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EXPONENTIAL STABILITY OF SEMIGROUPS GENERATED

BY VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

N.A. RAUTIAN

Abstract. We study abstract Volterra integro-differential equations, which are operator
models of problems in the viscoelasticity theory. This class includes Gurtin-Pipkin integro-
differential equations describing the heat transfer in medias with memory. In particular, as
the kernels of integral operators, the sums of decaying exponentials can serve or the sums of
Rabotnov functions with positive coefficients having wide applications in the viscoelasticity
theory and the theory of heat transfer.
The presented results are based on the approach related with studying one-parametric

semi-groups for linear evolution equations. We provide a method for reducing the initial
problem for a model integro-differential equation with operator coefficients in the Hilbert
space to the Cauchy problem for a first order differential equation. We prove results on exist-
ing a strongly continuous contracting semigroup generated by a Volterra integro-differential
equation with operator coefficients in a Hilbert space. We establish an exponential decay of
the semigroup under known assumptions for the kernels of the integral operators. On the
base of the obtained results we establish a well-posedness of initial problem for the Volterra
integro-differential equation with appropriate estimates for the solution.
The proposed approach can be also employed for studying other integro-differential equa-

tions involving integral terms of Volterra convolution type.

Keywords: Volterra integro-differential equations, linear equations in Hilbert space, oper-
ator semigroups.
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1. Introduction

We consider an abstract integro-differential equation arising in the theory of linear viscoelas-
ticity and we present a general scheme, which can be applied to many other linear models
containing Volterra operators. These abstract integro-differential equations can be realized as
an integro-partial differential equation as follows:

𝑢𝑡𝑡(𝑥, 𝑡) =𝜌−1

(︂
𝜇∆𝑢(𝑥, 𝑡) +

1

3
(𝜇 + 𝜆)grad(div𝑢(𝑥, 𝑡))

)︂

−
𝑡∫︁

0

𝐾(𝑡− 𝜏)𝜌−1𝜇

(︂
∆𝑢(𝑥, 𝜏) +

1

3
· grad(div𝑢(𝑥, 𝜏))

)︂
𝑑𝜏

−
𝑡∫︁

0

𝑄(𝑡− 𝜏)𝜌−1𝜆

(︂
1

3
grad(div𝑢(𝑥, 𝜏))

)︂
𝑑𝜏 + 𝑓(𝑥, 𝑡),

(1.1)
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where 𝑢 = �⃗�(𝑥, 𝑡) ∈ R3 is a vector of small displacements of an isotropic medium filling a
bounded domain Ω ⊂ R3 with a smooth boundary, 𝜌 is a constant density, 𝜌 > 0, 𝜆, 𝜇 are
positive parameters, namely, these are Lamé coefficients, see [1]–[6]. We suppose that the
boundary of the domain Ω is subject to the Dirichlet condition 𝑢|𝜕Ω = 0. The kernel of the
integral operators 𝐾(𝑡), 𝑄(𝑡) are positive non-increasing summable functions characterising
hereditary properties of the media.
Among Volterra integro-differential equations there are also Gurtin-Pipkin integro-differential

equations, see [6]–[10], which describe the heat transfer with a finite speed in media with
a memory. Moreover, these equations also arise in homogenization problems in multi-phase
media (Darcy law), see [11].
The mentioned problems can be united in a rather wide class of integro-partial differential

equations and this is why it is natural to consider integro-differential equations with unbounded
operator coefficients in Hilbert space, that is, abstract integro-differential equations, which can
be realized as integro-partial differential equations.
Nowadays there is a large literature devoted to studying Volterra integro-differential equations

and related problems arising in numerous applications, see, for instance, works [1]–[20] and the
references therein.
The results presented in this work are based on the approach related with studying one-

parametric semigroups for linear evolution equations and they continuation and development
of the studies made in works [13]–[17] devoted to the spectral analysis of operator functions
being the symbols of integro-differential equations.
An approach to studying Volterra integro-differential equations related with the application

of the semigroup theory was developed in works [4], [6], [18]–[20].

2. Definitions. Notation. Formulation of problem

Let 𝐻 be a separable Hilbert space, 𝐴 be a self-adjoint positive operator in the space 𝐻,
that is, 𝐴* = 𝐴 > 𝜅0𝐼, where 𝜅0 > 0 and 𝐼 is the identity mapping in the space 𝐻, and let this
operator possess a bounded inverse operator. Let 𝐵 be a symmetric operator (𝐵𝑥, 𝑦) = (𝑥,𝐵𝑦)
in the space 𝐻 with the domain Dom (𝐵) (Dom (𝐴) ⊆ Dom (𝐵)). We suppose that it is non-
negative, i.e. (𝐵𝑥, 𝑥) > 0 for all 𝑥 ∈ Dom (𝐵) and that is obeys the inequality ‖𝐵𝑥‖ 6 𝜅 ‖𝐴𝑥‖,
0 < 𝜅 < 1 for each 𝑥 ∈ Dom (𝐴).
We consider the following problem for a second order integro-differential operator on the

positive semi-axis R+ = (0,∞):

𝑑2𝑢(𝑡)

𝑑𝑡2
+ (𝐴 + 𝐵)𝑢(𝑡) −

𝑁∑︁
𝑘=1

𝑡∫︁
0

𝑅𝑘(𝑡− 𝑠) (𝑎𝑘𝐴 + 𝑏𝑘𝐵)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑡), 𝑡 ∈ R+, (2.1)

𝑢(+0) = 𝜙0, 𝑢(1)(+0) = 𝜙1, (2.2)

where 𝑎𝑘 > 0, 𝑏𝑘 > 0, 𝑘 = 1, . . . , 𝑁. We assume that the functions 𝑅𝑘 : R+ → R+ obey the
following conditions:

𝑅𝑘(𝑡) are positive non-increasing functions, 𝑅𝑘(𝑡) ∈ 𝐿1(R+), 𝑘 = 1, . . . , 𝑁. (2.3)

Remark 2.1. It follows from conditions (2.3) that lim
𝑡→+∞

𝑅𝑘(𝑡) = 0, 𝑘 = 1, . . . , 𝑁.

Moreover, we suppose that the following conditions hold true:

𝑁∑︁
𝑘=1

⎛⎝𝑎𝑘

+∞∫︁
0

𝑅𝑘(𝑠)𝑑𝑠

⎞⎠ < 1,
𝑁∑︁
𝑘=1

⎛⎝𝑏𝑘

+∞∫︁
0

𝑅𝑘(𝑠)𝑑𝑠

⎞⎠ < 1. (2.4)
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We let

𝑀𝑘(𝑡) =

+∞∫︁
𝑡

𝑅𝑘(𝑠)𝑑𝑠 =

+∞∫︁
0

𝑅𝑘(𝑡 + 𝑠)𝑑𝑠, 𝑘 = 1, . . . , 𝑁. (2.5)

Let

𝐴0 =

⎛⎝1 −
𝑁∑︁
𝑘=1

⎛⎝𝑎𝑘

+∞∫︁
0

𝑅𝑘(𝑠)𝑑𝑠

⎞⎠⎞⎠𝐴 +

⎛⎝1 −
𝑁∑︁
𝑘=1

⎛⎝𝑏𝑘

+∞∫︁
0

𝑅𝑘(𝑠)𝑑𝑠

⎞⎠⎞⎠𝐵,

𝐴𝑘 = 𝑎𝑘𝐴 + 𝑏𝑘𝐵.

(2.6)

A known result in [21] implies that the operators 𝐴0, 𝐴𝑘 are self-adjoint and positive for all
𝑘 = 1, . . . , 𝑁 .
We note that problems of form (2.1), (2.2) are operator models of problems arising the

viscoelasticity theory, see [1]–[3] and in thermal physics, see [6]–[10]. In the case, when the
kernels 𝑅𝑘(𝑡) are decaying exponents of Rabotnov functions, see [5], the spectral analysis of
equation (2.1) was made in works [13]–[17].

We make the domain Dom(𝐴𝛽
0 ) of the operator 𝐴𝛽

0 , 𝛽 > 0, a Hilbert space 𝐻𝛽 by introducing

on Dom(𝐴𝛽
0 ) a norm equivalent to the norm of the graph of the operator 𝐴𝛽

0 .

Remark 2.2. It follows from the properties of the operators 𝐴 and 𝐵 and the Heinz in-
equality, see [22], that the operators 𝐴0, 𝐴𝑘 are invertible for all 𝑘 = 1, . . . , 𝑁 , the operators

𝑄𝑘 := 𝐴
1
2
𝑘𝐴

− 1
2

0 have a bounded closure in 𝐻 for all 𝑘 = 1, . . . , 𝑁 and 𝐴−1
0 is a bounded operator,

see [21].

