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INTEGRAL REPRESENTATIONS OF QUANTITIES

ASSOCIATED WITH GAMMA FUNCTION

A.B. KOSTIN, V.B. SHERSTYUKOV

Abstract. We study a series of issues related with integral representations of Gamma
functions and its quotients. The base of our study is two classical results in the theory
of functions. One of them is a well-known first Binet formula, the other is a less known
Malmsten formula. These special formulae express the values of the Gamma function in
an open right half-plane via corresponding improper integrals. In this work we show that
both results can be extended to the imaginary axis except for the point 𝑧 = 0. Under
such extension we apply various methods of real and complex analysis. In particular, we
obtain integral representations for the argument of the complex quantity being the value of
the Gamma function in a pure imaginary point. On the base of the mentioned Malmsten
formula at the points 𝑧 ̸= 0 in the closed right half-plane, we provide a detailed derivation
of the integral representation for a special quotient expressed via the Gamma function:
𝐷(𝑧) ≡ Γ(𝑧 + 1

2)/Γ(𝑧 + 1). This fact on the positive semi-axis was mentioned without the
proof in a small note by Dušan Slavić in 1975. In the same work he provided two-sided
estimates for the quantity 𝐷(𝑥) as 𝑥 > 0 and at the natural points 𝐷(𝑥) coincided with
the normalized central binomial coefficient. These estimates mean that 𝐷(𝑥) is enveloped
on the positive semi-axis by its asymptotic series.

In the present paper we briefly discuss the issue on the presence of this property on the
asymptotic series 𝐷(𝑧) in a closed angle | arg 𝑧| 6 𝜋/4 with a punctured vertex. By the
new formula representing 𝐷(𝑧) on the imaginary axis we obtain explicit expressions for the
quantity |𝐷(𝑖𝑦)|2 and for the set Arg 𝐷(𝑖𝑦) as 𝑦 > 0. We indicate a way of proving the
second Binet formula employing the technique of simple fractions.

Keywords: Gamma function, central binomial coefficient, asymptotic expansion, integral
representation, Binet, Gauss, Malmsten formulae, enveloping series in the complex plane.
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1. Introduction

The present paper is motivated by a known problem on asymptotically sharp two-sided estimates
for the central binomial coefficient

𝐶𝑚
2𝑚, 𝑚 ∈ N, (1.1)

which has a many-centuries history. An important role in known approaches to this problem is played
by various integral representations for the quotients of the Gamma function, see, for instance, papers [1],
[2] and a recent survey [3] with many references. For instance, in a short note by Slavić [1], a non-
obvious formula

Γ(𝑥+ 1
2)

Γ(𝑥+ 1)
=

1√
𝑥

exp

⎛⎝−
+∞∫︁
0

tanh 𝑡

2𝑡
𝑒−4𝑡𝑥 𝑑𝑡

⎞⎠ , 𝑥 > 0, (1.2)
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was given without the proof. After substitution 𝑥 = 𝑚 ∈ N this formula gives a useful identity

𝐶𝑚
2𝑚 =

22𝑚√
𝜋𝑚

exp

⎛⎝−
+∞∫︁
0

tanh 𝑡

2𝑡
𝑒−4𝑚𝑡 𝑑𝑡

⎞⎠ , 𝑚 ∈ N. (1.3)

As it was pointed out in [1] (for a detailed proof see [4]), formula (1.3) serves as a source for universal
two-sided inequalities

22𝑚√
𝜋𝑚

exp

(︃
2𝑀−1∑︁
𝑘=1

𝑏𝑘
𝑚2𝑘−1

)︃
< 𝐶𝑚

2𝑚 <
22𝑚√
𝜋𝑚

exp

(︃
2𝑀∑︁
𝑘=1

𝑏𝑘
𝑚2𝑘−1

)︃
, (1.4)

which are true for all 𝑚 ∈ N under arbitrary choice of the parameter 𝑀 ∈ N. The coefficients 𝑏𝑘 are
expressed via the Bernoulli numbers 𝐵2𝑘 by the formula

𝑏𝑘 =
(2−2𝑘 − 1)𝐵2𝑘

𝑘(2𝑘 − 1)
, 𝑘 ∈ N.

In a recent work by Popov [2], in order to obtain both (1.4) and new more gentle estimates for
quantity (1.1), instead of (1.2), there was essentially used another relation

Γ(𝑧) =

√︂
2𝜋

𝑧
exp

⎛⎝𝑧 ln 𝑧 − 𝑧 + 2

+∞∫︁
0

arctan 𝑡
𝑧

exp(2𝜋𝑡)− 1
𝑑𝑡

⎞⎠ , 𝑧 ∈ Π+, (1.5)

for 𝑧 = 𝑥 > 0 known in the literature as second Binet formula, see [5, Ch. 12, Sect. 12.33]. To shorten
the writing, hereinafter by

Π+ ≡ {𝑧 ∈ C : Re 𝑧 > 0}
we denote an open right half-plane, while the symbol Π

∘
+ stands for its closure without the point 𝑧 = 0,

that is, the set

Π
∘
+ ≡ {𝑧 ∈ C ∖ {0} : Re 𝑧 > 0}. (1.6)

Throughout the work the logarithm ln 𝑧 and the root
√
𝑧 are taken only for 𝑧 ∈ Π

∘
+ and as usually are

treated in the sense of the principal values

ln 𝑧 = ln |𝑧| + 𝑖 arg 𝑧 =

𝑧∫︁
1

𝑑𝜁

𝜁
,

√
𝑧 =

√︀
|𝑧| 𝑒

𝑖
2
arg 𝑧 = 𝑒

1
2
ln 𝑧, −𝜋

2
6 arg 𝑧 6

𝜋

2
.

In the same way, the arcus tangent in Binet formula (1.5) denotes an univalent analytic function

arctan𝑢 =

𝑢∫︁
0

𝑑𝜁

𝜁2 + 1
, 𝑢 ∈ Π+,

defined by an integral over the segment.
As it turned out, a useful tool in proving Slavić formula (1.2) is a Malmsten representation

Γ(𝑧) = exp

⎛⎝ +∞∫︁
0

(︂
𝑒−𝑧𝑡 − 𝑒−𝑡

1− 𝑒−𝑡
+ (𝑧 − 1) 𝑒−𝑡

)︂
𝑑𝑡

𝑡

⎞⎠ , 𝑧 ∈ Π+. (1.7)

Compact formula (1.7) is attractive due to the absence of out-of-integral terms. We note that in
a classical book by Whittaker and Watson [5, Ch. 12, Sect. 12.31] result (1.7) was provided with
no comments, just the authorship of Malmsten was mentioned. Owing to the exercise book [6], we
succeeded to find an original work [7], where the proof of formula (1.7) for the positive values of the
variable. Moreover, many remarkable analytic achievements by Malmsten were unfairly forgotten and
later they were repeatedly rediscovered, see a fundamental survey by Blagushin [8] on this subject.

