𝑒𝑖𝜃)|)𝑞𝑑𝜃𝑑𝑟

6

1∫︁
0

𝜋∫︁
−𝜋

ln𝑞
(︀
1 + |𝑓(𝑟𝑒𝑖𝜃) − 𝑓𝑛(𝑟𝑒𝑖𝜃)| + |𝑓𝑛(𝑟𝑒𝑖𝜃)|

)︀
𝑑𝜃𝑑𝑟.

Since for all 𝑎 > 0, 𝑏 > 0 the inequality (𝑎 + 𝑏)𝑞 6 (𝑎𝑞 + 𝑏𝑞) holds for 0 < 𝑞 < 1 and
(𝑎 + 𝑏)𝑞 6 2𝑞(𝑎𝑞 + 𝑏𝑞) as 𝑞 > 1, by the latter estimate we find:

1∫︁
0

𝜋∫︁
−𝜋

(ln+ |𝑓(𝑟𝑒𝑖𝜃)|)𝑞𝑑𝜃 6

1∫︁
0

𝜋∫︁
−𝜋

[︀
ln𝑞(1 + |𝑓(𝑟𝑒𝑖𝜃) − 𝑓𝑛(𝑟𝑒𝑖𝜃)|) + ln𝑞(1 + |𝑓𝑛(𝑟𝑒𝑖𝜃)|)

]︀
𝑑𝜃𝑑𝑟 6 𝑐𝑜𝑛𝑠𝑡.
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Hence, Π̃𝑞 is complete.

c) If 𝑓, 𝑓𝑛 ∈ Π𝑞 and 𝜌(𝑓𝑛, 𝑓) → 0, 𝑛 → +∞, then for each 𝛽 ∈ C 𝜌(𝛽𝑓𝑛, 𝛽𝑓) → 0, 𝑛 → +∞.

For |𝛽| < 1, the property follows immediately. Let |𝛽| > 1. We can suppose that 𝛽 > 1.
Since the sequence {𝑓𝑛} converges. it is fundamental. But as it has been established above,
this implies the uniform convergence of this sequence inside 𝐷.
Since for each 𝛽 > 1 and 𝑥 > 0 the estimate (1 + 𝛽𝑥) 6 (1 + 𝑥)𝛽 holds, we have

𝜌(𝛽𝑓𝑛, 𝛽𝑓) =

1∫︁
0

𝜋∫︁
−𝜋

ln𝑞(1 + 𝛽|𝑓𝑛(𝑟𝑒𝑖𝜃) − 𝑓(𝑟𝑒𝑖𝜃)|)𝑑𝜃𝑑𝑟

6𝛽𝑞

1∫︁
0

𝜋∫︁
−𝜋

ln𝑞(1 + |𝑓𝑛(𝑟𝑒𝑖𝜃) − 𝑓(𝑟𝑒𝑖𝜃)|)𝑑𝜃𝑑𝑟 = 𝛽𝑞𝜌(𝑓𝑛, 𝑓),

and this implies property c).

d) If 𝛽𝑛, 𝛽 ∈ C and 𝛽𝑛 → 𝛽, then 𝜌(𝛽𝑛𝑓, 𝛽𝑓) → 0, 𝑛 → +∞ for each function 𝑓 ∈ Π̃𝑞.

This property is due to the inequality

ln(1 + |𝛽𝑛 − 𝛽||𝑓 |) 6 ln(1 + |𝑓 |) + ln(1 + |𝛽𝑛 − 𝛽|).
The proof is complete.

Lemma 3.3. Let a sequence of complex numbers {𝜆𝑘}+∞
𝑘=1 satisfy the following condition:

|𝜆𝑘| = 𝑂
(︁

exp
(︁
−𝑐𝑘 𝑘

2
2+𝑞

)︁)︁
, 𝑘 → +∞ (3.2)

for an arbitrary positive sequence {𝑐𝑘}+∞
𝑘=1, 𝑐𝑘 ↓ 0, 𝑘 → +∞. Then there exists a number 𝑐 > 0

such that for all 𝑘 ∈ N condition (3.2) is satisfied.

The proof of this lemma reproduces the arguing from the proof of Lemma 1 [27] with the
exponent 2

2+𝑞
.