Definitino 2.1. A vector function 𝑢(𝑡) is called a classical solution to problem (2.1), (2.2)
if 𝑢(𝑡) ∈ 𝐶2(R+, 𝐻), 𝐴𝑢(𝑡), 𝐵𝑢(𝑡) ∈ 𝐶(R+, 𝐻), 𝑢(𝑡) solves equation (2.1) for each 𝑡 ∈ R+ and
satisfies initial condition (2.2).

By 𝐿𝑝
𝜔(R+, 𝐻) we denote a weighted space 𝐿𝑝 of vector functions on the semi-axis R+ =

(0,∞) with values in 𝐻 equipped with the norm

‖𝑢‖𝐿𝑝
𝜔(R+,𝐻) =

⎛⎝ +∞∫︁
0

𝜔(𝑠)‖𝑢(𝑠)‖𝑝𝐻𝑑𝑠

⎞⎠ 1
𝑝

.

3. Reduction of original problem to first order differential equation

Applying the formula of integration by parts to the integrals in the left hand side of equations
(2.1) and taking into consideration that lim

𝑡→+∞
𝑅𝑘(𝑡) = 0, we obtain the following equation:

𝑑2𝑢(𝑡)

𝑑𝑡2
+ 𝐴0𝑢(𝑡) +

𝑁∑︁
𝑘=1

𝑡∫︁
0

⎛⎝ +∞∫︁
𝑡−𝑠

𝑅𝑘(𝑝)𝑑𝑝

⎞⎠𝐴𝑘
𝑑𝑢(𝑠)

𝑑𝑠
𝑑𝑠 = 𝑓(𝑡) −

𝑁∑︁
𝑘=1

𝑀𝑘(𝑡)𝐴𝑘𝑢(0). (3.1)

We note that 𝐴𝑘 = 𝐴
1
2
0𝑄

*
𝑘𝑄𝑘𝐴

1
2
0 and hence equation (3.1) can be rewritten as follows:

𝑑2𝑢(𝑡)

𝑑𝑡2
+ 𝐴

1
2
0

⎛⎝𝐴
1
2
0 𝑢(𝑡) +

𝑁∑︁
𝑘=1

𝑄*
𝑘

𝑡∫︁
0

𝑀𝑘(𝑡− 𝑠)𝑄𝑘𝐴
1
2
0

𝑑𝑢(𝑠)

𝑑𝑠
𝑑𝑠

⎞⎠ = 𝑓1(𝑡),

where

𝑓1(𝑡) = 𝑓(𝑡) −
𝑁∑︁
𝑘=1

𝑀𝑘(𝑡)𝐴𝑘𝑢(0).
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We introduce new variables

𝑣(𝑡) := 𝑢′(𝑡), 𝜉0(𝑡) := 𝐴
1
2
0 𝑢(𝑡),

𝜉𝑘(𝑡, 𝜏) = − 𝜕

𝜕𝜏

𝑡∫︁
0

𝑀𝑘(𝑡 + 𝜏 − 𝑠)𝑄𝑘𝐴
1
2
0

𝑑𝑢(𝑠)

𝑑𝑠
𝑑𝑠

=

𝑡∫︁
0

𝑅𝑘(𝑡 + 𝜏 − 𝑠)𝑄𝑘𝐴
1
2
0

𝑑𝑢(𝑠)

𝑑𝑠
𝑑𝑠, 𝑡, 𝜏 > 0, 𝑘 = 1, . . . , 𝑁.

(3.2)

We note that

𝑑

𝑑𝑡
𝜉𝑘(𝑡, 𝜏) =

𝜕

𝜕𝜏

𝑡∫︁
0

𝑅𝑘(𝑡 + 𝜏 − 𝑠)𝑄𝑘𝐴
1
2
0 𝑣(𝑠)𝑑𝑠 + 𝑅𝑘(𝜏)𝑄𝑘𝐴

1
2
0 𝑣(𝑡).

Then problem (2.1), (2.2) can be reduced to the following system of first order equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑣(𝑡)

𝑑𝑡
+ 𝐴

1
2
0

⎛⎝𝜉0(𝑡) +
𝑁∑︁
𝑘=1

𝑄*
𝑘

+∞∫︁
0

𝜉𝑘(𝑡, 𝜏)𝑑𝜏

⎞⎠ = 𝑓1(𝑡),

𝑑𝜉0(𝑡)

𝑑𝑡
= 𝐴

1
2
0 𝑣(𝑡),

𝑑𝜉𝑘(𝑡, 𝜏)

𝑑𝑡
= 𝑅𝑘(𝜏)𝑄𝑘𝐴

1
2
0 𝑣(𝑡) +

𝜕

𝜕𝜏
𝜉𝑘(𝑡, 𝜏), 𝑘 = 1, . . . , 𝑁,

(3.3)

where 𝑡, 𝜏 > 0, 𝑓1(𝑡) = 𝑓(𝑡) −
𝑁∑︀
𝑘=1

𝑀𝑘(𝑡)𝐴𝑘𝑢(0) and 𝑀𝑘(𝑡) are defined by formulae (2.5),

𝑣(𝑡)|𝑡=0 = 𝜙1, 𝜉0(𝑡)|𝑡=0 = 𝐴
1
2
0 𝜙0, 𝜉𝑘(𝑡, 𝜏)|𝑡=0 = 0, 𝜏 > 0, 𝑘 = 1, . . . , 𝑁. (3.4)

Now our main aim is as follows. First, we aim to transform (3.3), (3.4) into an initial
problem ins some extended functional space, in which this problem is well-posed. Second, we
should establish a correspondence (not only formal) between solution to problem (3.3), (3.4)
and solution to original problem (2.1), (2.2).

4. Cauchy problem and semigroup of operators in

extended functional space

At the first step of constructing a functional space, in which problem (3.3), (3.4) is to be
well-posed, we should well-define the operator 𝜕𝜏 := 𝜕

𝜕𝜏
involved in the third equation of system

(3.3).
By Ω𝑘 we denote a weighted space 𝐿2

𝑟𝑘
(R+, 𝐻) of the vector functions on the semi-axis

R+ = (0,∞) with values in 𝐻 and equipped with the norm

‖𝑢‖Ω𝑘
=

⎛⎝ +∞∫︁
0

𝑟𝑘(𝑠)‖𝑢(𝑠)‖2𝐻𝑑𝑠

⎞⎠ 1
2

, 𝑟𝑘(𝜏) := 𝑅−1
𝑘 (𝜏) : R+ → R+, 𝑘 = 1, . . . ,𝑚.

We consider a strongly continuous semigroup 𝐿𝑘(𝑡) of left shifts in the space Ω𝑘 see [19]:

𝐿𝑘(𝑡)𝜉(𝜏) = 𝜉(𝑡 + 𝜏), 𝑡 > 0. It is known that the linear operator 𝑇𝑘𝜉(𝜏) = 𝜕𝜉(𝜏)
𝜕𝜏

in the space Ω𝑘

with the domain

𝐷(𝑇𝑘) =

{︂
𝜉 ∈ Ω𝑘 :

𝜕𝜉(𝜏)

𝜕𝜏
∈ Ω𝑘

}︂
,

is a generator of the semigroup 𝐿𝑘(𝑡), see [19].
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We introduce a Hilbert space H = 𝐻 ⊕𝐻 ⊕
(︀
⊕𝑁

𝑘=1Ω𝑘

)︀
equipped with the norm

‖(𝑣, 𝜉0, 𝜉1(𝜏), . . . , 𝜉𝑁(𝜏))‖2H = ‖𝑣‖2𝐻 + ‖𝜉0‖2𝐻 +
𝑁∑︁
𝑘=1

‖𝜉𝑘‖2Ω𝑘
, 𝜏 > 0,

which we call an extended Hilbert space.
We introduce a linear operator A in the space H with the domain

𝐷(A) =

{︃
(𝑣, 𝜉0, 𝜉1(𝜏), . . . , 𝜉𝑁(𝜏)) ∈ H : 𝑣 ∈ 𝐻 1

2
, 𝜉0 +

𝑁∑︁
𝑘=1

𝑄*
𝑘

+∞∫︁
0

𝜉𝑘(𝜏)𝑑𝜏 ∈ 𝐻 1
2
,

𝜉𝑘(𝜏) ∈ 𝐷(𝑇𝑘), 𝑘 = 1, . . . , 𝑁

}︃
,

acting as follows:

A(𝑣, 𝜉0, 𝜉1(𝜏), . . . , 𝜉𝑁(𝜏))

=

(︃
−𝐴

1
2
0

⎛⎝𝜉0 +
𝑁∑︁
𝑘=1

𝑄*
𝑘

+∞∫︁
0

𝜉𝑘(𝜏)𝑑𝜏

⎞⎠ , 𝐴
1
2
0 𝑣, 𝑅𝑘(𝜏)𝑄𝑘𝐴

1
2
0 𝑣 + 𝑇𝑘𝜉𝑘(𝜏), 𝑘 = 1, . . . , 𝑁

)︃
.