The authors found no rigorous proof of formula (1.2) from Slavić note in the literature, which was
one of the motivations for writing the present paper. Apart of other issues, we cover an implicit gap in
our arguing in wor [4], where formula (1.2) was used as a well-known fact while studying the behavior
of the quantity Γ(𝑥+ 1

2)/Γ(𝑥+ 1) on the positive semi-axis 𝑥 > 0.
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The paper consists of the Introduction, which is this section, and two working Sections 2, 3. In
the second section we propose a derivation of Malmsten formula (1.7) based on so-called first Binet

formula

Γ(𝑧) =

√︂
2𝜋

𝑧
exp

⎛⎝𝑧 ln 𝑧 − 𝑧 +

+∞∫︁
0

(︂
1

2
− 1

𝑡
+

1

𝑒𝑡 − 1

)︂
𝑒−𝑧𝑡

𝑡
𝑑𝑡

⎞⎠ , (1.8)

which is valid for all 𝑧 ∈ Π+. In fact, both classical formulae (1.7), (1.8) provide slightly different by
the structure but equivalent representations for the Gamma function. In fact, first Binet formula (1.8)
is a basic one in this work and relations (1.2), (1.7), in which we are interesting in, will be carefully
derived from this formula. The choice of representation (1.8) as a basic one is convenient since exactly
it was rigorously proved in [5, Ch. 12, Sect. 12.31] on the base of a classical expansion of the Gamma
function into an infinite Weierstrass product

1

Γ(𝑧)
= 𝑧 𝑒𝛾𝑧

∞∏︁
𝑛=1

(︁(︁
1 +

𝑧

𝑛

)︁
𝑒−𝑧/𝑛

)︁
, 𝑧 ∈ C, (1.9)

where 𝛾 the Euler-Mascheroni constant.
We also note that an elementary derivation of formula (1.7) can be done by integrating Gauss

formula [5, Ch. 12, Sect. 12.3] for Psi function

𝜓(𝜁) ≡ Γ′(𝜁)

Γ(𝜁)
=

+∞∫︁
0

(︂
𝑒−𝑡

𝑡
− 𝑒−𝜁𝑡

1− 𝑒−𝑡

)︂
𝑑𝑡, 𝜁 ∈ Π+,

with respect to the variable 𝜁 from 1 to 𝑧 ∈ Π+. Such way was mentioned in [9, Thm. 1.6.2] and
exactly in this way Malmsten proved a real version of formula (1.7) [7]. However, in order to extend
identity (1.7) on the imaginary axis, we proceed in an another way. We first prove that formula (1.8)

holds on set (1.6) and then for the same 𝑧 ∈ Π
∘
+ we derive Malmsten formula.

The third section is devoted to justifying Slavić formula (1.2) in its general complex writing on the

set Π
∘
+. Here we also briefly describe a new way for deriving second Binet formula (1.5), cf. [5, Ch.

12, Sect. 12.33]. We also discuss a way of extending the results from [1] on estimating quantity (1.2)
into the complex plane.

Working with classical representations (1.5), (1.7), (1.8), in contrast to [5] and many modern works,
we use a notation when the Gamma function is expressed via an improper integral and not its logarithm.
Such approach, going back to a fundamental Binet memoire [10], has its advantages.

2. First Binet formula and Malmsten representation

We consider an auxiliary function

𝑔(𝑡) ≡
(︂
1

2
− 1

𝑡
+

1

𝑒𝑡 − 1

)︂
1

𝑡
, 𝑡 > 0, 𝑔(0) ≡ lim

𝑡→0
𝑔(𝑡) =

1

12
. (2.1)

On the ray 𝑡 > 0, function (2.1) strictly decreases, is continuously differentiable and satisfies the
relations

𝑔(𝑡) ∼ 1

2𝑡
, 𝑔′(𝑡) ∼ − 1

2𝑡2
, 𝑡→ +∞. (2.2)

The checking of these properties of the function 𝑔(𝑡) is elementary. While doing this, it is useful to
bear in mind the expansion [11, Prb. 6.45]

𝑔(𝑡) =
∞∑︁
𝑛=1

2

𝑡2 + 4𝜋2 𝑛2
> 0, 𝑡 > 0, (2.3)

which, for instance, implies that

𝑔′(𝑡) = −
∞∑︁
𝑛=1

4𝑡

(𝑡2 + 4𝜋2 𝑛2)2
< 0, 𝑡 > 0, 𝑔′(0) = 0. (2.4)
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First we are going to show (Proposition 2.1 below) that the first Binet formula (1.8) holds true

not only for 𝑧 ∈ Π+, but also on the set Π
∘
+. Then for the same values 𝑧 ∈ Π

∘
+ we derive Malmsten

representation (1.7), see Proposition 2.2.

Proposition 2.1. The first Binet formula (1.8) holds on set (1.6), that is,

Γ(𝑧) =

√︂
2𝜋

𝑧
exp

⎛⎝𝑧 ln 𝑧 − 𝑧 +

+∞∫︁
0

𝑔(𝑡) 𝑒−𝑧𝑡 𝑑𝑡

⎞⎠ , 𝑧 ∈ Π
∘
+. (2.5)

In particular, for a pure imaginary variable we have

|Γ(𝑖𝑦)| =
√︂

2𝜋

𝑦
exp

⎛⎝− 𝜋𝑦

2
+

+∞∫︁
0

𝑔(𝑡) cos(𝑦𝑡) 𝑑𝑡

⎞⎠ , 𝑦 > 0, (2.6)

and also an expression for one of the values of the argument:

𝑦 ln 𝑦 − 𝑦 − 𝜋

4
−

+∞∫︁
0

𝑔(𝑡) sin(𝑦𝑡) 𝑑𝑡 ∈ Arg Γ(𝑖𝑦), 𝑦 > 0. (2.7)

Here the symbol Arg Γ(𝑖𝑦) for a given 𝑦 > 0 denotes the set of all values of the argument of the complex
number Γ(𝑖𝑦). Moreover, identity (2.6) provides the formula

+∞∫︁
0

𝑔(𝑡) cos(𝑦𝑡) 𝑑𝑡 =
𝜋𝑦

2
− 1

2
ln
(︁
2 sinh(𝜋𝑦)

)︁
, 𝑦 > 0. (2.8)

The function 𝑔(𝑡) in relations (2.5)–(2.8) is defined by formula (2.1).