Lemma 3.4. Let

𝑔(𝑧) = exp
𝑐

(1 − 𝑧)
2
𝑞

, 𝑧 ∈ 𝐷, (3.3)

where 0 < 𝑐 < 2
𝑞
and

+∞∑︀
𝑛=1

𝑎𝑛(𝑐)𝑧𝑛 is the Taylor series of the function 𝑔. Then the estimate holds:

|𝑎𝑛(𝑐)| > exp(𝑐
𝑞

2+𝑞 · 𝑛
2

2+𝑞 ). (3.4)

The way of proving this lemma reproduces the arguing from the thesis of the author [7] with
the exponent 2

𝑞
and goes back to S.N. Mergelyan [5].

As it has been showed above, the convergence 𝜌(𝑓𝑛, 𝑓) → 0, 𝑛 → +∞ implies the uniform
convergence of the sequence of functions 𝑓𝑛(𝑧) to the function 𝑓(𝑧) in 𝐷. Therefore, if 𝑓𝑛(𝑧) =
+∞∑︀
𝑘=0

𝑎
(𝑛)
𝑘 𝑧𝑘 and 𝑓(𝑧) =

+∞∑︀
𝑘=0

𝑎𝑘𝑧
𝑘, then 𝑎

(𝑛)
𝑘 → 𝑎𝑘, 𝑛 → +∞.

Let 𝑋 be an 𝐹 -space formed by the complex sequences {𝑏𝑘}𝑘 such that the convergence of

the sequence 𝛽(𝑛) = {𝑏(𝑛)𝑘 } to 𝛽 = {𝑏𝑘} as 𝑛 → +∞ means the component-wise convergence

𝑏
(𝑛)
𝑘 → 𝑏𝑘, 𝑛 → +∞, 𝑘 = 0, 1, 2, . . ..

We consider the coefficient multiplier Λ = 𝐶𝑀(Π̃𝑞, 𝑋). By Lemma 3.1, Λ is a closed operator.
Therefore, by the closed graph theorem [11], the operator Λ is continuous and it maps bounded
sets in the class Π̃𝑞 into bounded sets in the class 𝑋.
Now are in position to prove Theorem 3.1.
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Proof. Let Λ = {𝜆𝑘}+∞
𝑘=1 be a multiplier from the class Π̃𝑞 into the Hardy class 𝐻𝑝 (0 < 𝑝 6 ∞).

We are going to prove that there exists 𝑐 > 0 such that estimate (3.1) is satisfied, that is,

|𝜆𝑘| = 𝑂
(︁

exp
(︁
−𝑐𝑘

2
2+𝑞

)︁)︁
, 𝑘 → +∞.

According to Lemma 3.3, it is sufficient to show that the sequence Λ satisfies condition (3.2)
for an arbitrary infinitesimal sequence {𝑐𝑘}+∞

𝑘=1.
Suppose that we are given an arbitrary positive infinitesimal sequence {𝑐𝑘}+∞

𝑘=1. We consider
an auxiliary sequence {𝑐′𝑘}+∞

𝑘=1,

𝑐′𝑘 = min

(︂
1

2
,max

(︁
𝑘− 1

𝑞 , 𝑐𝑘

)︁)︂
, 𝑘 = 1, 2, . . . .

If condition (3.2) is satisfied for this sequence, it remains true also for the sequence {𝑐𝑘}+∞
𝑘=1. This

is why we can suppose that the terms in the sequence {𝑐𝑘}+∞
𝑘=1 satisfy the following condition:

𝑘− 1
𝑞 6 𝑐𝑘 6

1

2
(3.5)

for all 𝑘 = 1, 2, . . .. In the class Π̃𝑞 we consider the sequence of the functions satisfying the
assumptions of Lemma 3.4:

𝑓𝑘(𝑧) = 𝑔(𝑟𝑘𝑧) = exp
𝑐𝑘

(1 − 𝑟𝑘𝑧)
2
𝑞

, 𝑘 = 1, 2, . . . , (3.6)

where the sequence {𝑟𝑘}+∞
𝑘=1 is such that 𝑟𝑘 → 1 − 0, 𝑘 → +∞, and

1 − 1

𝑘
6 𝑟𝑘 6 1 − exp

(︂
−
(︂
𝛾𝑘
𝑐𝑘

)︂𝑞)︂
, 𝑘 = 1, 2, . . . (3.7)

Here {𝛾𝑘}+∞
𝑘=1 is a positive infinitesimal sequence such that 𝑐𝑘 = 𝑜(𝛾𝑘), 𝑘 → +∞.