We introduce (2 + 𝑁)-dimensional vectors of form

𝑍(𝑡) = (𝑣(𝑡), 𝜉0(𝑡), 𝜉1(𝑡, 𝜏), . . . , 𝜉𝑁(𝑡, 𝜏)) ∈ H, 𝑧 = (𝑣0, 𝜉00, 𝜉10(𝜏), . . . , 𝜉𝑁0(𝜏)) ∈ H.

Now we can rewrite system (3.3), (3.4) as a first order differential equation in an extended
functional space. We consider the following Cauchy problem in the space H

𝑑

𝑑𝑡
𝑍(𝑡) = A𝑍(𝑡), (4.1)

𝑍(0) = 𝑧. (4.2)

Definitino 4.1. A vector 𝑍(𝑡) = (𝑣(𝑡), 𝜉0(𝑡), 𝜉1(𝑡, 𝜏), . . . , 𝜉𝑁(𝑡, 𝜏)) ∈ H is called a classical
solution to problem (4.1), (4.2) if 𝑣(𝑡), 𝜉0(𝑡) ∈ 𝐶1((0,+∞), 𝐻), 𝜉𝑘(𝑡, 𝜏) ∈ 𝐶1((0,+∞), 𝐻) for
each 𝜏 > 0, 𝑘 = 1, . . . , 𝑁 , 𝑍(𝑡) ∈ 𝐶([0,+∞), 𝐷(A)), the vector 𝑍(𝑡) solves equation (4.1) for
each 𝑡 ∈ R+ and satisfies initial condition (4.2).

Definitino 4.2 ([22]). A linear operator 𝐴 with a dense domain in a Hilbert space is called
dissipative if Re (𝐴𝑥, 𝑥) 6 0 as 𝑥 ∈ 𝐷(𝐴) and is maximal dissipative if it is dissipative and
possesses non nontrivial dissipative extensions.

Theorem 4.1. Let conditions (2.3), (2.4) be satisfied. Then the operator A in the space H
with a dense domain 𝐷(A) is maximal dissipative.

Theorem 4.2. Let conditions (2.3), (2.4) be satisfied. Then the linear operator A is a
generator of a contracting 𝐶0-semigroup 𝑆(𝑡) = 𝑒𝑡A in the space H and at that a solution to
problem (4.1), (4.2) can be represented as 𝑍(𝑡) = 𝑆(𝑡)𝑧, 𝑡 > 0, and for each 𝑧 ∈ 𝐷(A) an energy
identity holds:

𝑑

𝑑𝑡
‖𝑆(𝑡)𝑧‖2H = −

𝑁∑︁
𝑘=1

⎛⎝ lim
𝜏→0+

𝑟𝑘(𝜏)‖𝜉𝑘(𝑡, 𝜏)‖2𝐻 +

+∞∫︁
0

𝑟′𝑘(𝜏)‖𝜉𝑘(𝑡, 𝜏)‖2𝐻𝑑𝜏

⎞⎠ . (4.3)

Remark 4.1. Since the functions 𝑟𝑘(𝜏) are monotone, then according to [23] their derivatives
𝑟′𝑘(𝜏) exist almost everywhere for 𝜏 ∈ [0,+∞).

The proofs of Theorems 4.1, 4.2 were provided in paper [12].
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5. Exponential stability of semigroup 𝑆(𝑡)

Assume that the kernels of the integral operators 𝑅𝑘(𝜏), 𝑘 = 1, . . . , 𝑁 , satisfy the following
conditions:

𝑅′
𝑘(𝜏) + 𝛾𝑅𝑘(𝜏) 6 0, (5.1)

for some 𝛾 > 0 and for some 𝜏 > 0. Condition (5.1) is well-known in the literature and was
employed by many authors for proving an exponential stability of the semigroup related with
various equations with memory, see, for instance, monograph [6] and the references therein.
We provide a result on exponential stability of the semigroup 𝑆 (𝑡), 𝑡 > 0, under the assump-

tion that 𝐻 is a separable real Hilbert space.

Theorem 5.1. Let 𝑆(𝑡)𝑧 be a solution to problem (4.1), (4.2) as 𝑡 > 0 and let the functions
𝑅𝑘(𝜏), 𝑘 = 1, . . . , 𝑁 , satisfy conditions (2.3), (2.4) and condition (5.1) for some 𝛾 > 0 and for
each 𝜏 > 0. Then the inequality

‖𝑆(𝑡)𝑧‖H 6
√

3‖𝑧‖H𝑒
−𝜔𝑡 (5.2)

holds true for each 𝑧 ∈ H. At that,

𝜔 = max
𝛽>0

𝜔𝛽, 𝜔𝛽 =
1

6
min

{︂
𝛾

𝛾1(𝛽)
;

1

𝛾2
(𝛽)

}︂
,

𝛾1(𝛽) := max
16𝑘6𝑁

{︂
3

2

𝑀𝑘(0)

𝑀(𝛽)

(︂
1

𝑀𝑘(𝛽)

(︂
6
⃦⃦
𝑄−1

𝑘

⃦⃦2
+

1

𝜆𝑘𝛽2

)︂
+𝑁

(︂⃦⃦
𝑄−1

𝑘

⃦⃦2
+

(︂
1 +

2

3
𝑀(𝛽)

)︂
‖𝑄𝑘‖2

)︂)︂
+

1

2

}︂
,

𝛾2(𝛽) :=
3

𝑀(𝛽)
max

{︂
1, 𝑁 · max

16𝑘6𝑁

{︂
𝑀𝑘(0)

𝜆𝑘

}︂}︂
+

1√
𝜆0

,

𝜆𝑘 = inf
‖𝑥‖=1, 𝑥∈Dom(𝐴𝑘)

(𝐴𝑘𝑥, 𝑥), 𝑘 = 0, . . . , 𝑁,

𝑀𝑘(𝛽) :=

+∞∫︁
𝛽

𝑅𝑘(𝑠)𝑑𝑠, 𝑘 = 1, . . . , 𝑁, 𝑀(𝛽) :=
𝑁∑︁
𝑘=1

𝑀𝑘(𝛽).

6. Well-posedness

We consider the Cauchy problem for an inhomogeneous equation

𝑑

𝑑𝑡
𝑍(𝑡) = A𝑍(𝑡) + 𝐹 (𝑡), (6.1)

𝑍(0) = 𝑧, (6.2)

which corresponds to the problem for homogeneous equation (4.1), (4.2). We suppose that the
vector function 𝐹 (𝑡) is of the form

𝐹 (𝑡) := (𝑓1(𝑡), 0, . . . 0⏟  ⏞  
𝑁+1

), 𝑓1(𝑡) = 𝑓(𝑡) −
𝑁∑︁
𝑘=1

𝑀𝑘(𝑡)𝐴𝑘𝜙0,

while the vector 𝑧 reads as

𝑧 =

(︃
𝜙1, 𝐴

1
2
0 𝜙0, 0 . . . 0⏟  ⏞  

𝑁

)︃
.

Theorem 6.1. Let the functions 𝑅𝑘(𝜏) : R+ → R+ satisfy conditions (2.3), (2.4), (5.1) and
the following conditions hold:

1) the belongings hold: 𝐴
1
2
0 𝑓(𝑡) ∈ 𝐶 (R+, 𝐻) , 𝑀𝑘(𝑡) ∈ 𝐶 (R+) , 𝜙0 ∈ 𝐻 3

2
, 𝜙1 ∈ 𝐻 1

2
;
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or
2) the belongings hold: 𝑓(𝑡) ∈ 𝐶1 (R+, 𝐻) , 𝑀𝑘(𝑡) ∈ 𝐶1 (R+) , 𝑘 = 1, . . . , 𝑁, 𝜙0 ∈ 𝐻1, 𝜙1 ∈ 𝐻 1

2
.