Proof. It is clear that the function √︂
𝑧

2𝜋
Γ(𝑧) exp (𝑧 − 𝑧 ln 𝑧)

is continuous on the set Π
∘
+. Hence, taking into consideration classical representation (1.8), we conclude

that the integral
+∞∫︁
0

𝑔(𝑡) 𝑒−𝑧𝑡 𝑑𝑡

has a limit as 𝑧 → 𝑖𝑦, 𝑧 ∈ Π+, at each point 𝑖𝑦 ̸= 0 on the imaginary axis. This is why, in order to
justify formula (2.5), it is sufficient to confirm the relation

lim
𝑥→0+

+∞∫︁
0

𝑔(𝑡) 𝑒−(𝑥+𝑖𝑦)𝑡 𝑑𝑡 =

+∞∫︁
0

𝑔(𝑡) 𝑒−𝑖𝑦𝑡 𝑑𝑡, (2.9)

supposing that a real 𝑦 ̸= 0 is arbitrary fixed. In view of the smoothness of the function (2.1) and
property (2.2) we can state that the integral

+∞∫︁
0

𝑔(𝑡) 𝑒−(𝑥+𝑖𝑦)𝑡 𝑑𝑡

converges for each 𝑥 > 0 and formulae of integration by parts hold:
+∞∫︁
0

𝑔(𝑡) 𝑒−(𝑥+𝑖𝑦)𝑡 𝑑𝑡 =
1

𝑥+ 𝑖𝑦

⎛⎝ 1

12
+

+∞∫︁
0

𝑔′(𝑡) 𝑒−(𝑥+𝑖𝑦)𝑡 𝑑𝑡

⎞⎠ , 𝑥 > 0,

+∞∫︁
0

𝑔(𝑡) 𝑒−𝑖𝑦𝑡 𝑑𝑡 =
1

𝑖𝑦

⎛⎝ 1

12
+

+∞∫︁
0

𝑔′(𝑡) 𝑒−𝑖𝑦𝑡 𝑑𝑡

⎞⎠ .
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In view of these identities we see that in order to prove (2.9), it remains to justify a passage to the
limit:

lim
𝑥→0+

+∞∫︁
0

𝑔′(𝑡) 𝑒−(𝑥+𝑖𝑦)𝑡 𝑑𝑡 =

+∞∫︁
0

𝑔′(𝑡) 𝑒−𝑖𝑦𝑡 𝑑𝑡. (2.10)

Taking into consideration (2.4), we write estimate⃒⃒⃒⃒
⃒⃒
+∞∫︁
0

𝑔′(𝑡) 𝑒−(𝑥+𝑖𝑦)𝑡 𝑑𝑡 −
+∞∫︁
0

𝑔′(𝑡) 𝑒−𝑖𝑦𝑡 𝑑𝑡

⃒⃒⃒⃒
⃒⃒ 6

+∞∫︁
0

(−𝑔′(𝑡) )
(︀
1− 𝑒−𝑥𝑡

)︀
𝑑𝑡, (2.11)

which is true for each 𝑥 > 0. Then we choose an arbitrary 𝜀 > 0 and choose a value 𝑎 > 0 so large
that 𝑔(𝑎) < 𝜀

2 . This is possible since 𝑔(𝑡) → 0 as 𝑡→ +∞. If 𝜀 > 1
6 , then we can take arbitrary 𝑎 > 0.

Then by the found quantity 𝑎 we choose a small 𝛿 > 0 so that the inequality 1 − 𝑒−𝑎𝛿 < 6 𝜀 holds.
Then, according to the choice of the numbers 𝑎, 𝛿 and to the properties of the function 𝑔(𝑡), we have,
first,

+∞∫︁
𝑎

(−𝑔′(𝑡) )
(︀
1− 𝑒−𝑥𝑡

)︀
𝑑𝑡 6

+∞∫︁
𝑎

(−𝑔′(𝑡) ) 𝑑𝑡 = 𝑔(𝑎) <
𝜀

2
, 𝑥 > 0, (2.12)

and second,
𝑎∫︁

0

(−𝑔′(𝑡) )
(︀
1− 𝑒−𝑥𝑡

)︀
𝑑𝑡 6

(︁
1− 𝑒−𝑎𝛿

)︁ 𝑎∫︁
0

(−𝑔′(𝑡) ) 𝑑𝑡 < 6 𝜀 𝑔(0) =
𝜀

2
, (2.13)

as 0 < 𝑥 < 𝛿. Thus, for each 𝜀 > 0 there exists 𝛿 > 0, for which, according (2.12), (2.13), the relation

+∞∫︁
0

(−𝑔′(𝑡) )
(︀
1− 𝑒−𝑥𝑡

)︀
𝑑𝑡 =

𝑎∫︁
0

+

+∞∫︁
𝑎

<
𝜀

2
+
𝜀

2
= 𝜀

holds for all 0 < 𝑥 < 𝛿. In view of estimate (2.11) we arrive at (2.10). This completes the proof of
formula (2.5).

Let us see what the first Binet formula gives as 𝑧 = 𝑖𝑦, where 𝑦 > 0. Substituting this value
into (2.5), we write the identity

Γ(𝑖𝑦) =

√︂
2𝜋

𝑖𝑦
exp

⎛⎝𝑖𝑦 ln(𝑖𝑦)− 𝑖𝑦 +

+∞∫︁
0

𝑔(𝑡) 𝑒−𝑖𝑦𝑡 𝑑𝑡

⎞⎠ ,

which is equivalent to system of relations (2.6), (2.7). In order to obtain (2.8), we should additionally
take into consideration an explicit formula

|Γ(𝑖𝑦)| 2 =
𝜋

𝑦 sinh(𝜋𝑦)
, 𝑦 > 0, (2.14)

which is easily deduced from expansion (1.9) and is provided in reference books, see, for instance, [12,
Ch. 6, Form. (6.1.29)]). The proof is complete.