Let us confirm that 𝑓𝑘 ∈ Π̃𝑞. We have:

1∫︁
0

𝜋∫︁
−𝜋

(ln+ |𝑓𝑘(𝑟𝑒𝑖𝜃)|)𝑞𝑑𝜃𝑑𝑟 =

1∫︁
0

𝜋∫︁
−𝜋

(︃
ln+

⃒⃒⃒⃒
⃒exp

𝑐𝑘

(1 − 𝑟𝑘𝑟𝑒𝑖𝜃)
2
𝑞

⃒⃒⃒⃒
⃒
)︃𝑞

𝑑𝜃𝑑𝑟

6

1∫︁
0

𝜋∫︁
−𝜋

𝑐𝑞𝑘
|1 − 𝑟𝑘𝑟𝑒𝑖𝜃|2

𝑑𝜃 6

1∫︁
0

𝑐𝑞𝑘
(1 − 𝑟𝑘𝑟)

𝑑𝑟 = 𝑐𝑞𝑘 ln
1

1 − 𝑟𝑘
= 𝛾𝑞

𝑘.

We are going to show that {𝑓𝑘}+∞
𝑘=1 is a bounded sequence in the class Π̃𝑞, that is, there exists a

real number 0 < 𝜆 < 1 such that for all natural 𝑘 the inequality 𝜌(𝜆𝑓𝑘, 0) < 𝜀 holds, where 𝜀 is
a fixed positive number, see [11]. In order to do this, first we are going to check the inequality

ln(1 + |𝜆||𝑔|) 6 (ln(1 + |𝜆|) + ln+ |𝑔|). (3.8)

Indeed, if |𝑔| 6 1, then |𝜆||𝑔| 6 |𝜆| and estimate (3.8) follows immediately.
If |𝑔| > 1, then

ln(1 + |𝜆||𝑔|) 6 ln(|𝑔| + |𝜆||𝑔|) 6 ln(1 + |𝜆|) + ln+ |𝑔|.

Now let us prove the inequality 𝜌(𝜆𝑓𝑘, 0) < 𝜀. Let 0 < 𝑞 < 1; for 𝑞 > 1 the proof is the same.
We have

𝜌(𝜆𝑓𝑘, 0) =

1∫︁
0

𝜋∫︁
−𝜋

ln𝑞(1 + |𝜆𝑓𝑘(𝑟𝑒𝑖𝜃)|)𝑑𝜃𝑑𝑟 6 2𝜋 (ln𝑞(1 + |𝜆|) + (𝛾𝑘)𝑞) .
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Since 𝛾𝑘 = 𝑜(1), 𝑘 → +∞, the for each 𝜀 > 0 there exists a number 𝑘0 ∈ N such that for all
𝑘 > 𝑘0 the inequality

𝛾𝑘 <
𝑞

√︂
𝜀

4𝜋

holds true. Choosing 𝜆𝑘0 , such that

ln(1 + |𝜆𝑘0 |) < 𝑞

√︂
𝜀

4𝜋
,

we see that starting from the number 𝑘0, all elements of the sequence {𝑓𝑘} are contained in the
ball of the radius 𝜀.
Since Π̃𝑞 is an 𝐹 -space, then for all indices 𝑘 < 𝑘0 there exists a positive number 𝜆𝑘 such that

for all 𝜆 ∈ C with |𝜆| 6 𝜆𝑘 the inequality 𝜌(𝜆𝑓𝑘, 0) < 𝜀 holds. Letting 𝜆0 = min(𝜆1, 𝜆2, . . . , 𝜆𝑘0),
we get that for |𝜆| 6 𝜆0 the entire sequence {𝑓𝑘} is contained in the ball of the radius 𝜀, that
is, 𝜌(𝜆𝑓𝑘, 0) < 𝜀.
By the arbitrariness of 𝜀 we conclude that {𝑓𝑘} is a bounded sequence in the class Π̃𝑞.
Thus, we have proved that for all natural 𝑘 the sequence of the functions {𝑓𝑘}+∞

𝑘=1 is bounded

in Π̃𝑞 and hence, the coefficient multiplier Λ(𝑓𝑘) is bounded in the class 𝐻𝑝.
We have:

‖Λ(𝑓𝑘)‖𝐻𝑝 6 𝐶, 𝐶 > 0.