Then problem (6.1), (6.2) possesses a unique classical solution

𝑍(𝑡) = (𝑣(𝑡), 𝜉0(𝑡), 𝜉1(𝑡, 𝜏), . . . , 𝜉𝑁(𝑡, 𝜏)),

where 𝑣(𝑡) := 𝑢′(𝑡), 𝜉0(𝑡) := 𝐴
1
2
0 𝑢(𝑡), and 𝑢(𝑡) is a classical solution of problem (2.1), (2.2).

The estimate(︂
‖𝑢′(𝑡)‖2𝐻 +

⃦⃦⃦
𝐴

1
2
0 𝑢(𝑡)

⃦⃦⃦2
𝐻

)︂
6‖𝑍(𝑡)‖2H 6 𝑑

(︃(︀
‖𝜙1‖2𝐻 + ‖𝐴

1
2
0 𝜙0‖2𝐻

)︀
𝑒−2𝜔𝑡

+
𝑁∑︁
𝑘=1

(︃ 𝑡∫︁
0

𝑒−𝜔(𝑡−𝑠)

(︃ +∞∫︁
𝑠

𝑅𝑘(𝑝)𝑑𝑝

)︃
𝑑𝑠

)︃2

‖𝐴𝑘𝜙0‖2𝐻

+

(︃ 𝑡∫︁
0

𝑒−𝜔(𝑡−𝑠)‖𝑓(𝑠)‖𝑑𝑠

)︃2)︃
(6.3)

holds true with a constant 𝑑 independent of the vector function 𝐹 , vectors 𝜙0, 𝜙1 and the
constant 𝜔 defined in the formulation of Theorem 5.1.

7. Properties of semigroups of left shifts 𝐿𝑘(𝑡) in spaces Ω𝑘

In the proof of Theorem 5.1 we shall need the following statements.

Remark 7.1. If 𝜉 ∈ 𝐷(𝑇𝑘), then ‖𝜉(𝜏)||𝐻 ∈ 𝐶(R+), lim
𝜏→+∞

‖𝜉(𝜏)||𝐻 = 0.

Proof. Indeed, for each 𝜏 > 1 the function 𝜉(𝜏) is absolutely continuous on [1, 𝜏 ] with values in
𝐻 and

𝜉(𝜏) = 𝜉(1) +

𝜏∫︁
1

𝜕𝑠𝜉(𝑠)𝑑𝑠.

On the other hand,
𝜏∫︁

1

‖𝜕𝑠𝜉(𝑠)||𝐻𝑑𝑠 =

𝜏∫︁
1

√︀
𝑅𝑘(𝑠)

√︀
𝑟𝑘(𝑠)‖𝜕𝑠𝜉(𝑠)||𝐻𝑑𝑠

6

⎛⎝ 𝜏∫︁
1

𝑅𝑘(𝑠)𝑑𝑠

⎞⎠ 1
2
⎛⎝ 𝜏∫︁

1

𝑟𝑘(𝑠)‖𝜕𝑠𝜉(𝑠)‖2𝐻𝑑𝑠

⎞⎠ 1
2

6 𝑀𝑘(1)‖𝜕𝑠𝜉(𝑠)||Ω𝑘
.

Thus, the limit lim
𝜏→∞

𝜏∫︀
1

𝜕𝑠𝜉(𝑠)𝑑𝑠 exists in 𝐻 and therefore, the limit lim
𝜏→∞

𝜉(𝜏) exists in 𝐻. Since

the function 𝑟𝑘(𝑠)‖𝜉(𝑠)‖2𝐻 is summable and lim
𝜏→+∞

𝑟𝑘(𝜏) = +∞, we necessarily have lim
𝜏→∞

𝜉(𝜏) = 0

in 𝐻. The proof is complete.

Remark 7.2. According [19], the semigroup (𝐿𝑘(𝑡))𝑡>0 is contracting on the space Ω𝑘.

Lemma 7.1. Let 𝜉 ∈ Ω𝑘. Then
1) the function 𝜉 belongs to 𝐿1(R+, 𝐻) and the inequality

+∞∫︁
0

‖𝜉(𝑠)||𝐻𝑑𝑠 6
√︀

𝑀𝑘(0)‖𝜉(𝜏)||Ω𝑘
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holds true;

2) the function
+∞∫︀
𝑡

‖𝜉(𝑠)||𝐻𝑑𝑠 belongs to the space 𝐶[0,+∞) and tends to zero as 𝑡 → +∞.

Proof. 1. Applying the Hölder inequality, we get:

+∞∫︁
0

‖𝜉(𝑠)||𝐻𝑑𝑠 =

+∞∫︁
0

√︀
𝑅𝑘(𝑠)

√︀
𝑟𝑘(𝑠)‖𝜉(𝑠)||𝐻𝑑𝑠 6

√︀
𝑀𝑘(0)‖𝜉(𝜏)||Ω𝑘

.

2. The mentioned property is obvsiouly implied by the summability of the function ‖𝜉 (𝜏)‖ .
The proof is complete.

The next lemma implies that the operator A is dissipative in the space H.

Lemma 7.2. For each 𝜉 ∈ 𝐷(𝑇𝑘) we have
+∞∫︀
0

𝑟′𝑘(𝑠)‖𝜉(𝑠)‖2𝐻 𝑑𝑠 < ∞ and there exists the limit

lim
𝜏→0

𝑟𝑘(𝜏)‖𝜉(𝜏)‖2𝐻 , which vanishes if lim
𝜏→0

𝑟𝑘(𝜏) = 0. Moreover, the identity

2 Re ⟨𝜕𝜏𝜉(𝜏), 𝜉(𝜏)⟩Ω𝑘
= − lim

𝜏→0
𝑟𝑘(𝜏)‖𝜉(𝜏)‖2𝐻 −

+∞∫︁
0

𝑟′𝑘(𝑠)‖𝜉(𝑠)‖2𝐻 𝑑𝑠 6 0 (7.1)

holds.

This lemma was proved in paper [12].

8. Proof of Theorem 5.1

Taking into consideration the strong continuity of the semigroup 𝑆(𝑡), it is sufficient to
confirm inequality (5.2) for each 𝑧 ∈ 𝐷(A). We fix

𝑧 = (𝑣0, 𝜉00, 𝜉10(𝜏), . . . , 𝜉𝑁0(𝜏)) ∈ 𝐷(A)

for each 𝜏 > 0 and we denote 𝑆(𝑡)𝑧 = (𝑣(𝑡), 𝜉0(𝑡), 𝜉1(𝑡, 𝜏), . . . , 𝜉𝑁(𝑡, 𝜏)) ∈ 𝐷(A) .
We introduce a notation (energy):

𝐸(𝑡) =
1

2
‖𝑆(𝑡)𝑧‖2H . (8.1)

Rewriting inequalities (5.1) in terms of the functions 𝑟𝑘(𝜏), we obtain the following inequalities

𝑟′𝑘(𝜏) > 𝛾𝑟𝑘(𝜏), 𝜏 > 0, 𝑘 = 1, . . . , 𝑁.

Taking into consideration energy identity (4.3), we obtain the following estimate:

𝑑

𝑑𝑡
𝐸(𝑡) 6 −1

2

𝑁∑︁
𝑘=1

+∞∫︁
0

𝑟′𝑘(𝜏)‖𝜉𝑘(𝑡, 𝜏)‖2𝐻𝑑𝜏

6 −𝛾

2

𝑁∑︁
𝑘=1

+∞∫︁
0

𝑟𝑘(𝜏)‖𝜉𝑘(𝑡, 𝜏)‖2𝐻𝑑𝜏 = −𝛾

2

𝑁∑︁
𝑘=1

‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘
.

(8.2)

Given 𝛽 > 0, we define a continuous function 𝜌(𝜏) : R+ → [0, 1]:

𝜌(𝜏) =

{︃
𝛽−1𝜏, 𝜏 6 𝛽,

1, 𝜏 > 𝛽.
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We consider the following vector functions:

Φ1(𝑡) = −
∞∫︁
0

𝜌(𝜏)
𝑁∑︁
𝑘=1

⟨
𝐴

− 1
2

𝑘 𝑣(𝑡), 𝜉𝑘(𝑡, 𝜏)
⟩
𝐻
𝑑𝜏 ,

Φ2(𝑡) =
⟨
𝐴

− 1
2

0 𝑣(𝑡), 𝜉0(𝑡)
⟩
𝐻
.