Remark 2.1. For comparing, we give a direct way of calculating the integral in (2.8) based on
expansion (2.3). Supposing that 𝑦 > 0 and taking into consideration the uniform convergence of series
of simple fractions (2.3) as 𝑡 > 0, we write

+∞∫︁
0

𝑔(𝑡) cos(𝑦𝑡) 𝑑𝑡 =
∞∑︁
𝑛=1

+∞∫︁
0

2 cos(𝑦𝑡)

𝑡2 + 4𝜋2 𝑛2
𝑑𝑡 =

∞∑︁
𝑛=1

+∞∫︁
−∞

cos(𝑦𝑡)

𝑡2 + 4𝜋2 𝑛2
𝑑𝑡.

By means of residues we find an integral

+∞∫︁
−∞

cos(𝑦𝑡)

𝑡2 + 4𝜋2 𝑛2
𝑑𝑡 =

𝑒−2𝜋𝑛𝑦

2𝑛
, 𝑛 ∈ N.
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Finally for all 𝑦 > 0 we have

+∞∫︁
0

𝑔(𝑡) cos(𝑦𝑡) 𝑑𝑡 =
∞∑︁
𝑛=1

(︀
𝑒−2𝜋𝑦

)︀𝑛
2𝑛

= − 1

2
ln
(︀
1− 𝑒−2𝜋𝑦

)︀
=
𝜋𝑦

2
− 1

2
ln
(︁
2 sinh(𝜋𝑦)

)︁
.

This leads us to identity (2.8). At the same time, the integral of form

+∞∫︁
0

sin(𝑦𝑡)

𝑡2 + 4𝜋2 𝑛2
𝑑𝑡, 𝑦 > 0, 𝑛 ∈ N,

can not be found explicitly and this produces certain difference in the nature of formulae (2.7), (2.8).
Finally, for the sake of the completeness of the exposition, we note that in view of the identity

Γ(−𝑖𝑦) = Γ(𝑖𝑦), 𝑦 ̸= 0,

a general, more bulky version of writing is possible for (2.6)–(2.8), which takes into account also the
values 𝑧 = 𝑖𝑦 with 𝑦 < 0.

We proceed to extending Malmsten formula (1.7) on the imaginary axis. We shall need auxiliary
statements, which are the following Lemmata 2.1, 2.2.

Lemma 2.1. The identities hold
+∞∫︁
0

𝑒−𝑡 − cos 𝑡

𝑡
𝑑𝑡 = 0, (2.15)

+∞∫︁
0

(︂
1

𝑡
− 1

𝑒𝑡 − 1
− 𝑒−𝑡

2

)︂
𝑑𝑡

𝑡
=

1

2
ln 2𝜋. (2.16)

Proof. The convergence of integral (2.15) is obvious. Let us find it by methods of complex analysis.1

For an arbitrary fixed number 𝑅 > 0 we choose a positively oriented contour 𝛾𝑅 consisting of three

curves 𝛾
(1)
𝑅 , 𝛾

(2)
𝑅 , 𝛾

(3)
𝑅 , where 𝛾

(1)
𝑅 is the segment on the real line from the point 𝑧 = 0 to the point

𝑧 = 𝑅; 𝛾
(2)
𝑅 is the arc of the circumference |𝑧| = 𝑅 from the point 𝑧 = 𝑅 to the point 𝑧 = 𝑅(1+ 𝑖)/

√
2;

𝛾
(3)
𝑅 is the segment connecting the points 𝑧 = 𝑅(1 + 𝑖)/

√
2 and 𝑧 = 0. We consider the integral of an

entire function 𝐹 (𝑧) ≡
(︀
𝑒−𝑧 − 𝑒𝑖𝑧

)︀
/𝑧 taken over the contour 𝛾𝑅. On one hand, the integral Cauchy

theorem for each 𝑅 > 0 gives the identity∫︁
𝛾𝑅

𝑒−𝑧 − 𝑒𝑖𝑧

𝑧
𝑑𝑧 = 0.

On the other hand, this integral is the sum of three integrals of the function 𝐹 (𝑧) over the curves 𝛾
(1)
𝑅 ,

𝛾
(2)
𝑅 , 𝛾

(3)
𝑅 , that is,

𝑅∫︁
0

𝑒−𝑡 − 𝑒𝑖𝑡

𝑡
𝑑𝑡 + 𝑖

𝜋/4∫︁
0

(︁
𝑒−𝑅𝑒𝑖𝜙 − 𝑒𝑖𝑅𝑒𝑖𝜙

)︁
𝑑𝜙 −

𝑅∫︁
0

𝑒−𝑡(1+𝑖)/
√
2 − 𝑒𝑖𝑡(1+𝑖)/

√
2

𝑡
𝑑𝑡.

Since, as we see easily,

lim
𝑅→+∞

𝜋/4∫︁
0

(︁
𝑒−𝑅𝑒𝑖𝜙 − 𝑒𝑖𝑅𝑒𝑖𝜙

)︁
𝑑𝜙 = 0,

1A real-valued approach to this problem is also possible. It is based on working with the integral

+∞∫︁
0

𝑒−(1+𝜀)𝑡 − 𝑒−𝜀𝑡 cos 𝑡

𝑡
𝑑𝑡

depending on the parameter 𝜀 > 0.
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then the needed result, identity (2.15), is implied by the relation

+∞∫︁
0

𝑒−𝑡 − cos 𝑡

𝑡
𝑑𝑡 = Re

+∞∫︁
0

𝑒−𝑡 − 𝑒𝑖𝑡

𝑡
𝑑𝑡 = Re

+∞∫︁
0

𝑒−𝑡(1+𝑖)/
√
2 − 𝑒𝑖𝑡(1+𝑖)/

√
2

𝑡
𝑑𝑡 = 0.

We calculate integral (2.16) by means of tools in the real analysis. First of all by ℎ(𝑡) we denote the
integrand in (2.16) and employing construction (2.1), we write the representation

ℎ(𝑡) ≡
(︂
1

𝑡
− 1

𝑒𝑡 − 1
− 𝑒−𝑡

2

)︂
1

𝑡
=

1− 𝑒−𝑡

2𝑡
− 𝑔(𝑡), 𝑡 > 0,

with the usual convention

ℎ(0) ≡ lim
𝑡→0

ℎ(𝑡) = lim
𝑡→0

1− 𝑒−𝑡

2𝑡
− 𝑔(0) =

5

12
.