We fix 𝑘 ∈ N. If 𝑓𝑘(𝑧) =
+∞∑︀
𝑛=0

𝑎
(𝑘)
𝑛 𝑧𝑛 ∈ Π̃𝑞, then Λ(𝑓𝑘)(𝑧) =

+∞∑︀
𝑛=0

𝜆𝑛𝑎
(𝑘)
𝑛 𝑧𝑛 ∈ 𝐻𝑝, and hence, [19]

|𝜆𝑛𝑎
(𝑘)
𝑛 | 6 𝑐𝑝‖Λ(𝑓𝑘)‖𝐻𝑝𝑛

1
𝑝
−1 as 0 < 𝑝 < 1,

|𝜆𝑛𝑎
(𝑘)
𝑛 | 6 𝑐𝑝‖Λ(𝑓𝑘)‖𝐻𝑝 as 1 6 𝑝 6 ∞,

which implies

|𝜆𝑛𝑎
(𝑘)
𝑛 | 6 𝐶𝑐𝑝𝑛

1
𝑝
−1 as 0 < 𝑝 < 1, (3.9)

|𝜆𝑛𝑎
(𝑘)
𝑛 | 6 𝐶𝑐𝑝 as 1 6 𝑝 6 +∞, (3.10)

where 𝑐𝑝 is a positive constant depending on the parameter 𝑝.

Since 𝑓𝑘(𝑧) = 𝑔(𝑟𝑘𝑧), then 𝑎
(𝑘)
𝑛 = 𝑎𝑛(𝑐𝑘)𝑟𝑛𝑘 . In accordance with Lemma 3.4,

|𝑎(𝑘)𝑛 | > 𝑟𝑛𝑘 exp
(︁
𝑐

𝑞
2+𝑞

𝑘 𝑛
2

2+𝑞

)︁
.

Taking into consideration inequality (3.7), we obtain:

|𝑎(𝑘)𝑘 | >
(︂

1 − 1

𝑘

)︂𝑘

exp
(︁
𝑐

𝑞
2+𝑞

𝑘 𝑛
2

2+𝑞

)︁
. (3.11)

By (3.9), (3.11) we conclude:

|𝜆𝑘| 6 𝐶𝑐′𝑝

(︂
1 − 1

𝑘

)︂−𝑘

𝑘
1
𝑝
−1 exp

(︁
𝑐

𝑞
2+𝑞

𝑘 𝑛
2

2+𝑞

)︁
,

and in view of estimate (3.5) we get:

|𝜆𝑘| 6 ̃︀𝐶 exp
(︁
𝑐

𝑞
2+𝑞

𝑘 𝑛
2

2+𝑞

)︁
. (3.12)

Applying Lemma 3.3, by inequality (3.12) we conclude that estimate (3.1) is valid. In the same
way, as 1 6 𝑝 < +∞, by (3.10), (3.12) we arrive at the desired estimate.
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We proceed to proving the inverse statement of Theorem 3.1. Let a Λ = {𝜆𝑘}+∞
𝑘=1 satisfies

condition (3.1) of the theorem and 𝑓 ∈ Π̃𝑞, 𝑓(𝑧) =
+∞∑︀
𝑘=0

𝑎𝑘𝑧
𝑘. It follows from Theorem 2.2 that

|𝑎𝑘| 6 𝐶1 exp
(︁
𝜀𝑘𝑘

2
2+𝑞

)︁
, 𝜀𝑘 ↓ 0, 𝑘 → +∞.

We choose an index 𝑘0 so that 𝜀𝑘 <
𝑐
2
for all 𝑘 > 𝑘0 and we get:

|𝜆𝑘𝑎𝑘| 6 𝐶2 exp
(︁
− 𝑐

2
𝑘

2
2+𝑞

)︁
.

Since the series
+∞∑︀
𝑘=0

exp
(︁
− 𝑐

2
𝑘

2
2+𝑞

)︁
converges, then Λ(𝑓)(𝑧) ∈ 𝐻𝑝. The proof is complete.

Remark 3.1. We note that the way of proving Theorem 3.1 goes back to work [27] by

N. Yanagihara. Theorem 3.1 remains true also if the Hardy class is replaced by the Bergman

class 𝐴𝑝
𝛼,

𝐴𝑝
𝛼 :=

⎧⎨⎩𝑓 ∈ 𝐻(𝐷) :

1∫︁
0

2𝜋∫︁
0

(1 − 𝑟)𝛼|𝑓(𝑟𝑒𝑖𝜃)|𝑝𝑑𝜃𝑟𝑑𝑟 < +∞

⎫⎬⎭ , 𝑝 > 0, 𝛼 > −1,

or by the class Π̃𝑞′, 0 < 𝑞 < 𝑞′.

Remark 3.2. An immediate corollary of proven Theorem 3.1 is the statement on sharpness

of the estimates obtained in Theorems 2.2 and 2.1. The proof of this fact is made in the same

way as in work by R. Meštrović, see [1, Cors. 9.24, 9.26].
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