Statement 8.1. Let the assumptions of Theorem 5.1 be satisfied. Then the inequalities

|Φ1(𝑡)| 6 max

{︂
1, 𝑁 · max

𝑘

{︂
𝑀𝑘(0)

𝜆𝑘

}︂}︂
𝐸(𝑡), (8.3)

|Φ2(𝑡)| 6
1√
𝜆0

𝐸(𝑡) (8.4)

hold true, where

𝜆𝑘 = inf
‖𝑥‖=1,

𝑥∈Dom(𝐴𝑘)

(𝐴𝑘𝑥, 𝑥) , 𝑘 = 0, . . . , 𝑁, 𝑀𝑘(𝛽) :=

+∞∫︁
𝛽

𝑅𝑘(𝑠)𝑑𝑠, 𝑘 = 1, . . . , 𝑁.

Proof. According to Lemma 7.1, the estimates

+∞∫︁
0

‖𝜉𝑘(𝑠)||𝐻𝑑𝑠 6
√︀

𝑀𝑘(0)‖𝜉𝑘(𝜏)||Ω𝑘
, 𝑘 = 1, . . . , 𝑁, (8.5)

hold true. Thus, the following inequalities

|Φ1(𝑡)| 6
∞∫︁
0

𝜌(𝜏)
𝑁∑︁
𝑘=1

⃒⃒⃒⟨
𝐴

− 1
2

𝑘 𝑣(𝑡), 𝜉𝑘(𝑡, 𝜏)
⟩
𝐻

⃒⃒⃒
𝑑𝜏

6 ‖𝑣(𝑡)||𝐻
𝑁∑︁
𝑘=1

1√
𝜆𝑘

∞∫︁
0

‖𝜉𝑘(𝑡, 𝜏)||𝐻𝑑𝜏

6 ‖𝑣(𝑡)||𝐻
𝑁∑︁
𝑘=1

√︃
𝑀𝑘(0)

𝜆𝑘

‖𝜉𝑘(𝑡, 𝜏)‖Ω𝑘

6
1

2

⎛⎝‖𝑣(𝑡)‖2𝐻 +

⎛⎝ 𝑁∑︁
𝑘=1

√︃
𝑀𝑘(0)

𝜆𝑘

‖𝜉𝑘(𝑡, 𝜏)||Ω𝑘

⎞⎠2⎞⎠
6

1

2

(︃
‖𝑣(𝑡)‖2𝐻 + 𝑁

𝑁∑︁
𝑘=1

𝑀𝑘(0)

𝜆𝑘

‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘

)︃

6
1

2

(︃
‖𝑣(𝑡)‖2𝐻 + 𝑁 · max

𝑘

{︂
𝑀𝑘(0)

𝜆𝑘

}︂ 𝑁∑︁
𝑘=1

‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘

)︃

6 max

{︂
1, 𝑁 · max

𝑘

{︂
𝑀𝑘(0)

𝜆𝑘

}︂}︂
𝐸(𝑡),

|Φ2(𝑡)| 6
⃦⃦⃦
𝐴

− 1
2

0 𝑣(𝑡)
⃦⃦⃦
𝐻
‖𝜉0(𝑡)‖𝐻 6

1

2

1√
𝜆0

(︀
‖𝑣(𝑡)‖2𝐻 + ‖𝜉0(𝑡)‖2𝐻

)︀
6

1√
𝜆0

𝐸(𝑡),
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are true, where

𝜆𝑘 = inf
‖𝑥‖=1,

𝑥∈Dom(𝐴𝑘)

(𝐴𝑘𝑥, 𝑥), 𝑘 = 0, . . . , 𝑁, 𝑀𝑘(𝛽) :=

+∞∫︁
𝛽

𝑅𝑘(𝑠) 𝑑𝑠, 𝑘 = 1, . . . , 𝑁.

This completes the proof of Theorem 5.1.

Lemma 8.1. Let the assumptions of Theorem 5.1 be satisfied. Then for each 𝛽 > 0 the
inequality

𝑑

𝑑𝑡
Φ1(𝑡) 6 𝑀(𝛽)

(︂
‖𝜉0‖2𝐻

12
− ‖𝑣‖2𝐻

2

)︂
+

𝑁∑︁
𝑘=1

𝑐𝑘‖𝜉𝑘‖2Ω𝑘
(8.6)

holds, where

𝑀(𝛽) :=
𝑁∑︁
𝑘=1

𝑀𝑘(𝛽), 𝑐𝑘 :=
𝑀𝑘(0)

2

(︂
1

𝑀𝑘(𝛽)

(︂
6
⃦⃦
𝑄−1

𝑘

⃦⃦2
+

1

𝜆𝑘𝛽2

)︂
+ 𝑁

(︁⃦⃦
𝑄−1

𝑘

⃦⃦2
+ ‖𝑄*

𝑘‖
2
)︁)︂

.

Proof. It is easy to see that

𝑑

𝑑𝑡
Φ1(𝑡) = −

∞∫︁
0

𝜌(𝜏)
𝑁∑︁
𝑘=1

⟨
𝐴

− 1
2

𝑘

𝑑

𝑑𝑡
𝑣(𝑡), 𝜉𝑘(𝑡, 𝜏)

⟩
𝐻

𝑑𝜏

−
∞∫︁
0

𝜌(𝜏)
𝑁∑︁
𝑘=1

⟨
𝐴

− 1
2

𝑘 𝑣(𝑡),
𝜕

𝜕𝑡
𝜉𝑘(𝑡, 𝜏)

⟩
𝐻

𝑑𝜏 .

(8.7)

Let us estimate the expressions in the right hand side of the latter idenity by employing equa-
tion (4.1) and Lemma 7.1. For the first term we have:

−
∞∫︁
0

𝜌(𝜏)
𝑁∑︁
𝑘=1

⟨
𝐴

− 1
2

𝑘

𝑑

𝑑𝑡
𝑣(𝑡), 𝜉𝑘(𝑡, 𝜏)

⟩
𝐻

𝑑𝜏 =

∞∫︁
0

𝜌(𝜏)
𝑁∑︁
𝑘=1

⟨
𝐴

− 1
2

𝑘 𝐴
1
2
0 𝜉0(𝑡), 𝜉𝑘(𝑡, 𝜏)

⟩
𝐻
𝑑𝜏

+

∞∫︁
0

𝜌(𝜏)
𝑁∑︁
𝑘=1

⟨
𝐴

− 1
2

𝑘

𝑁∑︁
𝑗=1

𝐴
1
2
0𝑄

*
𝑗

∞∫︁
0

𝜉𝑗(𝑡, 𝜏
′)𝑑𝜏 ′, 𝜉𝑘(𝑡, 𝜏)

⟩
𝐻

𝑑𝜏

=
𝑁∑︁
𝑘=1

⟨
𝑄*−1

𝑘 𝜉0(𝑡),

∞∫︁
0

𝜌(𝜏)𝜉𝑘(𝑡, 𝜏)𝑑𝜏

⟩
𝐻

+
𝑁∑︁
𝑘=1

⟨
𝑄*−1

𝑘

𝑁∑︁
𝑗=1

𝑄*
𝑗

∞∫︁
0

𝜉𝑗(𝑡, 𝜏
′)𝑑𝜏 ′,

∞∫︁
0

𝜌(𝜏)𝜉𝑘(𝑡, 𝜏)𝑑𝜏

⟩
𝐻

6‖𝜉0(𝑡)‖𝐻
𝑁∑︁
𝑘=1

⃦⃦
𝑄−1

𝑘

⃦⃦ ∞∫︁
0

‖𝜉𝑘(𝑡, 𝜏)‖𝐻𝑑𝜏

+

⎛⎝ 𝑁∑︁
𝑘=1

⃦⃦
𝑄−1

𝑘

⃦⃦ ∞∫︁
0

‖𝜉𝑘(𝑡, 𝜏)‖𝐻𝑑𝜏

⎞⎠⎛⎝ 𝑁∑︁
𝑗=1

‖𝑄𝑗‖
∞∫︁
0

‖𝜉𝑗(𝑡, 𝜏 ′)‖𝐻𝑑𝜏
′

⎞⎠
6‖𝜉0(𝑡)‖𝐻

𝑁∑︁
𝑘=1

⃦⃦
𝑄−1

𝑘

⃦⃦√︀
𝑀𝑘(0)‖𝜉𝑘(𝑡, 𝜏)‖Ω𝑘

(8.8)
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+

(︃
𝑁∑︁
𝑘=1

⃦⃦
𝑄−1

𝑘

⃦⃦√︀
𝑀𝑘(0)‖𝜉𝑘(𝑡, 𝜏)‖Ω𝑘

)︃(︃
𝑁∑︁
𝑗=1

‖𝑄𝑗‖
√︁

𝑀𝑗(0)‖𝜉𝑗(𝑡, 𝜏)‖Ω𝑘

)︃

6
𝑁∑︁
𝑘=1

2

√︀
𝑀𝑘(𝛽)