For all 𝑡 > 0 we transform quantity 𝑡2ℎ(𝑡) to the form

𝑡2ℎ(𝑡) =
2𝑒𝑡(𝑒𝑡 − 1− 𝑡)− 𝑡(𝑒𝑡 − 1)

2𝑒𝑡(𝑒𝑡 − 1)
=

(𝑒𝑡 − 1− 𝑡)(2𝑒𝑡 − 𝑡)− 𝑡2

2𝑒𝑡(𝑒𝑡 − 1)
,

admitting an obvious estimate

𝑡2ℎ(𝑡) >
𝑡2(2 + 𝑡)− 2𝑡2

4𝑒𝑡(𝑒𝑡 − 1)
=

𝑡3

4𝑒𝑡(𝑒𝑡 − 1)
> 0, 𝑡 > 0.

Therefore, the function ℎ(𝑡) is positive for all 𝑡 > 0. Moreover, it is continuous on this segment and
has the asymptotics

ℎ(𝑡) ∼ 1

𝑡2
, 𝑡→ +∞.

The above said facts mean that integral (2.16) converges. However, in order to find its value, we shall
need some additional efforts.

We introduce an auxiliary family of functions

ℎ𝜀(𝑡) ≡ 𝑒−𝜀𝑡 ℎ(𝑡) =
𝑒−𝜀𝑡 − 𝑒−(1+𝜀)𝑡

2𝑡
− 𝑒−𝜀𝑡 𝑔(𝑡), 𝑡 > 0,

with a parameter 𝜀 > 0. We observe that

0 < ℎ𝜀(𝑡) 6 ℎ(𝑡), 𝑡 > 0,

and on each segment of the non-negative axis ℎ𝜀(𝑡) converges uniformly to ℎ(𝑡) as 𝜀→ 0+. Then, see,
for instance, [13, Part II, Ch. 3, Sect. 1, Prb. 115],

lim
𝜀→0+

+∞∫︁
0

ℎ𝜀(𝑡) 𝑑𝑡 =

+∞∫︁
0

ℎ(𝑡) 𝑑𝑡. (2.17)

For a fixed 𝜀 > 0 we find the integral

+∞∫︁
0

ℎ𝜀(𝑡) 𝑑𝑡 =

+∞∫︁
0

𝑒−𝜀𝑡 − 𝑒−(1+𝜀)𝑡

2𝑡
𝑑𝑡−

+∞∫︁
0

𝑒−𝜀𝑡 𝑔(𝑡) 𝑑𝑡. (2.18)

By the Frullani formula we get

+∞∫︁
0

𝑒−𝜀𝑡 − 𝑒−(1+𝜀)𝑡

2𝑡
𝑑𝑡 =

1

2
ln

1 + 𝜀

𝜀
, 𝜀 > 0. (2.19)

By the first Binet formula (1.8) in writing (2.5) with 𝑧 = 𝜀 we have:

+∞∫︁
0

𝑒−𝜀𝑡 𝑔(𝑡) 𝑑𝑡 = lnΓ(𝜀) −
(︂
𝜀− 1

2

)︂
ln 𝜀 + 𝜀 − 1

2
ln 2𝜋, 𝜀 > 0. (2.20)
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We substitute (2.19), (2.20) into (2.18) and we obtain the relation

+∞∫︁
0

ℎ𝜀(𝑡) 𝑑𝑡 =
1

2
ln(1 + 𝜀) + 𝜀 ln 𝜀− 𝜀− ln

(︁
𝜀Γ(𝜀)

)︁
+

1

2
ln 2𝜋, 𝜀 > 0,

the right hand side of which tends to 1
2 ln 2𝜋 as 𝜀→ 0+ since it is known that

lim
𝜀→0+

𝜀Γ(𝜀) = lim
𝜀→0+

Γ(1 + 𝜀) = 1.

In view of (2.17) we have identity (2.16). The proof is complete.

Lemma 2.2. Representations hold:

ln 𝑧 =

+∞∫︁
0

𝑒−𝑡 − 𝑒−𝑧𝑡

𝑡
𝑑𝑡, 𝑧 ∈ Π

∘
+, (2.21)

𝑧 ln 𝑧 − 𝑧 =

+∞∫︁
0

(︂
𝑧𝑒−𝑡 +

𝑒−𝑧𝑡 − 1

𝑡

)︂
𝑑𝑡

𝑡
, 𝑧 ∈ Π

∘
+. (2.22)

Proof. Formula (2.21) for values of 𝑧 in an open half-plane Π+ was proved in book [5, Sect. 6.222,
Ex. 6]. Let us confirm straightforwardly (cf. proof of Proposition 2.1) that this formula holds true also
for 𝑧 = 𝑖𝑦, where 𝑦 ̸= 0. For such 𝑧 relation (2.21) splits into two parts:

+∞∫︁
0

𝑒−𝑡 − cos(𝑦𝑡)

𝑡
𝑑𝑡 = ln |𝑦|, 𝑦 ̸= 0, (2.23)

+∞∫︁
0

sin(𝑦𝑡)

𝑡
𝑑𝑡 =

𝜋

2
sgn 𝑦, 𝑦 ̸= 0. (2.24)

The second of written formulae is well-known, this is the Dirichlet integral. This is why we need to
prove only the first formula. Without loss of generality we suppose that 𝑦 > 0. By the Frullani formula,

+∞∫︁
0

𝑒−𝑡 − 𝑒−𝑦𝑡

𝑡
𝑑𝑡 = ln 𝑦, 𝑦 > 0.

But then
+∞∫︁
0

𝑒−𝑡 − cos(𝑦𝑡)

𝑡
𝑑𝑡 =

+∞∫︁
0

𝑒−𝑡 − 𝑒−𝑦𝑡

𝑡
𝑑𝑡 +

+∞∫︁
0

𝑒−𝑦𝑡 − cos(𝑦𝑡)

𝑡
𝑑𝑡 = ln 𝑦,

since
+∞∫︁
0

𝑒−𝑦𝑡 − cos(𝑦𝑡)

𝑡
𝑑𝑡 =

+∞∫︁
0

𝑒−𝑡 − cos 𝑡

𝑡
𝑑𝑡 = 0, 𝑦 > 0,

see identity (2.15) in Lemma 2.1. This proves formula (2.23). Thus, needed relation (2.21) holds for

all points 𝑧 ̸= 0 on the imaginary axis and therefore, for all 𝑧 ∈ Π
∘
+.

We proceed to proving formula (2.22). We do this into two steps. First we shall confirm the validity
of (2.22) in an open right half-plane Π+, and then we shall consider independently the case of pure
imaginary values 𝑧.