2
√

3
‖𝜉0(𝑡)‖𝐻

√
3
⃦⃦
𝑄−1

𝑘

⃦⃦√︀
𝑀𝑘(0)√︀

𝑀𝑘(𝛽)
‖𝜉𝑘(𝑡, 𝜏)‖Ω𝑘

+
1

2

⎛⎝(︃ 𝑁∑︁
𝑘=1

⃦⃦
𝑄−1

𝑘

⃦⃦√︀
𝑀𝑘(0)‖𝜉𝑘(𝑡, 𝜏)‖Ω𝑘

)︃2

+

(︃
𝑁∑︁
𝑗=1

‖𝑄𝑗‖
√︁

𝑀𝑗(0)‖𝜉𝑗(𝑡, 𝜏)‖Ω𝑘

)︃2
⎞⎠

6
𝑁∑︁
𝑘=1

(︃
𝑀𝑘(𝛽)

12
‖𝜉0(𝑡)‖2𝐻 +

3
⃦⃦
𝑄−1

𝑘

⃦⃦2
𝑀𝑘(0)

𝑀𝑘(𝛽)
‖𝜉𝑘(𝑡, 𝜏)‖2

Ω𝑘

)︃

+
𝑁

2

𝑁∑︁
𝑘=1

(︁⃦⃦
𝑄−1

𝑘

⃦⃦2
+ ‖𝑄𝑘‖2

)︁
𝑀𝑘(0) ‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘

=
𝑁∑︁
𝑘=1

(︃
𝑀𝑘(𝛽)

12
‖𝜉0(𝑡)‖2𝐻 +

𝑀𝑘(0)

2

(︃
6
⃦⃦
𝑄−1

𝑘

⃦⃦2
𝑀𝑘(𝛽)

+ 𝑁
(︁⃦⃦

𝑄−1
𝑘

⃦⃦2
+ ‖𝑄𝑘‖2

)︁)︃
‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘

)︃
.

We proceed to estimating the second term in formula (8.7) and we first observe that according
Remark 7.1, that the condition 𝜉𝑘 ∈ 𝐷(𝑇𝑘) yields that ‖𝜉𝑘(𝜏)‖𝐻 ∈ 𝐶(R+), lim

𝜏→+∞
‖𝜉𝑘(𝜏)‖𝐻 = 0

and therefore,

sup
𝜏>0

‖𝜉𝑘(𝜏)‖𝐻 < ∞, sup
𝜏>0

‖𝑄*
𝑘𝜉𝑘(𝜏)‖𝐻 < ‖𝑄𝑘‖𝐻 sup

𝜏>0
‖𝜉𝑘(𝜏)‖𝐻 < ∞.

Thus, integrating by parts the following expression, we obtain:

−
∞∫︁
0

𝜌(𝜏)
𝑁∑︁
𝑘=1

⟨
𝐴

− 1
2

𝑘 𝑣(𝑡),
𝜕

𝜕𝜏
𝜉𝑘(𝑡, 𝜏)

⟩
𝐻

𝑑𝜏 = −
∞∫︁
0

𝜌(𝜏)
𝑁∑︁
𝑘=1

𝜕

𝜕𝜏

⟨
𝐴

− 1
2

𝑘 𝑣(𝑡), 𝜉𝑘(𝑡, 𝜏)
⟩
𝐻
𝑑𝜏

= − lim
𝜏→∞

(︃
𝜌(𝜏)

𝑁∑︁
𝑘=1

⟨
𝐴

− 1
2

𝑘 𝑣(𝑡), 𝜉𝑘(𝑡, 𝜏)
⟩
𝐻

)︃

+ lim
𝜏→0

(︃
𝜌(𝜏)

𝑁∑︁
𝑘=1

⟨
𝐴

− 1
2

𝑘 𝑣(𝑡), 𝜉𝑘(𝑡, 𝜏)
⟩
𝐻

)︃
+

1

𝛽

𝛽∫︁
0

𝑁∑︁
𝑘=1

⟨
𝐴

− 1
2

𝑘 𝑣(𝑡), 𝜉𝑘(𝑡, 𝜏)
⟩
𝐻
𝑑𝜏

=
1

𝛽

𝑁∑︁
𝑘=1

𝛽∫︁
0

⟨
𝐴

− 1
2

𝑘 𝑣(𝑡), 𝜉𝑘(𝑡, 𝜏)
⟩
𝐻
𝑑𝜏 .

(8.9)
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Integrating by parts in the second term in formula (8.7) and taking into consideration (8.9),
we get:

−
∞∫︁
0

𝜌(𝜏)
𝑁∑︁
𝑘=1

⟨
𝐴

− 1
2

𝑘 𝑣(𝑡),
𝜕

𝜕𝑡
𝜉𝑘(𝑡, 𝜏)

⟩
𝐻

𝑑𝜏

= −
∞∫︁
0

𝜌(𝜏)
𝑁∑︁
𝑘=1

⟨
𝐴

− 1
2

𝑘 𝑣(𝑡), 𝑅𝑘(𝜏)𝑄𝑘𝐴
1
2
0 𝑣(𝑡)

⟩
𝐻
𝑑𝜏

−
∞∫︁
0

𝜌(𝜏)
𝑁∑︁
𝑘=1

⟨
𝐴

− 1
2

𝑘 𝑣(𝑡),
𝜕

𝜕𝜏
𝜉𝑘(𝑡, 𝜏)

⟩
𝐻

𝑑𝜏

= − ⟨𝑣(𝑡), 𝑣(𝑡)⟩𝐻
𝑁∑︁
𝑘=1

∞∫︁
0

𝜌(𝜏)𝑅𝑘(𝜏)𝑑𝜏 +
1

𝛽

𝑁∑︁
𝑘=1

𝛽∫︁
0

⟨
𝐴

− 1
2

𝑘 𝑣(𝑡), 𝜉𝑘(𝑡, 𝜏)
⟩
𝐻
𝑑𝜏

6− ‖𝑣(𝑡)‖2𝐻
𝑁∑︁
𝑘=1

𝑀𝑘(𝛽) +
1

𝛽
‖𝑣(𝑡)||𝐻

𝑁∑︁
𝑘=1

√︀
𝑀𝑘(0)√
𝜆𝑘

‖𝜉𝑘(𝑡, 𝜏)‖Ω𝑘

= − ‖𝑣(𝑡)‖2𝐻
𝑁∑︁
𝑘=1

𝑀𝑘(𝛽) + 2
𝑁∑︁
𝑘=1

(︃√︀
𝑀𝑘(𝛽)√

2
‖𝑣(𝑡)||𝐻

√︀
𝑀𝑘(0)

√
2𝛽

√
𝜆𝑘

√︀
𝑀𝑘(𝛽)

‖𝜉𝑘(𝑡, 𝜏)‖Ω𝑘

)︃

6− ‖𝑣(𝑡)‖2𝐻
𝑁∑︁
𝑘=1

𝑀𝑘(𝛽) +
1

2
‖𝑣(𝑡)‖2𝐻

𝑁∑︁
𝑘=1

𝑀𝑘(𝛽) +
𝑁∑︁
𝑘=1

𝑀𝑘(0)

2𝜆𝑘𝛽2𝑀𝑘(𝛽)
‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘

=
𝑁∑︁
𝑘=1

(︂
−1

2
‖𝑣(𝑡)‖2𝐻𝑀𝑘(𝛽) +

1

2

𝑀𝑘(0)

𝜆𝑘𝛽2𝑀𝑘(𝛽)
‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘

)︂
.

(8.10)

Combining estimates (8.8) and (8.10), we obtain inequality (8.6). The proof is complete.

Lemma 8.2. Let the assumptions of Theorem 5.1 be satisfied. Then the inequality holds:

𝑑

𝑑𝑡
Φ2(𝑡) 6 ‖𝑣(𝑡)‖2𝐻 − 3

4
‖𝜉0(𝑡)‖2𝐻 + 𝑁

𝑁∑︁
𝑘=1

‖𝑄𝑘||2𝑀𝑘(0)‖𝜉𝑘(𝑡)‖2Ω𝑘
. (8.11)

Proof. The statement is implied by the following chain of identities

𝑑

𝑑𝑡
Φ2(𝑡) =

𝑑

𝑑𝑡

⟨
𝐴

− 1
2

0 𝑣(𝑡), 𝜉0(𝑡)
⟩
𝐻

=

⟨
𝐴

− 1
2

0

𝑑

𝑑𝑡
𝑣(𝑡), 𝜉0(𝑡)

⟩
𝐻

+

⟨
𝐴

− 1
2

0 𝑣(𝑡),
𝑑

𝑑𝑡
𝜉0(𝑡)

⟩
𝐻

= −‖𝜉0(𝑡)‖2𝐻 −
𝑁∑︁
𝑘=1

⟨
𝑄*

𝑘

+∞∫︁
0

𝜉𝑘(𝑡, 𝜏)𝑑𝜏 , 𝜉0(𝑡)

⟩
𝐻

+
⟨
𝐴

− 1
2

0 𝑣(𝑡), 𝐴
1
2
0 𝑣(𝑡)

⟩
𝐻

6 ‖𝑣(𝑡)‖2𝐻 − ‖𝜉0(𝑡)‖2𝐻 + ‖𝜉0(𝑡)||𝐻
𝑁∑︁
𝑘=1

‖𝑄𝑘‖
+∞∫︁
0

‖𝜉𝑘(𝑡, 𝜏)‖𝐻𝑑𝜏

6 ‖𝑣(𝑡)‖2𝐻 − ‖𝜉0(𝑡)‖2𝐻 + 2
‖𝜉0(𝑡)||𝐻

2

𝑁∑︁
𝑘=1

‖𝑄𝑘‖
√︀
𝑀𝑘(0)‖𝜉𝑘(𝑡, 𝜏)‖Ω𝑘

6 ‖𝑣(𝑡)‖2𝐻 − ‖𝜉0(𝑡)‖2𝐻 +
‖𝜉0(𝑡)‖2𝐻

4
+

(︃
𝑁∑︁
𝑘=1

‖𝑄𝑘‖
√︀

𝑀𝑘(0)‖𝜉𝑘(𝑡, 𝜏)‖Ω𝑘

)︃2
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6 ‖𝑣(𝑡)‖2𝐻 − 3

4
‖𝜉0(𝑡)‖2𝐻 + 𝑁

𝑁∑︁
𝑘=1

‖𝑄𝑘||2𝑀𝑘(0) ‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘
.

We define a vector function

Φ(𝑡) :=
3

𝑀(𝛽)
Φ1(𝑡) + Φ2(𝑡),

for which, according to Lemmata 8.1 and 8.2, the inequality holds:

𝑑

𝑑𝑡
Φ(𝑡) =

3

𝑀(𝛽)

𝑑

𝑑𝑡
Φ1(𝑡) +

𝑑

𝑑𝑡
Φ2(𝑡) 6

‖𝜉0‖2𝐻
4

− 3‖𝑣‖2𝐻
2

+
𝑁∑︁
𝑘=1

3

𝑀(𝛽)
𝑐𝑘‖𝜉𝑘‖2Ω𝑘

− 3

4
‖𝜉0(𝑡)‖2𝐻 + ‖𝑣(𝑡)‖2𝐻 + 𝑁

𝑁∑︁
𝑘=1

𝑀𝑘(0)‖𝑄𝑘||2‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘
(8.12)

= − 1

2
‖𝜉0(𝑡)‖2𝐻 − 1

2
‖𝑣(𝑡)‖2𝐻 +

𝑁∑︁
𝑘=1

(︂
3

𝑀(𝛽)
𝑐𝑘 + 𝑁 ·𝑀𝑘(0)‖𝑄𝑘||2

)︂
‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘

.

We introduce a notation

𝑐𝑘 :=
3

𝑀(𝛽)
𝑐𝑘 + 𝑁 ·𝑀𝑘(0)‖𝑄𝑘||2

=
3𝑀𝑘(0)

2𝑀(𝛽)

(︂
1

𝑀𝑘(𝛽)

(︂
6
⃦⃦
𝑄−1

𝑘

⃦⃦2
+

1

𝜆𝑘𝛽2

)︂
+ 𝑁

(︁⃦⃦
𝑄−1

𝑘

⃦⃦2
+ ‖𝑄𝑘‖2

)︁)︂
+ 𝑁 ·𝑀𝑘(0)‖𝑄𝑘||2.

In its turn, inequality (8.12) implies the estimate

𝑑

𝑑𝑡
Φ(𝑡) + 𝐸(𝑡) 6

𝑁∑︁
𝑘=1

(︂
𝑐𝑘 +

1

2

)︂
‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘

6 𝛾1

𝑁∑︁
𝑘=1

‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘
, (8.13)

where 𝛾1 := max
𝑘

(︂
𝑐𝑘 +

1

2

)︂
and the vector function 𝐸(𝑡) is defined by formula (8.1).

By Statement 8.1 we obtain the following estimate:

|Φ(𝑡)| 6 3

𝑀(𝛽)
|Φ1(𝑡)| + |Φ2(𝑡)| 6 𝛾2𝐸(𝑡), (8.14)

where

𝛾2 :=
3

𝑀(𝛽)
max

{︂
1, 𝑁 · max

𝑘

{︂
𝑀𝑘(0)

𝜆𝑘

}︂}︂
+

1√
𝜆0

.

We let

𝜀 := min

{︂
𝛾

2𝛾1
;

1

2𝛾2

}︂
and consider a vector function Ψ(𝑡) := 𝐸(𝑡) + 𝜀Φ(𝑡).

Statement 8.2. In terms of the introduced notations, the inequality

1

2
𝐸(𝑡) 6 Ψ(𝑡) 6

3

2
𝐸(𝑡) (8.15)

holds true.

Proof. 1. Let 𝜀 =
𝛾

2𝛾1
, then

𝛾

2𝛾1
6

1

2𝛾2
, and therefore according to inequality (8.14) we have

1

2
𝐸(𝑡) = 𝐸(𝑡) − 1

2𝛾2
𝛾2𝐸(𝑡) 6 𝐸(𝑡) − 𝜀𝛾2𝐸(𝑡) 6 𝐸(𝑡) + 𝜀Φ(𝑡)
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= Ψ(𝑡) 6 𝐸(𝑡) + 𝜀𝛾2𝐸(𝑡) 6 𝐸(𝑡) +
1

2𝛾2
𝛾2𝐸(𝑡) =

3

2
𝐸(𝑡).

2. Let 𝜀 =
1

2𝛾2
. Then according to inequality (8.14) we have

1

2
𝐸(𝑡) = 𝐸(𝑡) − 𝜀𝛾2𝐸(𝑡) 6 Ψ(𝑡) 6 𝐸(𝑡) + 𝜀𝛾2𝐸(𝑡) =

3

2
𝐸(𝑡).

In its turn, inequalities (8.2) and (8.14) imply the following estimate

𝑑

𝑑𝑡
Ψ(𝑡) =

𝑑

𝑑𝑡
𝐸(𝑡) + 𝜀

𝑑

𝑑𝑡
Φ(𝑡) 6 −𝛾

2

𝑁∑︁
𝑘=1

‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘
+ 𝜀

(︃
𝛾1

𝑁∑︁
𝑘=1

‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘
− 𝐸(𝑡)

)︃
.

Hence,

𝑑

𝑑𝑡
Ψ(𝑡) + 𝜀𝐸(𝑡) 6 −𝛾

2

𝑁∑︁
𝑘=1

‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘
+ 𝜀𝛾1

𝑁∑︁
𝑘=1

‖𝜉𝑘(𝑡, 𝜏)‖2Ω𝑘
. (8.16)

We consider two cases.
1. If 𝜀 =

𝛾

2𝛾1
, then by (8.16) we obtain:

𝑑

𝑑𝑡
Ψ(𝑡) + 𝜀𝐸(𝑡) 6 0. (8.17)

2. If 𝜀 =
1

2𝛾2
,then

1

2𝛾2
6

𝛾

2𝛾1
, and by (8.16) we get (8.17).