We write the integral in the right hand side of (2.22) as

+∞∫︁
0

(︂
𝑧𝑒−𝑡 +

𝑒−𝑧𝑡 − 1

𝑡

)︂
𝑑𝑡

𝑡
=

+∞∫︁
0

(︀
𝑧𝑡𝑒−𝑡 + 𝑒−𝑧𝑡 − 1

)︀
𝑑

(︂
− 1

𝑡

)︂



58 A.B. KOSTIN, V.B. SHERSTYUKOV

and integrate in it by parts. For arbitrary 𝑧 ∈ Π+ this gives an expression(︂
1− 𝑒−𝑧𝑡

𝑡
− 𝑧𝑒−𝑡

)︂ ⃒⃒⃒⃒+∞

𝑡=0

+

+∞∫︁
0

𝑧𝑒−𝑡 − 𝑧𝑡𝑒−𝑡 − 𝑧𝑒−𝑧𝑡

𝑡
𝑑𝑡.

The substitution vanishes, while in view of formula (2.21) the integral is equal to

𝑧

+∞∫︁
0

𝑒−𝑡 − 𝑒−𝑧𝑡

𝑡
𝑑𝑡 − 𝑧

+∞∫︁
0

𝑒−𝑡 𝑑𝑡 = 𝑧 ln 𝑧 − 𝑧, 𝑧 ∈ Π+.

Thus, relation (2.22) holds for 𝑧 ∈ Π+.
Now let 𝑧 = 𝑖𝑦, where 𝑦 ̸= 0. Let us justify (2.22) for such 𝑧. In other words, we need to prove the

following two identities:

+∞∫︁
0

1− cos(𝑦𝑡)

𝑡2
𝑑𝑡 =

𝜋𝑦

2
sgn 𝑦, 𝑦 ̸= 0, (2.25)

+∞∫︁
0

(︂
𝑦𝑒−𝑡 − sin(𝑦𝑡)

𝑡

)︂
𝑑𝑡

𝑡
= 𝑦 ln |𝑦| − 𝑦, 𝑦 ̸= 0. (2.26)

Formula (2.25) is true since it is reduced to (2.24) by integrating by parts. Let us check formula (2.26)
supposing that 𝑦 > 0; this obviously does not restrict the generality of our arguing. We transform the
left hand side in (2.26) by using formula (2.23). We have:

+∞∫︁
0

(︂
𝑦𝑒−𝑡 − sin(𝑦𝑡)

𝑡

)︂
𝑑𝑡

𝑡
=

+∞∫︁
0

(︀
sin(𝑦𝑡)− 𝑦𝑡𝑒−𝑡

)︀
𝑑

(︂
1

𝑡

)︂

=

(︂
sin(𝑦𝑡)

𝑡
− 𝑦𝑒−𝑡

)︂ ⃒⃒⃒⃒+∞

𝑡=0

+

+∞∫︁
0

(︀
𝑦𝑒−𝑡(1− 𝑡)− 𝑦 cos(𝑦𝑡)

)︀ 𝑑𝑡
𝑡

= 𝑦

+∞∫︁
0

𝑒−𝑡 − cos(𝑦𝑡)

𝑡
𝑑𝑡− 𝑦

+∞∫︁
0

𝑒−𝑡 𝑑𝑡 = 𝑦 ln 𝑦 − 𝑦.

This proves relation (2.26).

Thus, we have deduced identity (2.22) for 𝑧 ∈ Π
∘
+. The proof is complete.

Combination of Lemmata 2.1, 2.2 with proposition 2.1 allows us to provide the announced in the
Introduction extended version of Malmsten representation.

Proposition 2.2. Formula (1.7) holds on set (1.6), that is,

Γ(𝑧) = exp

⎛⎝ +∞∫︁
0

(︂
𝑒−𝑧𝑡 − 𝑒−𝑡

1− 𝑒−𝑡
+ (𝑧 − 1) 𝑒−𝑡

)︂
𝑑𝑡

𝑡

⎞⎠ , 𝑧 ∈ Π
∘
+. (2.27)

In particular, for pure imaginary values of the variable, by (2.27) we get the relations

+∞∫︁
0

cos(𝑦𝑡)− 1

𝑒𝑡 − 1

𝑑𝑡

𝑡
=

1

2
ln

𝜋𝑦

sinh(𝜋𝑦)
, 𝑦 > 0, (2.28)

+∞∫︁
0

(︂
𝑦𝑒−𝑡 − sin(𝑦𝑡)

1− 𝑒−𝑡

)︂
𝑑𝑡

𝑡
∈ Arg Γ(𝑖𝑦), 𝑦 > 0. (2.29)
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Proof. After the made preparation the deduction of the Malmsten representation for 𝑧 ∈ Π
∘
+ is simple.

As an initiail result we take the first Binet formula in Proposition 2.1 (see (2.5))

Γ(𝑧) = exp

⎛⎝1

2
ln 2𝜋 − 1

2
ln 𝑧 + (𝑧 ln 𝑧 − 𝑧) +

+∞∫︁
0

𝑔(𝑡) 𝑒−𝑧𝑡 𝑑𝑡

⎞⎠ , 𝑧 ∈ Π
∘
+,

with the function 𝑔(𝑡) defined in (2.1). We replace the first three terms under the exponent by their
integral representations (2.16), (2.21), (2.22), respectively. Summing four integral, we obtain that

Γ(𝑧) = exp

⎛⎝ +∞∫︁
0

𝐺(𝑡, 𝑧)
𝑑𝑡

𝑡

⎞⎠ , 𝑧 ∈ Π
∘
+,

where the function 𝐺(𝑡, 𝑧) is given by the extended formula

𝐺(𝑡, 𝑧) =
1

𝑡
− 1

𝑒𝑡 − 1
− 𝑒−𝑡

2
− 𝑒−𝑡 − 𝑒−𝑧𝑡

2
+ 𝑧𝑒−𝑡 +

𝑒−𝑧𝑡 − 1

𝑡
+ 𝑔(𝑡) 𝑡 𝑒−𝑧𝑡

for all 𝑡 > 0, 𝑧 ∈ Π
∘
+. We substutite here explicit expression (2.1) instead of 𝑔(𝑡) and after elementary

transformations we reduce 𝐺(𝑡, 𝑧) to a compact form

𝐺(𝑡, 𝑧) =
𝑒−𝑧𝑡 − 𝑒−𝑡

1− 𝑒−𝑡
+ (𝑧 − 1) 𝑒−𝑡.