According to Statement 8.2, we obtain the following inequality

𝜀𝐸(𝑡) >
2

3
𝜀Ψ(𝑡). (8.18)

Letting 𝜔 =
𝜀

3
, by inequalities (8.17) and (8.18) we arrive at the inequality

𝑑

𝑑𝑡
Ψ(𝑡) + 2𝜔Ψ(𝑡) 6 0. (8.19)

It follows from Statement 8.2 that the function Ψ(𝑡) > 0 is continuous as 𝑡 > 0 and is differen-
tiable as 𝑡 > 0. By arguing similar to the proof of the Grönwall–Bellman lemma, see [24], we
get:

𝑡∫︁
0

𝑑Ψ(𝑠)

Ψ(𝑠)
+ 2𝜔𝑡 6 0. (8.20)

By inequality (8.20) we find:

Ψ(𝑡) 6 Ψ(0)𝑒−2𝜔𝑡. (8.21)

Finally, taking into consideration Statement 8.2 and inequality (8.21), we obtain inequal-
ity (5.2):

‖𝑆(𝑡)𝑧‖2H = 2𝐸(𝑡) 6 4Ψ(𝑡) 6 4Ψ(0)𝑒−2𝜔𝑡 6 6𝐸(0)𝑒−2𝜔𝑡 = 3 ‖𝑧‖2H 𝑒−2𝜔𝑡.

The proof is complete.

The proven statement completes the proof of Theorem 5.1.
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9. Proof of Theorem 6.1

In order to prove Theorem 6.1, we employ notations and theorems from a known mono-
graph [22].

Definitino 9.1. The Cauchy problem

𝑑

𝑑𝑡
𝑍(𝑡) = A𝑍(𝑡), (9.1)

𝑍(0) = 𝑧, (9.2)

is called well-posed (uniformly well-posed) if
1) for each 𝑧 ∈ 𝐷(A) there exists a unique solution to problem (9.1), (9.2);
2) this solutions depends continuously on initial data in the following sense: the convergence

𝑍𝑛(0) → 0 (𝑍𝑛(0) ∈ 𝐷(A)) implies that 𝑍𝑛(𝑡) → 0 for each 𝑡 ∈ [0, 𝑇 ] (uniformly in 𝑡) on each
finite segment [0, 𝑇 ].

Remark 9.1. If Cauchy problem (9.1), (9.2) generates a contracting semigroup in the space
H, then this problem is uniformly well-posed.

In what follows we shall use the following theorems from monograph [22]; their indexing
coincides with that in [22].

Theorem 1.1. If Cauchy problem (9.1), (9.2) is well-posed, then its solution is given by
the formula 𝑍(𝑡) = 𝑆(𝑡)𝑧, (𝑧 ∈ 𝐷(A)), where 𝑆(𝑡) is a strongly continuous as 𝑡 > 0 operator
semigroup.

Theorem 6.5. If Cauchy problem (9.1), (9.2) is uniformly well-posed, then the formula

𝑍(𝑡) = 𝑆(𝑡)𝑧 +

𝑡∫︁
0

𝑆(𝑡− 𝑝)𝐹 (𝑝)𝑑𝑝 (9.3)

gives a solution of the Cauchy problem for an inhomogeneous equation:

𝑑

𝑑𝑡
𝑍(𝑡) = 𝒜𝑍(𝑡) + 𝐹 (𝑡), (9.4)

𝑍(0) = 𝑧, (9.5)

for 𝑧 ∈ 𝐷(𝒜) and a vector function 𝐹 (𝑡) obeying one of two following conditions:
1) the values of the function 𝐹 (𝑡) belong to ∈ 𝐷(𝒜) and the function 𝒜𝐹 (𝑡) belongs to

𝐶(R+,H);
2) the function 𝐹 (𝑡) belongs to 𝐶1(R+,H).

We proceed to the proof of Theorem 6.1.

Proof of Theorem 6.1. We rewrite Cauchy problem (6.1), (6.2) component-wise:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑣(𝑡)

𝑑𝑡
= − 𝐴

1
2
0

⎛⎝𝜉0(𝑡) +
𝑁∑︁
𝑘=1

𝑄*
𝑘

+∞∫︁
0

𝜉𝑘(𝑡, 𝜏)𝑑𝜏

⎞⎠+ 𝑓(𝑡) −
𝑁∑︁
𝑘=1

𝑀𝑘(𝑡)𝐴𝑘𝜙0 𝑡, 𝜏 > 0,

𝑑𝜉0(𝑡)

𝑑𝑡
=𝐴

1
2
0 𝑣(𝑡),

𝑑𝜉𝑘(𝑡, 𝜏)

𝑑𝑡
=𝑅𝑘(𝜏)𝑄𝑘𝐴

1
2
0 𝑣(𝑡) +

𝜕

𝜕𝜏
𝜉𝑘(𝑡, 𝜏), 𝑘 = 1, . . . , 𝑁,

(9.6)

𝑣(0)|𝑡=0 = 𝜙1, 𝜉0(𝑡)|𝑡=0 = 𝐴
1
2
0 𝜙0, 𝜉𝑘(𝑡, 𝜏)|𝑡=0 = 0, 𝜏 > 0, 𝑘 = 1, . . . , 𝑁. (9.7)
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It was shown in paper [12] that solving last 𝑁 equations of system (9.6), we obtain the following
representations for the vector functions 𝜉𝑘(𝑡, 𝜏):

𝜉𝑘(𝑡, 𝜏) =

𝑡∫︁
0

𝑅𝑘(𝜏 + 𝑡− 𝑠)𝑄𝑘𝐴
1
2
0 𝑣(𝑠)𝑑𝑠, 𝑘 = 1, . . . , 𝑁.

Taking into consideration initial conditions (9.5), by the second equation in system (9.6) we
obtain that

𝜉0(𝑡) =

𝑡∫︁
0

𝐴
1
2
0 𝑣(𝑠)𝑑𝑠 + 𝐴

1
2
0 𝜙0.

We substitute the obtained expressions for 𝜉0(𝑡), 𝜉𝑘(𝑡, 𝜏), 𝑘 = 1, . . . , 𝑁 , into the first equation
in system (9.6) and take into consideration that by the assumptions of Theorem 6.1 we have

either 𝜙0 ∈ 𝐻 3
2
or 𝜙0 ∈ 𝐻1 and hence 𝐴

1
2
0 𝜙0 ∈ 𝐷(𝐴

1
2
0 ). Then we find:

𝑡∫︁
0

⎛⎝𝐴
1
2
0 +

𝑁∑︁
𝑘=1

⎛⎝ +∞∫︁
0

𝑅𝑘(𝜏 + 𝑡− 𝑠)𝑑𝜏

⎞⎠𝑄*
𝑘𝑄𝑘𝐴

1
2
0

⎞⎠ 𝑣(𝑠)𝑑𝑠 ∈ 𝐷(𝐴
1
2
0 ).

It was shown in paper [12] that 𝑣(𝑡) ∈ 𝐷(𝐴0). Opening the brackets in the first equation
in system (9.6) after substituting the expressions 𝜉0(𝑡), 𝜉𝑘(𝑡, 𝜏), 𝑘 = 1, . . . , 𝑁 , and letting

𝑣(𝑡) := 𝑢′(𝑡), 𝑢(+0) = 𝜙0, we obtain that 𝜉0(𝑡) := 𝐴
1
2
0 𝑢(𝑡) and hence,

−𝐴
1
2
0

⎛⎝𝜉0(𝑡) +
𝑁∑︁
𝑘=1

𝑄*
𝑘

+∞∫︁
0

𝜉𝑘(𝑡, 𝜏)𝑑𝜏

⎞⎠+ 𝑓(𝑡) −
𝑁∑︁
𝑘=1

𝑀𝑘(𝑡)𝐴𝑘𝜙0

= − (𝐴 + 𝐵)𝑢(𝑡) +
𝑁∑︁
𝑘=1

𝑡∫︁
0

𝑅𝑘(𝑡− 𝑠) (𝑎𝑘𝐴 + 𝑏𝑘𝐵)𝑢(𝑠)𝑑𝑠 + 𝑓(𝑡).

Thus, letting 𝑣(𝑡) := 𝑢′(𝑡), 𝑢(+0) = 𝜙0, by the first equation in system (9.6) we obtain that
the vector function 𝑢(𝑡) is a classical solution of problem (2.1), (2.2):

𝑑2𝑢(𝑡)

𝑑𝑡2
= − (𝐴 + 𝐵)𝑢(𝑡) +

𝑁∑︁
𝑘=1

𝑡∫︁
0

𝑅𝑘(𝑡− 𝑠) (𝑎𝑘𝐴 + 𝑏𝑘𝐵)𝑢(𝑠)𝑑𝑠 + 𝑓(𝑡),

𝑢(+0) = 𝜙0, 𝑢(1)(+0) = 𝜙1.

Moreover, the assumptions of Theorem 6.1 ensure that the assumptions of Theorem 6.5 in [22]
are satisfied for problem (6.1), (6.2) and then estimate (6.3) is implied by formula (9.3) and
estimate (5.2). The proof of Theorem 6.1 is complete.
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