This proves representation (2.27).
For 𝑧 = 𝑖𝑦, where 𝑦 > 0, formula (2.27) is written as

Γ(𝑖𝑦) = exp

⎛⎝ +∞∫︁
0

(︂
cos(𝑦𝑡)− 𝑒−𝑡

1− 𝑒−𝑡
− 𝑒−𝑡

)︂
𝑑𝑡

𝑡
+ 𝑖

+∞∫︁
0

(︂
𝑦𝑒−𝑡 − sin(𝑦𝑡)

1− 𝑒−𝑡

)︂
𝑑𝑡

𝑡

⎞⎠ .

Now relation (2.29) is obvious, while to obtain identity (2.28), it is sufficient to represent ln |Γ(𝑖𝑦)| in
the form

+∞∫︁
0

(︂
cos(𝑦𝑡)− 𝑒−𝑡

1− 𝑒−𝑡
− 𝑒−𝑡

)︂
𝑑𝑡

𝑡
=

+∞∫︁
0

cos(𝑦𝑡)− 1

𝑒𝑡 − 1

𝑑𝑡

𝑡
−

+∞∫︁
0

𝑒−𝑡 − cos(𝑦𝑡)

𝑡
𝑑𝑡

and use (2.23), (2.14). The proof is complete.

In conclusion of this section we note that for a given 𝑦 > 0 both relations (2.7), (2.29) in Proposi-
tions 2.1, 2.2 select the same value in the set Arg Γ(𝑖𝑦), which in general does not coincide with the
principal value of arg Γ(𝑖𝑦) in the segment (−𝜋, 𝜋]. The issue on finding an exact integral expression
for the latter quantity depending on the parameter 𝑦 seems to be of certain interest.

As we shall show in the next section, Malmsten formula (2.27) allows us to derive quickly a complex
version of the Slavić result for a special quotient of the Gamma function.

3. Slavić formula and concluding remarks

We consider a quantity

𝐷(𝑧) ≡
Γ(𝑧 + 1

2)

Γ(𝑧 + 1)
, 𝑧 ∈ Π

∘
+. (3.1)

We are going to prove a statement extending Slavić formula (1.2) on set (1.6).

Proposition 3.1. For quotient (3.1), the integral representation

𝐷(𝑧) =
1√
𝑧
exp

⎛⎝−
+∞∫︁
0

tanh 𝑡

2𝑡
𝑒−4𝑡𝑧 𝑑𝑡

⎞⎠ , 𝑧 ∈ Π
∘
+, (3.2)
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holds true, which coincides with formula (1.2) as 𝑧 = 𝑥 > 0. In other particular case for pure imaginary
values of the variable we have

|𝐷(𝑖𝑦)|2 =
tanh(𝜋𝑦)

𝑦
=

1

𝑦
exp

⎛⎝−
+∞∫︁
0

tanh 𝑡

𝑡
cos(4𝑦𝑡) 𝑑𝑡

⎞⎠ , 𝑦 > 0, (3.3)

+∞∫︁
0

tanh 𝑡

2𝑡
sin(4𝑦𝑡) 𝑑𝑡 − 𝜋

4
∈ Arg 𝐷(𝑖𝑦), 𝑦 > 0. (3.4)

Proof. We replace the variable 𝑧 by 𝑧 + 1
2 in (2.27). Then we combine the result with initial represen-

tation (2.27) and we obtain that

𝐷(𝑧) ≡
Γ(𝑧 + 1

2)

Γ(𝑧 + 1)
=

Γ(𝑧 + 1
2)

𝑧 Γ(𝑧)
=

1

𝑧
exp

⎛⎝ +∞∫︁
0

𝐻(𝜏, 𝑧)

𝜏
𝑑𝜏

⎞⎠ ,

where

𝐻(𝜏, 𝑧) ≡ 𝑒−(𝑧+ 1
2
)𝜏 − 𝑒−𝑧𝜏

1− 𝑒−𝜏
+
𝑒−𝜏

2
, 𝜏 > 0, 𝑧 ∈ Π

∘
+.

We transform the expression for 𝐻(𝜏, 𝑧) as follows:

𝐻(𝜏, 𝑧) =
𝑒−𝜏

2
− 𝑒−𝑧𝜏

1 + 𝑒−
𝜏
2

=
𝑒−𝜏 − 𝑒−𝑧𝜏

2
−
(︂

1

1 + 𝑒−
𝜏
2

− 1

2

)︂
𝑒−𝑧𝜏 .

We observe that
1

1 + 𝑒−
𝜏
2

− 1

2
=

1

2

1− 𝑒−
𝜏
2

1 + 𝑒−
𝜏
2

=
1

2

𝑒
𝜏
4 − 𝑒−

𝜏
4

𝑒
𝜏
4 + 𝑒−

𝜏
4

=
1

2
tanh

𝜏

4

and then rewrite defininition 𝐻(𝜏, 𝑧) in an equivalent form:

𝐻(𝜏, 𝑧) =
𝑒−𝜏 − 𝑒−𝑧𝜏

2
−

tanh 𝜏
4

2
𝑒−𝑧𝜏 .

Then for quotient (3.1) we obtain the representation

𝐷(𝑧) =
1

𝑧
exp

⎛⎝ +∞∫︁
0

𝑒−𝜏 − 𝑒−𝑧𝜏

2𝜏
𝑑𝜏 −

+∞∫︁
0

tanh 𝜏
4

2𝜏
𝑒−𝑧𝜏 𝑑𝜏

⎞⎠ , 𝑧 ∈ Π
∘
+. (3.5)

For all 𝑧 ∈ Π
∘
+, first, by formula (2.21) we have

1

𝑧
exp

⎛⎝ +∞∫︁
0

𝑒−𝜏 − 𝑒−𝑧𝜏

2𝜏
𝑑𝜏

⎞⎠ =
1

𝑧
exp

(︂
1

2
ln 𝑧

)︂
=

1√
𝑧
, (3.6)

and second,
+∞∫︁
0

tanh 𝜏
4

2𝜏
𝑒−𝑧𝜏 𝑑𝜏 =

+∞∫︁
0

tanh 𝑡

2𝑡
𝑒−4𝑧𝑡 𝑑𝑡. (3.7)

Substituting (3.6), (3.7) into (3.5), we arrive at (3.2).
As 𝑧 = 𝑖𝑦, where 𝑦 > 0, formula (3.2) becomes

𝐷(𝑖𝑦) =
1
√
𝑦
exp

⎛⎝−
+∞∫︁
0

tanh 𝑡

2𝑡
cos(4𝑦𝑡) 𝑑𝑡 + 𝑖

⎛⎝ +∞∫︁
0

tanh 𝑡

2𝑡
sin(4𝑦𝑡) 𝑑𝑡− 𝜋

4

⎞⎠⎞⎠ ,

and this implies both (3.4) and the integral part of formula (3.3). In order to complete the checking
of (3.3), we write

|𝐷(𝑖𝑦)|2 =

⃒⃒
Γ
(︀
1
2 + 𝑖𝑦

)︀⃒⃒ 2
𝑦2 |Γ(𝑖𝑦)| 2

, 𝑦 > 0,
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and then for the same 𝑦 > 0 we apply (2.14) and one more explicit formula⃒⃒⃒⃒
Γ

(︂
1

2
+ 𝑖𝑦

)︂⃒⃒⃒⃒ 2
=

𝜋

cosh(𝜋𝑦)
; (3.8)

on (3.8) see [12, Ch. 6, Form. (6.1.30)]). The proof is complete.

Remark 3.1. It is clear that formula (3.3) in Proposition 3.1 in fact involves the Fourier cosine
transform of the function (tanh 𝑡)/𝑡, namely,

+∞∫︁
0

tanh 𝑡

𝑡
cos(𝑦𝑡) 𝑑𝑡 = ln

(︁
coth

𝜋𝑦

4

)︁
, 𝑦 > 0.

We mention one more formula

𝐷(𝑧) =
1√︁
𝑧 + 1

2

exp

⎛⎝ +∞∫︁
0

tanh 𝑡

2𝑡
𝑒−(2𝑧+1)2𝑡 𝑑𝑡

⎞⎠ ,

similar to (3.2) but acting on a wider set{︁
𝑧 ∈ C ∖

{︁
− 1

2

}︁
: Re 𝑧 > −1

2

}︁
⊃ Π

∘
+.

Such representation can be deduced from (2.27) in the same way as (3.2) but without applying the
relation Γ(𝑧 + 1) = 𝑧 Γ(𝑧).

We complete the paper by a short discussion of some issues left sidelined but related with the second
Binet formula and Slavić formula.

Comparing formulae (1.8) and (1.5) shows that in order to prove the latter, it is sufficient to establish
the identity of the integrals

2

+∞∫︁
0

arctan 𝑡
𝑧

exp(2𝜋𝑡)− 1
𝑑𝑡 =

+∞∫︁
0

𝑔(𝑡) 𝑒−𝑧𝑡 𝑑𝑡, 𝑧 ∈ Π+, (3.9)

with the function 𝑔(𝑡) defined in (2.1). Both sides of (3.9) are functions analytic in the right half-
plane Π+ and this is why it is sufficient to justify identity (3.9) for 𝑧 = 𝑥 > 0. Then after replacing
𝑔(𝑡) by its expansion into simple fractions (2.3), it is easy to confirm the validity of the term-by-term
integration led to the left hand side of (3.9). We did not see such was of deriving the second Binet
formula. We note that the employing of expansion (2.3) turns out to be useful in another problem
on calculating integral (2.16), which was solved in another way in Lemma 2.1; a close integral was
calculated in [5, Ch. 12, Sect. 12.31] by an elegant trick due to Pringsheim.

Returning back to Slavić formula (1.2), we recall its role in obtaining two-sided estimates of
kind (1.4), see [1], [4]. In fact, the matter is that the asymptotic series

∞∑︁
𝑘=1

(2−2𝑘 − 1)𝐵2𝑘

𝑘(2𝑘 − 1)

1

𝑥2𝑘−1

envelopes the function ln
(︀√
𝑥𝐷(𝑥)

)︀
on the ray 𝑥 > 0. But now, owing to general integral representa-

tion (3.2) in Proposition 3.1, we can prove a similar property for the written series in the complex plane,
more precisely, in the angle | arg 𝑧| 6 𝜋

4 with a punctured vertex. In other words, in this angle the
quantity 𝐷(𝑧) defined by formula (3.1) satisfy an asymptotically sharp complex version of two-sided
estimates (1.4). A detailed description of these results deserves a separated publication.
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Matematika i fizika. 498/541, 17–20 (1975).
2. A.Yu. Popov. Two-sided estimates for the central binomial coefficient // Chelyab. Fiz. Mat. Zhurn.
5:1, 56–69 (2020). (in Russian).



62 A.B. KOSTIN, V.B. SHERSTYUKOV

3. I.V. Tikhonov, V.B. Sherstyukov, and D.G. Tsvetkovich. Comparative analysis of two-sided es-
timates of the central binomial coefficient // Chelyab. Fiz. Mat. Zhurn. 5:1, 70–95 (2020). (in
Russian).

4. A.B. Kostin, V.B. Sherstyukov. Asymptotic behavior of remainders of special number series // J.
Math. Sci. 251:6, 814–838 (2020).

5. E.T. Whittaker, G.N. Watson. A course of modern analysis. Cambridge University Press, Cam-
bridge (1927).

6. H. Masayoshi. Problems and solutions in real analysis (second edition). On number theory and its
applications. World Scientific Publishing Company, Singapore (2016).

7. C.J. Malmstén. Sur la formule ℎ𝑢′𝑥 = Δ𝑢𝑥 − ℎ
2Δ𝑢

′
𝑥 + 𝐵1ℎ2

2! Δ𝑢′′𝑥 − 𝐵2ℎ4

4! Δ𝑢𝐼𝑉𝑥 + 𝑒𝑡𝑐. // J. Reine
Angew. Math. 35:1, 55–82 (1847).

8. I. Blagouchine. Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods
and some related results // The Ramanujan J. 35:1, 21–110 (2014).

9. G.E. Andrews, R. Askey, and R. Roy. Special Functions. Cambridge University Press, Cambridge
(1999).
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13. G. Pólya and G. Szegö. Problems and theorem in analysis. I. Series, integral calculus, theory of
functions. Springer, Berlin (1988).

Andrey Borisovich Kostin,
National Research Nuclear University MEPHI,
Kashirskoe highway 31,
115409, Moscow, Russia
E-mail: abkostin@yandex.ru

Vladimir Borisovich Sherstyukov,
National Research Nuclear University MEPHI,
Kashirskoe highway 31,
115409, Moscow, Russia
E-mail: shervb73@gmail.com


	to1. Introduction
	to2. First Binet formula and Malmsten representation
	to3. Slavić formula and concluding remarks
	 References

